
The Simplified Beginner’s Guide to
Developing a Strong Coding Foundation,

Building Responsive Websites, and Mastering
the Fundamentals of Modern Web Design

HTML & CSS

David DuRocher

This digital copy is distributed by ClydeBank Media
QuickStart Guides (www.quickstartguides.com)

for individual use only. Digital reproduction,
print reproduction, or distribution of this file

or its contents is strictly prohibited. Copyright
ClydeBank Media LLC, all rights reserved.

http://www.quickstartguides.com

iv HTML & CSS QUICKSTART GUIDE

Copyright © 2021
www.clydebankmedia.com

All Rights Reserved

ISBN-13: 978-1-63610-000-5 (paperback)
ISBN-13: 978-1-636100-23-4 (spiral bound)

Copyright © 2021 by ClydeBank Media LLC

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying,
recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations
embodied in critical reviews and certain other noncommercial uses permitted by copyright law. For permission requests, write to the publisher,
addressed “Attention: Permissions Coordinator,” at the address below.

ClydeBank Media LLC is not associated with any organization, product or service discussed in this book. Although the author and publisher have
made every effort to ensure that the information in this book was correct at press time, the author and publisher do not assume and hereby disclaim
any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from negligence,
accident, or any other cause.

Trademarks: All trademarks are the property of their respective owners. The trademarks that are used are without any consent, and the publication of
the trademark is without permission or backing by the trademark owner. All trademarks and brands within this book are for clarifying purposes only
and are owned by the owners themselves, not affiliated with this document. The QuickStart Guide chevron design mark is a registered trademark of
ClydeBank Media LLC.

Editors: Bryan Basamanowicz, Marilyn Burkley
Cover Illustration and Design: Katie Poorman, Copyright © 2020 by ClydeBank Media LLC
Interior Design and Graphics: Katie Poorman, Copyright © 2021 by ClydeBank Media LLC, Audrey Hardenburg

First Edition – Last updated: August 24, 2022

ISBN-13: 9781636100005 (paperback) | 9781636100012 (hardcover) | 9781636100029 (eBook) | 9781636100036 (audiobook) | 9781636100234 (spiral bound)

Publisher’s Cataloging-In-Publication Data
(Prepared by The Donohue Group, Inc.)

Names: DuRocher, David, author.
Title: HTML and CSS QuickStart Guide : the simplified beginners guide to developing a strong coding foundation, building responsive websites, and
mastering the fundamentals of modern web design / David DuRocher.
Other Titles: HTML and CSS Quick Start Guide
Description: [Albany, New York] : ClydeBank Technology, [2021] | Series: QuickStart Guide | Includes bibliographical references and index.
Identifiers: ISBN 9781636100005 (paperback) | ISBN 9781636100012 (hardcover) | ISBN 9781636100234 (spiral bound) | ISBN 9781636100029
(ePub)
Subjects: LCSH: HTML (Document markup language)--Handbooks, manuals, etc. | Web site development--Handbooks, manuals, etc.

Classification: LCC QA76.76.H94 D87 2021 (print) | LCC QA76.76.H94 (ebook) | DDC 005.72--dc23

Library of Congress Control Number: 2020952160

Author ISNI: 0000 0004 9330 7502

For bulk sales inquiries, please visit www.clydebankmedia.com/orders, email us at orders@clydebankmedia.com, or call 888-208-6826.
Special discounts are available on quantity purchases by corporations, associations, and others.

PRAISE FOR

Really well written with lots of practical
information. These books have a very
concise way of presenting each topic
and everything inside is very actionable!

– ALAN F.

My new book is so helpful, it’s so easy
to understand and I can recommend
it to any client no matter what level of
expertise they have (or don’t have).

– AMANDA K.

Everything is written in a beautiful font
which is great for people who get bored
with reading.

– ANGEL L.

The book was a great resource, every
page is packed with information, but
[the book] never felt overly-wordy or
repetitive. Every chapter was filled with
very useful information.

– CUTRIS W.

I appreciated how accessible and how
insightful the material was and look
forward to sharing the knowledge that
I’ve learned [from this book].

– SCOTT B.

My new QuickStart Guide is very easy to
follow, it’s really well written and it breaks
everything down, especially the essentials.

– ARIZE O.

After reading this book, I must say that
it has been one of the best decisions of
my life!

– ROHIT R.

This book is one-thousand percent
worth every single dollar!

– HUGO C.

The read itself was worth the cost of
the book, but the additional tools and
materials make this purchase a better
value than most books.

– JAMES D.

This is a “go-to” book for not only
beginners but also as a refresher for
experienced practitioners.

– CHARLES C.

I finally understand this topic … this
book has really opened doors for me!

– MISTY A.

vi HTML & CSS QUICKSTART GUIDE

Contents
INTRODUCTION ��� 1

HTML and CSS Are Everywhere ���1
My Story ��1
Why Learn HTML and CSS? ��3
Who Can Benefit from This Book? ���4
Employment Roles that Benefit from HTML/CSS Knowledge ��5
How the Book Is Structured and How You Will Learn ���7
Setting Up Your Workspace ���9
Your Essential Toolkit ��15
A Quick Tour of Visual Studio Code ��16
Getting the Most from This Book ���17

PART I – SETTING THE STAGE
| 1 | THE BASICS AND THE BIGGER PICTURE ���21

HTML and CSS Basic Structure ���21
The Relationship Between HTML and CSS ��25
Comparable and Complementary Languages ���27
Content Management Systems ��29
Understanding Our Online Audience ��30

| 2 | HTML DEEP DIVE ��35
A Brief History of HTML ���35
Current Use ���36
How It Works ���37
Major Changes and Updates ��40
HTML5 ���41
Future Development ���42

| 3 | CSS DEEP DIVE ���45
Background �� 46
How It Works ���47
Applying Styles to Elements���52
Rendering Engines ���58
Beyond the Web ���60

viiContents

PART II – DIGGING IN
| 4 | HTML STRUCTURE ��63

Elements��63
Comments ���66
HTML Document Format (Basic Structure) ��67
Nesting ��70
Putting It All Together ��71

| 5 | BASIC HTML ELEMENTS ���75
Paragraphs ��77
Headings ���78
Lists ���81
Links���83
Images ���86
Other Tags ��89
Divs and Spans ��89
Semantic Elements��91
Putting It All Together ��95

| 6 | CSS STRUCTURE ��� 101
Where CSS “Lives” ��101
An Example CSS File ���104
Selectors��105
Pseudo-Classes ���109
Pseudo-Elements �� 111
CSS Cascade Hierarchy��� 112

| 7 | USING CSS TO SIZE AND SPACE ELEMENTS ��� 117
Content ���118
Padding ���122
Borders ��123
Margins ��125
Box Sizing ��127

| 8 | TEXT FORMATTING �� 129
Font ���129
Color ��134
Text Shadow ��135
Custom Web Fonts / Google Fonts��136
Practice Exercise ���138

viii HTML & CSS QUICKSTART GUIDE

| 9 | LAYOUT/FORMAT ��� 143
Position ��143
Floating Elements ���146
Display ���152
Navigation Bar ��155
CSS Flexbox ��157
Moving Forward ��159

PART III – ADVANCED
| 10 | HTML JUNK DRAWER ��� 163

Superscript and Subscript ��163
Abbreviations ��164
Blockquotes and Cite ��164
Pre and Code ��166
Special Characters ��167
Emojis ��168
Audio and Video ���169
Image Sets ���172
Tables ��173
IFrames ��177

| 11 | HTML FORMS �� 179
Forms Overview ��179
Key Elements���183
HTML5 Validation ��193
Processing Form Input with PHP ��196
Putting It All Together ��199

| 12 | COOL TRICKS �� 203
CSS Gradients ���203
Sprites �� 208
Transitions ���211
Transforms ���213
Overlay/Modal Without JavaScript ��215
Keyframe Animation ���218
Calculated Values ��220

| 13 | MEDIA QUERIES ���225
Structure ��226
Choosing Breakpoints ��228

ixContents

Viewport Meta Tag ���229
Simulating Screen Sizes ��229

| 14 | BOOTSTRAP �� 233
Installing Bootstrap ��234
Layout Grid ���236
Color Styles ���241
Components ��242
Utilities ��262
Forms ���264
Typography ���267
Additional Learning ��270
Moving Forward ��270

PART IV – THE WORK ENVIRONMENT
| 15 | WORKFLOW �� 273

Project Setup and Management ��273
Scaffolding ��274
Testing and Debugging ��275
Going Live ���278
Customizing Existing Code ��279

| 16 | GIT ��� 283
What Is Git? ���283
Downloading and Installing Git ��284
Accessing the Command Line ��285
Starting a Website with Git ��286
Importing an Existing Website into Git ���287
The Git Workflow ��287
Git Branches ��288
Git Production Auto-Sync ���289
GitHub and GitLab ��289

| 17 | WHAT’S NEXT? ��� 291
WordPress ���291
JavaScript and jQuery���292
Backend Languages Like PHP and Python���293
David’s Perfect Cup ��294

x HTML & CSS QUICKSTART GUIDE

CONCLUSION ��297

APPENDIX I: WEB HOSTING ���299

APPENDIX II: FTP ��303
Common FTP Software Titles ���303
Connecting to an FTP Server �� 304
Some Final Notes on FTP �� 305

APPENDIX III: SIZING UNITS ��307
Pixels ���307
Percent ��307
vw and vh ��� 308
em/rem ��� 308

APPENDIX IV: OPEN GRAPH / METADATA ��309

APPENDIX V: COFFEE SHOP SOLUTIONS �� 311
Downloading the Website from GitHub ���311
Introduction: Adding an “About” Page ���311
Chapter 4: Adding a Description and Title ��312
Chapter 5: About Page ���312
Chapter 5: Navigation ���313
Chapter 8: Look and Feel ���314
Chapter 9: Advertisement ��315
Chapter 11: Contact Form ��316
Chapter 12: Sprites ���316
Chapter 12: Gradients ��319
Chapter 12: Keyframe Animation ���319
Chapter 13: Going Mobile ��320

ABOUT THE AUTHOR �� 323
ABOUT CLYDEBANK MEDIA ��� 325
GLOSSARY ��� 327
REFERENCES ���329
INDEX �� 331

BEFORE YOU START READING,
DOWNLOAD YOUR FREE DIGITAL ASSETS!

Use the camera app on your mobile phone to scan the QR code
or visit the link below and instantly access your digital assets.

www.clydebankmedia.com/htmlcss-assets

TWO WAYS TO ACCESS YOUR FREE DIGITAL ASSETS

or

HTML Starter Template

Online Resource Library

All Source Code from Examples

1Introduction

Introduction
Congratulations on your decision to learn HTML and CSS! These languages
are used daily by billions of people on web pages and apps and in countless
other forms. Whether you’re planning to build websites, wish to have an
informed conversation with a developer, or just want to have a better
understanding of the world around you, this book is a great start!

HTML and CSS Are Everywhere
It is nearly impossible to go about your day without encountering HTML

and/or CSS. These languages lurk behind every web page, most application
screens, television and video game console interfaces, and even the screen of
your new smart fridge. You are continually consuming the results of this code
but probably rarely stop to think about what’s under the hood. That’s about
to change.

My Story
Hello! My name is David. I grew up in a small town outside of Rochester,

New York. I spent countless hours of my childhood exploring the beautiful
outdoors of upstate New York, Vermont, and New Hampshire via the
plentiful hiking trails and campsites.

I didn’t have a computer in my home, but that wasn’t unusual at the time.
My interest in technology started early, and video games helped fuel this
passion. Once I had access to a computer, I began to teach myself coding
in a programming language called BASIC. In high school, I moved on to
HTML, CSS, and JavaScript.

When I was deciding what path to take, I considered computer science,
software engineering, and other tech-heavy options. I eventually decided to
pursue a degree in information technology, which I saw as a bridge between
the computer and the human side of tech. I attended the Rochester Institute
of Technology and was able to learn from some fantastic professors, many of
whom came from non-computer-related backgrounds. They became teachers
when the skills they had learned developed into a new industry. These professors
helped me to see that sharing skills I have learned can take many forms.

2 HTML & CSS QUICKSTART GUIDE

In 2008, after moving to New York City and working in my field for
several years, I was offered a position as an adjunct professor at the CUNY
City College of Technology, where I rounded out the web design curriculum
by introducing different web technologies I used in my everyday life on web
development projects. Since then, I have moved on to other schools where
I teach a wide variety of classes covering HTML and CSS, JavaScript,
PHP, and WordPress. I enjoy the process of teaching, seeing new students’
confidence grow as they feel more comfortable with new ideas, and watching
the “light bulb” blink on when they see how they can use their newfound
knowledge.

Outside of teaching, I work for Adobe as a technical account manager
supporting the Adobe Experience Cloud collection of products. I still do
plenty of freelance web development projects, and when I’m not building
things online, I disconnect through hiking or camping on our local trails
or in the mountains of Vermont and New Hampshire. At home, I dabble
in woodworking and beekeeping. My wife and I work with various animal
rescue organizations and are restoring our 1897 Shingle Victorian house in
the northwest corner of Connecticut (figure 1).

Source: Illustration by Audrey Hardenburg

On-the-job learning has always been a part of my life. Though my
education gave me a wide range of skills, the technology industry is
continually changing. The number one skill I have developed is learning how

fig. 1

3Introduction

to learn. I always find myself researching and learning new tools, techniques,
and strategies for the work that I do.

In the spirit of continued learning in an ever-changing landscape, I
wanted to write this book to create a quick but comprehensive guide to the
tools I see as most valuable and most used in my experience as a web developer.

Why Learn HTML and CSS?
There are numerous reasons why you might have picked up this book.

You may be interested in coding and someone suggested that you start with
HTML and CSS. Your company may need to build or revamp a website. You
may wish to start a web design firm. Or, like me, you might simply have an
insatiable desire to learn.

Regardless of your motivations, HTML and CSS are a great place to
start learning how to code. The languages require only a text editor and a web
browser—two things you already have on your computer. And HTML and
CSS offer instant gratification. You can put a few lines of HTML into a text
file, save it, then open the file in a browser and immediately see your results.

The instant feedback of writing HTML can be appealing and satisfying
to those who do not consider themselves computer experts. Results appear
with a few straightforward instructions. Even a basic understanding of how
to use these tools can give you a sense of moving from computer “user” to

“superuser.” While it’s not technically programming, writing frontend markup
in languages like HTML and CSS allows you to provide direction to the
computer to display content in the precise way you desire.

Q: Is HTML a programming language?

Technically, HTML is not a programming language. HTML stands
for “hypertext markup language.” A markup language “marks up” text with
instructions for display—in this case, via a web browser. Programming
languages, on the other hand, use logical control statements to direct the
flow of the program’s execution. Programs take input and produce output,
whereas HTML and related markup languages format existing content.
Both are called coding, but there is a subtle difference.

WordPress
WordPress excels at blog and website creation but removes some of the
control you have over HTML and CSS code. It’s simple to add a page
or blog post, but customizing the overall look and feel of the website, or

4 HTML & CSS QUICKSTART GUIDE

creating a new website theme, requires knowledge of HTML and CSS.
Even if you use WordPress, knowing HTML and CSS will transform
your WordPress data entry skills into those of a full-fledged WordPress
web developer.

Wix and Squarespace
Wix, Squarespace, and other website-building tools are excellent
platforms for building a website. Their easy-to-use interfaces allow you
to create a simple site with no knowledge of HTML. Both Wix and
Squarespace allow for customization, but some custom HTML, CSS,
and JavaScript isn’t possible inside their platforms. Moreover, the website
you build cannot be downloaded and used on other web servers. You
must continue to purchase their services to maintain your site.

Who Can Benefit from This Book?
Any professional who uses the internet and technology can benefit from

knowing HTML and CSS. In the process of writing this book, one of our
editors lamented that roadblocks he had encountered in a previous position
could have been avoided had he been able to make changes to website code
himself. The IT staff and programming team had to handle his requests,
slowing down his workflow and creating a more significant burden on the
IT department.

Students of Web Development
Are you learning to build websites? This book will give you the foundation
you need to understand the two core components of modern web design.

Educators
Will you be teaching web development? This book will help you get
ahead of the most common questions your students will ask. It provides
step-by-step guidance that will help you bring your students through the
learning process with ease.

Science, technology, engineering, and math (STEM) initiatives are
proliferating in elementary, middle, and high schools throughout the
world. Many educators are pushing the boundaries of their knowledge to
bring technology education to students at younger ages. This book works
as a guide for students of all ages and can be used to assist teachers who
are not highly experienced in the field of web development.

5Introduction

Adjacent Professionals
Perhaps your job doesn’t require you to code websites, but you work with
a developer or team that does. Understanding the process will enable you
to have informed conversations and be able to advocate for your needs.
If you have to hire a web designer, you’ll have a leg up in the interview
process, allowing you to make a better hiring decision.

Marketers and graphic artists frequently interact with web designers.
Knowing HTML and CSS will benefit your project(s) and enable you to
provide more value to your organization.

Professionals Looking for a Quick Reference/Primer
With easy-to-follow examples and plain-speak guidance, this book is
excellent as a quick reference or refresher for a tool you don’t use often or
for someone getting back into the game.

Web Hobbyists
Many people build websites for their own enjoyment, as a passion project
or hobby. This guide will provide a footing to begin building your sites
from the ground up.

Employment Roles that Benefit from HTML/CSS
Knowledge

If your overall goal is to become a programmer or developer, HTML/
CSS is an excellent place to start.

There is a definite benefit in learning HTML and CSS, even if becoming
a developer is not your ultimate goal. Since many of our daily activities involve
a computer of some sort, it makes sense that more employees are expected
to have a basic understanding of how computers display data. Even office
managers and assistants are sometimes responsible for modifying web pages,
so knowing how to do this gives you a clear advantage over other applicants.

Let’s take a closer look at some of the workplace roles that utilize
HTML/CSS:

Artist / Graphic Designer
Since HTML and CSS are essentially a method for displaying content,
it makes sense that graphic designers would benefit from having a full
understanding of these technologies to showcase their work. Knowledge

6 HTML & CSS QUICKSTART GUIDE

of the HTML and CSS code necessary to display graphical content on
the web gives the designer a tremendous advantage.

Marketer
Marketers often need to generate new materials for sales initiatives.
Landing pages and email marketing messages are excellent ways to
showcase your product and call customers to action, and these pages use
HTML and CSS code. Basic HTML/CSS knowledge will enable you to
respond quickly to marketing opportunities.

Writer / Content Provider
In the (not-so-distant) past, reporters and journalists would type their
articles then hand them off to others for print layout. Now, with the
growth of the internet and blog-driven content, writers often are asked
to format their work in a nearly internet-ready format. Even though many
publications use content management systems like WordPress, it is often
necessary to make edits to the HTML code to ensure proper display.

Social Media Manager
While managing likes, shares, comments, and retweets may make up a
large part of a social media manager’s schedule, sourcing and delivering
engaging content is vitally important. Knowing how to use links and
basic HTML and CSS code will enable the social media guru to better
format posts and linked content, giving them a leg up on the competition.

Entry-Level Quality Assurance Engineer
Many quality assurance (QA) professionals are responsible for testing
software and websites. Understanding the display code behind the user
interface gives a quality assurance engineer an advantage when crafting
tests and preparing reports.

Modern QA testing has evolved toward automatic testing procedures.
Often, configuring these systems requires knowledge of HTML and CSS.

Nonprofit
Nonprofit organizations have many of the same needs as larger
companies, with one significant difference: they typically lack the budget
to hire full-time developers. If you are an employee at a nonprofit, you
can strengthen your organization by learning HTML and CSS. With
web design knowledge, you can build and maintain your organization’s

7Introduction

website, design email marketing campaigns, and fully take advantage of
social media.

Entrepreneur / Small Business Owner
If you are starting your own business, you already know firsthand
that everything costs money and technical skills and know-how are
particularly expensive. Knowing how to build your website could save
you a fortune!

Even if you can’t design the entire site yourself, providing a mockup of
your ideas will save your designer time. And knowing HTML and CSS
will help you make better hiring decisions with your technical staff and
contractors.

How the Book Is Structured and How You Will Learn
With each chapter, I’ll introduce new concepts via explanation,

illustrations, and stand-alone examples. I’ll provide context for each topic, so
you’ll know why it will be useful. Where relevant, I will add specifics from
my own professional experience.

To add to the learning experience, we’ll be providing you with an actual
website that you’ll be working on intermittently throughout the book. The
website will be presented to you in need of a whole lot of tender love and care.
But by the time you finish this book and have completed all the exercises,
you’ll be well on your way to delivering a high-quality, fully functional web
product—see “Accessing the Coffee Shop Website” later in this section for
download instructions and more details on this ongoing exercise.

Our objective is to have you finish this book with a solid understanding of
HTML and CSS. We’ll accomplish this through a combination of resources,
including the book itself, the development of the downloadable Coffee Shop
website, and an array of other helpful and educational resources.

Take a moment to visit www.clydebankmedia.com/htmlcss-assets and
access your Digital Assets. We’ll be referring you back here for access
to various resources throughout the book. For now, though, take a few
minutes and watch the short video titled “Using Our GitHub Repository.”

In addition to Digital Assets, we’re also hosting several essential
resources on the ClydeBank Media GitHub page. Go to www.github.com/
clydebankmedia. Find the “htmlcss-quickstartguide” repository and click to
open. Inside you will find all of our source code for this book.

www.github.com/clydebankmedia
www.github.com/clydebankmedia

8 HTML & CSS QUICKSTART GUIDE

This social code-sharing platform (GitHub) uses the popular Git source
code management system. Using Git is helpful if you’re on a team, and it
offers benefits for single-developer projects, but using the site’s greater
functionalities isn’t essential at this stage of your learning. We’ll cover Git in
detail in part IV of the book. For now, just jump right into our GitHub site
and explore. You can’t break anything.

The source code inside the “htmlcss-quickstartguide” repository is
organized by chapter and “Snippet number.” It should be easy to locate any
snippet of code found in the book. Moreover, you are free to use any of our
coding examples for your own website projects (figure 2).

Use our htmlcss-quickstartguide repository on GitHub to easily copy and paste any code
featured in this book.

By the way, a lot of the “On Your Own” exercises you encounter in this
book can be aided by a basic HTML template. We have created a “Webpage
Starter Template” that can be found in the HTML & CSS QuickStart Guide
Digital Assets both in the “00-Introduction” folder in GitHub and in its own
downloadable file, starter.html at clydebankmedia.com/htmlcss-assets.

fig. 2

9Introduction

 <!DOCTYPE html>

 <html lang="en">

 <head>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width,

initial-scale=1, shrink-to-fit=no">

 <title>Starter Template</title>

 </head>

 <body>

 <!-- CONTENT GOES HERE -->

 </body>

 </html>

Setting Up Your Workspace
One of the great things about working with HTML is that getting

started requires nothing more than a text editor and a web browser. From a
beginner’s perspective, it doesn’t matter which text editor and web browser
you choose, but if you’re serious about your HTML training, you may want
to acquire a few specific tools. I’ll mention some tools in asides or callouts,
but for now, let’s begin with the basics.

The Importance of Folder Structure
Before you begin writing any code, it’s a good idea to create a folder or
directory on your computer where all your website files will live.

While it is certainly possible to put all your files in one folder, this
technique will get messy very quickly. Making good choices regarding
site organization will save you time and frustration as your site grows. A
small site, at a bare minimum, will have a directory for the HTML files
(at least an index.html file), and a folder for CSS files and images.

An HTML file, CSS folder, and image folder

starter.html

fig. 3

10 HTML & CSS QUICKSTART GUIDE

You may end up with far more fi les in your main directory. Moreover, if
your website has multiple subsections, you will likely end up with specifi c
directories for each subsection.

Choosing a Text Editor
HTML fi les are simply text documents saved using the fi le extension
.html rather than .txt. Any browser will display HTML fi les. Since
HTML code is completely text-based, basic programs such as Notepad
on Windows, TextEdit on Mac, or gedit on Linux are perfectly valid
options for an HTML coder (fi gure 4).

Windows Notepad with a simple HTML fi le

However, to make life easier, I recommend obtaining a good code editor.
Code editors are text editors specifi cally designed for laying out HTML
code (and other programming languages) in an organized fashion. Th ey
employ color coding, indentation, and a host of other features that aid
coders in writing and maintaining code.

Again, none of these tools is required to get started, but if you fi nd it
diffi cult to follow or read code in a standard text editor, give one of these
programs a try.

Here are the most popular text editors as of the time of publication. Many
are free/open-source or available for a small price.

fi g. 4

11Introduction

 » Visual Studio Code
 » Notepad++
 » Vim
 » Emacs
 » Sublime Text

Each of these editors has its pros and cons, but if you’re having trouble
deciding, I’d suggest installing both Visual Studio Code and Notepad++.
It may seem strange to employ two editors, but I use Notepad++ for
quick, single-file edits and the fully-featured Visual Studio Code for
managing larger sites. Either can suit both scenarios, but these are my
recommendations. At the end of the day, a coder’s choice of a text editor
is a matter of personal preference, and most any option will be fine. If you
want a clear-cut recommendation, then I’d say get Visual Studio Code
text editor, as most examples and exercises in this book will depict that
text editor in action (figure 5).

Visual Studio Code with the same HTML file as in figure 4. Note the file browser tabs,
syntax highlighting, and other advanced features not found in Windows Notepad.

Popular Web Browsers
It’s hard to be a web designer without a web browser. Fortunately, all
major operating systems include one. For Windows, the default is Edge;

fig. 5

12 HTML & CSS QUICKSTART GUIDE

for macOS, it is Safari; and most Linux distributions include Firefox. At
the time of publication, Google Chrome has the majority of the browser
market share (figure 6).

Browser market share as of October 2020
Source: gs.statcounter.com

You can use any browser to get started, but it is essential to understand
that different browsers may render content differently. When building
a website, it is a best practice to test your results in multiple browsers
to ensure that content renders according to your expectations. Some
browsers allow a wider variety of coding styles for the sake of
compatibility. In other words, they are more “forgiving” than others (as
in, they allow you sloppier code and try to guess as to what you meant).
Other browsers are stricter and require code to be structured in a precise
way to display correctly.

If you do not want to spend time comparing different browsers, the easiest
and safest pick at the time of publication is Google Chrome. Chrome is
probably the best browser to work with at the moment because it firmly
adheres to established web design standards. All of the browsers featured
in figure 6 are available for free download.

fig. 6

13Introduction

Image Editing Software
You are probably familiar with image editing software, from Adobe’s
signature Photoshop to the very basic Microsoft Paint. You may not
know, however, that image editing software is an essential component of
your HTML workspace. Even if you are not planning on embarking on
any significant graphic design work, you will still need to edit images so
they will render optimally on the internet.

Sizing: Image size is one of the essential considerations when editing
images. Image files must be downloaded from the web by a browser,
so failing to optimize your images can lead to slow load times for your
website. Images captured on a camera or smartphone are too large to
display on a website and must be resized by image editing software.

Format: Many web browsers accept a wide array of image files, but .jpg,
.png, and .gif are the most common. JPEG (.jpg) files are great for photos,
while .png and .gif files work well for illustrations or smaller graphics.
In cases where an image you want to use is not in the format you desire,
image editing software helps you convert it to the desired format.

Image editors range widely in price and complexity. GIMP (the GNU
Image Manipulation Program) is a free and open-source alternative to
Adobe Photoshop. Both Photoshop and GIMP can be very complicated
to use, and if you are not a graphic designer, they can be a bit unwieldy.
Microsoft Paint, Paint.net, and Paint++ are more basic choices that offer
a simple but efficient set of features.

ACCESSING THE HORRIBLE COFFEE SHOP WEBSITE

The initial ClydeBank Coffee Shop website is terrible and needs a
lot of love. We designed it this way on purpose so you would gain
experience working with an existing website.

Go ahead and download the sample “ClydeBank Coffee Shop” website,
selected examples, images, and related files. They can all be downloaded

14 HTML & CSS QUICKSTART GUIDE

easily from our GitHub account—www.github.com/clydebankmedia. Look
for the repository called “ClydeBank-Coffee-Shop” and click to open.

As previously noted, you will be given opportunities to steadily incorporate
your newfound HTML and CSS knowledge into improving this website as
we go along. Look for the green “↓Code” icon, where you can download the
ZIP file containing all code and graphic assets for the site. If you’re having
trouble, see the walk-through in appendix V.

Believe it or not, you’ve already learned enough about HTML to get
started with a simple hands-on exercise. In the directory you’ve downloaded,
you’ll find a multitude of files: several .html files, a .css file, and some
images. Each .html file represents a website page. You’ll recognize the names
of standard pages, such as “contact” and “events.” The index.html file serves
as the home page. The web server looks for an index.html file as the default
page to serve when a user navigates to the website (figure 7).

The images used on the website and the .css files are placed in their own directories. Note that
your browser icons may be different if Chrome is not your default browser.

If you open the index.html web page in your browser and click on the
“about” link, you’ll notice its destination conspicuously missing. That means
it’s referenced in the index.html file but the about.html page cannot be
found. Let’s fix that now.

In your main website directory, you will find a template.html file that
can be copied to create your about.html file. You will be developing this
page later as you continue further down your path to HTML/CSS mastery.

Go ahead and copy the template.html file and name it about.html.
It should be in the same directory as the index.html file. If you’re able to
complete this exercise on your own, great. If you’re having trouble, don’t

fig. 7

15Introduction

worry. Once you grasp some core concepts, you’ll be fine. At the end of this
book in appendix V, “ClydeBank Coffee Shop Solutions,” you’ll find walk-
throughs for all of our coffee shop exercises, including this one.

Your Essential Toolkit
You don’t need much to code a website. Unlike with other programming,

the barrier to entry is remarkably low. A text editor is the only requirement
for coding HTML and CSS. As discussed in “Setting Up Your Workspace,”
we’ll be using Visual Studio Code.

If you have a laptop or desktop with a single monitor, you can drag the
Visual Studio Code editor window to the left or right and split the screen with
a web browser. If you would rather have each in a full screen, you can simply
use ALT+TAB to cycle between them. If you are using multiple monitors,
you can place your text editor and web browser on two different screens.

In either case, we recommend having the HTML & CSS QuickStart
Guide beside your computer for easy reference. If you’re reading the e-book
version, you can either ALT+TAB to it for reference or place it on a separate
screen on a multi-monitor system (figure 8).

Your essential toolkit: a file explorer, text editor, web browser, and your copy of this book

fig. 8

16 HTML & CSS QUICKSTART GUIDE

All source code used in examples throughout this book can be found in
our GitHub account: www.github.com/clydebankmedia. You can easily
copy the code out of GitHub and paste it into your text editor.

A Quick Tour of Visual Studio Code
Visual Studio Code is a powerful code editor that provides a wide array of

features for both beginners and experts. While it’s extremely useful for web
design, it can also work with other languages like JavaScript, PHP, Python,
Ruby, and more. Let’s download it and explore it together.

The interface is divided into four sections. Not all sections are
immediately visible upon launch. Notice that in figure 9, the index.html file
of the ClydeBank Coffee Shop website is loaded in the large right pane. The
HTML is colored to make the various elements in the code easy to see.

The thin left pane shows a display of the current files in the current
working folder. This pane is called the Explorer and is not shown when you
start the editor. If you wish to see your working folder of files, go to File >>
Open Folder to open the folder with the HTML files of your choice. You
may want to open the folder containing the ClydeBank Coffee Shop website
files that you downloaded in this chapter.

The Visual Studio Code editor

fig. 9

17Introduction

You don’t have to use the explorer pane, but it makes it easy to switch
between multiple files.

On the far left side you’ll see a dark toolbar with various icons. The
explorer icon at the top of this bar toggles the file explorer pane. The search
icon (displayed as a magnifying glass) toggles a pane to search through
your website’s files. The remaining icons focus more on source control (Git,
discussed in chapter 16) and debugging features that don’t pertain to HTML
and CSS.

The final portion of the editor is the menu at the top of the application.
Many of the various functions inside the editor are found in the menu,
including the Open Folder command in the File menu. I encourage you to
browse through the menu items to further explore the editor. Even if you
don’t need all of the functions at the moment, it’s good to know where they
are.

There are various themes and extensions you can activate in Visual Studio
Code to change its appearance and add functionality. You can access these
and other configuration options with the settings icon (displayed as a gear in
the bottom left corner of the screen on the toolbar).

Visual Studio Code is not limited to code files. You can also use it as a
text editor. It is far more powerful than Notepad and can save you a lot
of time. As you gain experience with the editor and explore its features
on your own, you’ll feel more comfortable editing HTML and CSS.

Visual Studio Code has many color themes and extensions that will
make your web development even more enjoyable. Click on the gear
icon in the bottom left-hand side menu and select Extensions to see
what’s available. To explore the wide variety of color themes, click the
funnel icon above the Extensions search bar and click Category, then
Themes. You can also click Most Popular on the funnel icon to see the
most-used extensions.

Getting the Most from This Book
Learning HTML and CSS requires patience and commitment. No one’s

learning path in this subject is identical to anyone else’s. In this book we’ve
done our best to present a sensible pathway for you, but you will undoubtedly
learn a great deal from your own ingenuity and experimentation.

We’d like to recommend three specific tips to aid your reading and
learning experience:

18 HTML & CSS QUICKSTART GUIDE

1. If you are struggling to fully understand a concept presented in this
book, leave it be for a while. Skip ahead and move on. The book is
laid out in such a way that you are sure to encounter one or more
subsequent examples of the topic (often in the same section) that
will help clarify the main point. Many elements in HTML depend
on one another. This makes HTML somewhat challenging to teach
in a linear fashion, but patient and persistent students will nibble
away at the peripheries of complex topics until the bigger picture
gradually comes into full focus.

2. At times, you will likely be tempted to veer off in a tangent of
exploration inspired by a particular topic during the course of your
reading. I recommend that you (a) go for it! Jump down the rabbit
hole for a while and indulge your curiosity, but (b) don’t wander for
too long. Set a time limit for yourself, after which you’ll return to
the book and proceed with our prescribed learning structure.

3. I advise testing every HTML and CSS code example you see in
this book. As stated before, you can access all source code for this
book in the GitHub repository for the HTML & CSS QuickStart
Guide: www.github.com/clydebankmedia/htmlcss-quickstartguide.

Congratulations! You have started your journey toward becoming a
master of HTML and CSS. I look forward to helping you get started in the
exciting world of web design.

Did you choose and download all the tools you need to edit and
display HTML/CSS? We recommend that you have a file explorer, text
editor, and web browser window open as you proceed to part I.

PART I
SETTING THE STAGE

21The Basics and the Bigger Picture

| 1 |
The Basics and the Bigger Picture

Chapter Overview
 » HTML and CSS power the web.
 » HTML, CSS, and JavaScript are frontend languages.
 » You must understand your audience.

HTML, or hypertext markup language, is the markup language that makes
the web work. In other words, all web pages on the internet use HTML.
When you access a web page, your web browser is interpreting a text file
written in HTML that contains a set of instructions for formatting the
content of the page so a human can read it. The earliest web browsers could
only read HTML. In fact, the very earliest ones did not even have a graphical
component; they were text-only and could be viewed only in command-line-
based operating systems. Obviously, much has changed since the early days
of command-line operating systems and HTML-only web pages. HTML
now lives in a broader online ecosystem with other languages, online content
management systems, and website search engines and aggregators. Let’s
explore this ecosystem in more detail.

HTML and CSS Basic Structure
No matter how complicated or fancy a website looks, at its core is

HTML. In your web browsing experience, you may have (either accidentally
or intentionally) clicked on a button that allowed you to view the source of a
website’s code. That code may have looked like gibberish to you then, but by
the time you finish this text, you will be able to identify elements of HTML
and CSS within code. Although we will cover HTML and CSS syntax in
much greater detail later, it is important for now that you be able to identify
the basic building blocks of both HTML and CSS, as we will be referring to
these features quite often. Let’s get a sneak preview of what HTML and CSS
look like on some simplified web pages.

22 HTML & CSS QUICKSTART GUIDE

HTML Structure
HTML defines the basic structure of a web page. It provides additional
formatting and organization information about the content of a website,
no matter if that content is text, images, videos, tables, or data entry
forms. Much of this process involves giving instructions to the browser,
such as “this is a header,” “this is a paragraph,” “this is a link,” etc.
(figure 10).

Think in Terms of Elements
Each browser instruction written in HTML takes the form of an element.
An element is the basic building block of HTML; it is fair to think of
elements as the basic building blocks of any web page (figure 11).

fig. 10

fig. 11

23The Basics and the Bigger Picture

Each element begins with an opening tag and ends with a closing tag.
The tag performs two key functions: it defines the starting point and
stopping point of each element, and it defines the element type.

The basic structure of an HTML element

In figure 12, we can see that the tag <h1> defines a heading. All tags are
encased in angle brackets <> with the closing tag having a forward slash /
to denote the end of the element. All text inside these tags is considered
part of that element.

CSS Structure
As you know, most web pages, when viewed through a browser, include
much more than basic text. Modern websites employ creative formatting,
color, navigation menus, and more. The look and feel of the internet
are guided by an additional set of instructions handed to the browser,
which tell it how to display the text formatted by the HTML. These
instructions have been given by a different but dependent language: CSS,
or Cascading Style Sheets. CSS tells the browser to display not only
the basic structure of the content, but how to format it to make it look
visually appealing and, most important, usable.

Consider this example of HTML and its result in the browser in figure 13.

<!DOCTYPE html>

<html>

 <head>

 <style>

 body { margin: 0; }

 .header {

 color: white;

 background-color: darkgray;

 padding: 20px;

fig. 12

01-01.html

24 HTML & CSS QUICKSTART GUIDE

 text-align: center;

 }

 </style>

 </head>

 <body>

 <div class="header">

 <h1>My First Heading</h1>

 </div>

 <p>My first paragraph.</p>

 </body>

</html>

On the right-hand side of figure 13 we can see our HTML example being
displayed in the browser. We will explain the HTML and CSS code in
depth in later chapters, but for now, the main purpose of this example
is to show that the CSS code between <style> and </style> provides
additional formatting for one of the HTML elements, the header. Note
that the CSS code only provides structure for existing HTML elements.

If we take a closer look, we will see that CSS has a structure similar to
that of HTML (figure 14).

CSS uses a piece of code called a selector to choose what HTML element
to modify. It then describes the modification process in another piece of
code, the declaration. The declaration consists of one or many properties
(such as text color, centering, etc.). These properties are similar to the
format controls in any word processor. You can apply a certain value to
each property, such as bold, italics, or text alignment. CSS selectors will
be described in more detail later. For now, it’s sufficient for you to be able
to differentiate CSS structure from that of HTML.

fig. 13

25The Basics and the Bigger Picture

The Relationship Between HTML and CSS
In the earlier days of the web, HTML stood pretty much on its own.

Styling was built into the language, and any formatting that needed to occur
would be applied directly to each element in the text via HTML coding.
Incorporating styles right into individual elements worked fairly well, at
least for small websites. However, when working with a large amount of web
content, using this HTML-only approach was highly inefficient. Adding
styling to a page required inserting the same piece of code repeatedly
throughout an entire website—a time-consuming and error-prone process.
Furthermore, HTML code could become very bloated. For each line of code
that was written, the file size would increase, resulting in slower loading of
web pages.

Demand grew for more robust web designs; a system was needed with
which one could create a simple set of rules or instructions that could be
stored in one place but would cascade across the entire site. In response to this
problem, CSS offered sets of style instructions that allowed web designers to
make changes across their entire website with only one small piece of code in
a CSS file, resulting in cleaner code and huge time savings.

Instead of adding styles directly to each header tag, like this . . .

<header style="background-color: #f1f1f1; padding: 20px;

text-align: center;">

 . . . we define this style once in our CSS file:

fig. 14

01-02.html

26 HTML & CSS QUICKSTART GUIDE

.header {

 background-color: #f1f1f1;

 padding: 20px;

 text-align: center;

}

And now, all our <header> tags on the site will adopt this styling.
While HTML and CSS are technically two different languages, we use

them together, as they are dependent on each other for the web to exist as
we know it. CSS requires HTML, but HTML can, theoretically, stand on
its own. A web browser can read and interpret a web page written in pure
HTML with no problem at all. CSS, by itself, will do nothing. Loading a
CSS file into a browser will produce a result that is meaningless to an end
user (figure 15).

Existing websites can be viewed with all CSS turned off. This demonstrates the vast
improvements CSS brings to web page design.

The difference between building a page with HTML alone and building
one with CSS is the difference between building a house all by yourself
and hiring a construction team. With a construction team, you can provide
some universal guidelines, such as: “The house should have wooden floors,
except for the bathrooms, which should be outfitted in tile” or “Paint all the
bedroom walls blue except the master bedroom, which should be an eggshell
white.” If you were building a tiny house, perhaps you would not need the

“CSS building team.” However, if you were building a mansion, some general
guidelines for design consistency would save you a lot of time and keep your
house from looking like it was designed by an eccentric millionaire. You have
probably encountered some websites with bizarre styling choices. More likely
than not, those websites have inadequate or nonexistent CSS.

01-03.css

fig. 15

27The Basics and the Bigger Picture

HTML and CSS are designed to be compatible with each other. HTML
helps to identify the function of any piece of content on any given page, and
CSS determines how it looks and works with the other pieces of content
and with the page as a whole. If we think of HTML as a series of building
blocks, CSS gives us the ability to change the shape, color, size, etc., to fit
our needs. With the instructions provided by CSS, that simple set of building
blocks takes on new shapes and sizes without affecting the integrity of the
underlying structure. The two languages have become dependent on each
other. In fact, most advancements in HTML are specifically intended to
facilitate CSS’s ability to make ever more granular and useful changes to the
look and feel of web content.

You may have associated websites with certain website-generating
software such as Wix, WordPress, or SiteBuilder. Site-building tools
may be used to generate content in many different ways and from
many different sources, but in the end, what is sent to the browser is
HTML, usually formatted with CSS.

Comparable and Complementary Languages
If all we ever wanted was static content on a web page, HTML, CSS,

and a few other tools would be sufficient. However, very few web pages
display only static content. For example, think of the last time you looked
up a web page for a restaurant, only to find very basic contact information,
background music that you could not turn off, and a few scanned images
of the restaurant’s menu that had not been updated for a year. How helpful
was that website? We have grown to expect much more from online content,
including up-to-date inventory information, online purchasing and delivery
services, and our own user accounts with customizable settings. All these
items cannot exist on the frontend, or client-facing, part of a website that is
designed by HTML and CSS. The extra functionality we expect requires a
host of servers, databases, and other utilities on the backend that we as end
users do not interact with directly (figure 16).

Think of a restaurant kitchen. The backend is where orders are organized
and food is prepared. The frontend, including the wait staff, tables, and
register, is where the customer interacts with the restaurant. Just as the waiters
and maître d’ don’t cook the food, HTML and CSS cannot interact with
databases and server processes. The backend requires its own programming
languages that interface with the frontend languages to provide content we
can see on our computers and mobile devices.

28 HTML & CSS QUICKSTART GUIDE

Frontend Languages
Frontend languages are those which are interpreted by the “client,” or the
web browser. These languages have a direct impact on the user’s sensory
experience and dictate how information is displayed on computers and
mobile devices. While the information displayed may have originated
from backend sources, frontend languages act as a showcase and can
present that information in a variety of ways.

Beyond HTML and CSS, the most prevalent frontend language on
the web is JavaScript. JavaScript is a frontend programming language
used for a variety of purposes but principally to provide some interactive
elements on web pages, including form validation, pop-up windows,
and animations. During the development of HTML5, JavaScript was
formally integrated into HTML and, since then, has been fully supported
to some level in all major web browsers.

Backend Languages
Backend languages address the need for accurate, dynamic, up-to-date
content. Behind many frontend interfaces, there is a backend system with
its own programming language that connects a website to databases, file
servers, and other digital resources. Backend languages tend to fall in
and out of popularity, with some websites switching backends completely
or employing a combination of different backends to attain the desired
functionality.

fig. 16

29The Basics and the Bigger Picture

A website may use more than one programming language. Some of
the most popular websites, which offer a multitude of features, employ
several backend languages. Figure 17 provides a rundown, compiled and
published by Wikipedia.

WEBSITE BACKEND
(SERVER SIDE)

Facebook.com Hack, PHP (HHVM), Python, C++,
Java, Erlang, D, XHP, Haskell

YouTube.com C, C++, Python, Java, Go

Yahoo.com PHP

Amazon.com Java, C++, Perl

A table of popular websites and their backend technologies

As a website’s functionality increases, so does the need for additional
languages to handle new features.

Backend languages have related frameworks, such as Symfony (PHP),
Laravel (PHP), CodeIgniter (PHP), and Django (Python), providing
additional functionality and an easy-to-use code structure for the
developer.

Content Management Systems
When you think of building a website, HTML coding may not be the

first thing that comes to mind. To many people, building a website is a matter
of downloading a website-building software package, choosing a template,
and then uploading the results to a hosted site. Website-building tools are an
example of content management systems (CMS). CMSs are software programs
that allow non-coders to build, update, and modify websites (figure 18).

Popular content management systems

fig. 17

fig. 18

30 HTML & CSS QUICKSTART GUIDE

More than a third of all web pages on the internet are created in
WordPress, which is a free, open-source CMS.

While any CMS system will generate a frontend page, each software
package has different capabilities when it comes to providing backend
programming and database support.

As we’ve previously discussed, WordPress and other content
management systems are excellent tools, but knowing HTML and CSS
transforms you from being a user of WordPress to a designer who uses
WordPress. With custom CSS entries, you can achieve a look and feel
far beyond any standard WordPress theme, and with HTML you can
edit the header, footer, and even the sidebar without having to rely on
widgets. Instead of depending on the creativity of theme designers,
you can make a WordPress website look any way you want with a good
working knowledge of HTML and CSS.

Understanding Our Online Audience
When making the transition from being a consumer of web content to

being a creator, we must take a step back and think about who is looking at
our site. Our goal is to provide information and content that can be consumed
with minimal effort. In order to do this effectively, we need to create our
content with all potential consumers in mind. Will they be able to read it?
Will they be able to understand it? Can they find the information they need
without assistance?

When designing websites, we typically think of creating them for
someone very much like ourselves. Most people read web pages in the same
way—it’s a visual experience. How complicated could it be? In most cases,
it’s okay to take the approach of imagining ourselves as the reader of the site.
However, it is extremely important to remember that every person (or thing!)
reading a site does not process information the same way we do.

Search Engines / Spiders
Some of the visitors to your website will not even be human! Search engines
and other online aggregation services employ an army of autonomous
programs, often called “spiders” or “bots,” which “crawl” through the
web finding new pages to categorize and rank. These spiders do not
experience the web in the same way as their human counterparts. Search
engines such as Google use spiders to improve their search algorithm
and increase the relevance of their search results. This improvement

31The Basics and the Bigger Picture

process has three main tasks: crawling, indexing, and ranking. Crawling
attempts to discover new websites, and indexing attempts to understand
the contents of a website. The ranking process then determines the
relevance of a website to potential search terms. For example, the website
of a local business would be deemed much more relevant to someone
searching from the same geographical location as the business (figure 19).

Web developers generally want their sites to be as discoverable as possible,
so it’s important to have an understanding of how search engines discover
and rank websites. There are ways to optimize a website for all three of
the processes previously mentioned. Search engine optimization (SEO)
is the art of creating website content or structure in a way that ensures
the website is highly ranked (that is, it appears in the first few results or
pages) within a given search engine in order to drive traffic to the site.
SEO techniques could fill a book by themselves, and many marketing
departments employ people specifically for their expertise in SEO.

A beautiful web page is created with many pictures of rare gemstones and
hardly any text. While human consumers may clearly see the value of the
web page, a spider may be unable to assess the page’s value without the
presence of text associated with the images.

In many situations, it is important for web developers to add text and
other meta content that may be unviewable to the end user but viewable

fig. 19

32 HTML & CSS QUICKSTART GUIDE

to the search engine spider. Maintaining an awareness of how spiders
access and index data will help developers ensure their sites are given
optimal placement in search engine results.

Online Accessibility Standards
According to figures released by the US Census Bureau on July 25, 2012,
8.1 million Americans (3.3 percent) have a vision impairment. In order
to use the internet, many people use screen readers to relay the content.
Screen readers are software programs that employ text-to-speech
capabilities, in combination with knowledge of a program’s common
buttons and operations, to provide an audio-powered alternative to
navigating the internet via point-and-click on a screen. Text-to-speech
is not perfect, so a little forethought in web design goes a long way in
accommodating people with vision impairments who may want to access
your website. There are methods to ensure that web content can be read
by screen readers. Moreover, HTML has built-in structures and features
that can automatically handle screen reader accessibility.

In the United States, federal agencies are required by law to make all
information on their websites accessible to people with disabilities.
Regardless of whether it’s a requirement for a specific website, it is a good
idea to make it a habit to design accessible sites. An added perk is that
good accessibility improves SEO performance.

More information about US federal requirements for websites can
be found on the Americans with Disabilities website: www.ada.gov/
pcatoolkit/chap5toolkit.htm.

There are many more protocols, web technologies, and internet standards
than can be covered in this book. As mentioned previously, topics like search
engine optimization can fill entire books by themselves. This text will stick to
HTML and CSS web development as much as possible but will also identify
other relevant topics and jumping-off points so that readers can follow their
interests accordingly.

www.ada.gov/pcatoolkit/chap5toolkit.htm
www.ada.gov/pcatoolkit/chap5toolkit.htm

33The Basics and the Bigger Picture

Chapter Recap

 » HTML/CSS are markup languages that direct the display and
layout of content on a web page.

 » HTML is text content contained in elements. These elements are
generally named after their purpose, such as <p> for paragraph and
<header> for header.

 » CSS is text markup that describes how the elements should look.

 » JavaScript allows you to add interactive functionality to a web page.

 » Content management systems (CMSs) like WordPress allow you to
construct large websites with less HTML/CSS code.

 » Search engines like Google crawl web pages and rank each site
according to the content it contains.

 » Search engine optimization (SEO) is the art of optimizing your
HTML and content to rank higher in search engine results.

 » Accessibility standards describe how web designers can aid site
visitors with disabilities.

35HTML Deep Dive

| 2 |
HTML Deep Dive

Chapter Overview
 » HTML is a markup language originating at CERN.
 » Web servers deliver HTML to a web browser.
 » HTML is an evolving standard.

The concept of “markup language” predates the internet or even computers.
Markup refers to a series of notes as instructions for how to handle textual
content in a document. Markup existed in the early days of the printing
press as a system developed by editors to communicate with the typesetter.
The production editor would make a series of markup notes on a document
to provide instructions to the typesetter pertaining to size, font, and
other formatting concerns. As manual typesetting was replaced by more
sophisticated machines and computers, the complexity of markup language
increased as well.

HTML behaves in the same manner as manual markup, except that the
instructions provided are not interpreted by a person but by a web browser.
As with any programming language, a machine interpreter does not have the
intelligence or discretion of a human typesetter, so the instructions are always
interpreted the same way regardless of the intent of the programmer. This
chapter will give a brief overview of the inception of HTML, its development,
and how it operates with web servers and web browsers. Although readers
with an existing familiarity with HTML may already know this information,
this chapter can serve as a good refresher.

A Brief History of HTML
HTML originated at the Conseil Européen pour la Recherche Nucléaire

(more commonly known as CERN, the European Council for Nuclear
Research). CERN is most known for particle physics experiments such as
the Large Hadron Collider. CERN needed a method by which to share
and access digital documents internally across their intranet. Originally

36 HTML & CSS QUICKSTART GUIDE

called SGML (standard generalized markup language), HTML functioned
initially as an index system, including what today we would call “hyperlinks”
that allowed the researchers to easily cross-reference documents.

When HTML was created, web browsers were purely text-based. HTML
offered a few basic markup tools, known as tags, to format text on a page
and create a few links to other pages. An average user could learn HTML
1.0 in the course of an afternoon. It soon became possible for developers to
add a few other elements to web pages, such as images and other forms of
media. Some of the community’s additions to HTML have been retained
for decades (such as iframes, a way to embed an HTML document inside of
another HTML document), while others, such as “blink” (a rather annoying
feature that made text flicker on the screen), were soon jettisoned due to lack
of popularity.

HTML evolved rapidly as a result of competition from large browser
companies. This competition initially splintered the language, as different
web browsers had varying degrees of support for new and evolving HTML
features. Eventually, as web browsers themselves came and went, HTML
was further consolidated and standardized until it reached the form we
experience today. While there are still some variations “under the hood” in
how different browsers handle HTML, these differences are minimal, and
all browsers generally provide a similar experience to the user.

Current Use
HTML is used on a broad array of devices. Pretty much any computing

device you can think of—desktop and laptop computers, smartphones, tablets,
and other mobile (and stationary) devices—use HTML in some way.

While web browsers are the primary venues for rendering HTML, the
markup language is also used by many popular email readers, such as those
hosted through web-based services like Gmail.

HTML is often used in the displays found in stand-alone service kiosks
in places such as airports, supermarkets, and libraries.

While most HTML was originally written by hand, it is now typically
generated by various backend languages that work through CMSs to create
dynamic content. HTML has gone through several versions, but the vast
majority of what worked in HTML 1.0 is still functional.

37HTML Deep Dive

How It Works
To help explain how HTML works, let’s break it down into its parts.

HTML, as defined earlier, stands for hypertext markup language. “Hypertext”
simply refers to text that includes what we call “hyperlinks” or more often

“links,” which are simple instructions that tell a web browser to move to a
new page. “Markup” is text with HTML tags applied to it, such as bold or
italicize. HTML, like other languages, has predefined keywords that mean
something specific to the web browser.

HTML files themselves are simply text files named with a specific
extension; usually it’s .html (though there are a few other extensions that are
acceptable, we will mainly be using the .html extension in this book).

When a file is saved with this extension and then loaded into a web
browser, the page will display as formatted according to the instructions in
the markup.

Here is a little experiment you can do right now in less than five
minutes to demonstrate how simple it is to generate a basic web page.
You will need your essential toolkit computer and Visual Studio Code
for this task. You can also use another text editor like the Notepad
application that comes with Windows. Open a new text document and
enter the following text:

<!DOCTYPE html>

<html>

 <body>

 You can put any text you like in this section!

 </body>

</html>

When you have finished typing, click “Save As” and name the file
“test.html” and save it somewhere on your computer. When you are
done, navigate to the file and open it. Your newly created HTML file
should open in your default web browser. Congratulations! You have
just created a web page. Obviously, this is a very rudimentary design
and won’t be breaking the internet any time soon, but you can quickly
improve it using the methods explained in this book. Stick around!

Web Servers
Websites on the internet are hosted on servers called web servers, which
are computers that are hooked up to a network and make content available

02-01.html

38 HTML & CSS QUICKSTART GUIDE

to users upon request. Web pages are served (delivered from host to end
user) over a protocol known as HTTP (hypertext transfer protocol), by
which a user, through the use of a web browser, makes a request to the
server (using an HTTP request) and the server replies by sending an
HTTP response to the web browser (figure 20).

When you create your own HTML file and open it in a browser, you are
essentially becoming your own web server. If you look at the address
bar of the browser, it will show the file location on your computer. You
can learn more about web hosting in appendix I, “Web Hosting.”

Web Browsers
At this point, you are probably familiar with the concept of a web browser
and understand that web browsers read HTML, CSS, and JavaScript
(figure 21). What you may not know is that every web browser approaches
this process a bit differently. All web browsers contain an engine that
takes the instructions provided in the markup (along with the locations
of media, image files, video files, etc.) and generates a readable, integrated
display that conforms to the instructions. But just like car engines that
vary wildly in size, power, and design, the engines of web browsers can
be “tuned” to provide different functions. Google Chrome, for example,
runs a separate version of the browser for each browser tab you open.
This prevents one bad page from crashing all your other tabs. Mozilla

fig. 20

39HTML Deep Dive

Firefox claims to have the most extensive API, or ability to create custom
applications that run within the browser. Microsoft Edge claims to be
the most energy-efficient browser.

Many mobile devices have their own native web browsers (such as
the Samsung Internet Browser). These mobile browsers all perform
essentially the same function: reading HTML files and returning their
CSS-formatted content in a consistent format.

The HTML Itself
HTML code is essentially just text. As we demonstrated in our preview
of HTML structure in chapter 1, markup elements always appear within
brackets, beginning with “<” and ending with “>”. The entire web page

fig. 21

40 HTML & CSS QUICKSTART GUIDE

lives within the element <html>. That is to say that almost all the code for
any given web page will be bookended by the following two tags: <html>
and </html>. HTML page structure is normally divided into two major
sections. The “head,” which is labeled <head> and </head>, includes all
metadata about a site—a series of instructions to be given to the web
browser. Everything that is visible on the page appears inside <body> and
</body>, which define (you guessed it) the body of the text.

<!DOCTYPE html>

<html>

 <head>

 </head>

 <body>

 The content of the body element is displayed in your

browser.

 </body>

</html>

Major Changes and Updates
HTML has gone through several major changes during its ever-

evolving life cycle. These changes have followed a two-pronged strategy:
increasing native HTML support for new features, and steadily shifting the
responsibility of text and paragraph formatting over to CSS.

For example, multimedia elements, such as <audio>, which defines
audio content, and <video>, which defines video content, have been added
to HTML, while some legacy elements that defined fonts and alignment
directly within the HTML have been removed and shifted to CSS.

As mentioned previously, HTML was initially developed for internal
document management. Eventually, as networks spread beyond the confines
of singular institutions, the driving force of HTML development came
from web browser developers. Each web browser would interpret HTML
very differently.

Eventually, the creators of HTML realized that a standardized process
and a group to oversee that process was needed, and the World Wide Web
Consortium (W3C) was formed in October of 1994 (figure 22).

02-02.html

41HTML Deep Dive

HTML5
Each version of HTML added new features to the specification, but

versions 4 and 5 added a whole new wave of functionality to the language.
The biggest change with HTML5 is the standardization and demarcation

fig. 22

42 HTML & CSS QUICKSTART GUIDE

of different roles within web development. Whereas in the past CSS and
HTML tended to overlap, HTML5 enforces design and content separation.

JavaScript, which was for years the unofficial programming language of
the web (and was used in conjunction with HTML), became the formally
accepted standard with the advent of HTML5.

HTML5 also provides better multimedia support than did its
predecessors, so there is no longer a need to use third-party plugins (for instance,
Flash Player) to render videos or music. Also included within HTML5 is a
wide range of user-submitted form enhancements and compatibility features
to make writing web pages much easier.

HTML5 gives certain elements a friendlier name. Elements like
“header,” “footer,” “section,” “article,” etc., are directly defined in HTML5,
negating the need to create and assign names to a placeholder element known
as a <div> (figure 23).

TYPICAL HTML4 TYPICAL HTML5

<div id=”header”> <header>

<div id=”menu”> <nav>

<div id=”content”> <section>

<div id=”article”> <article>

<div id=”footer”> <footer>

Though the notation for basic elements became more simplified with
HTML5, the <div> element was certainly not made obsolete. As you
continue your study in HTML and CSS you will learn the importance of
the <div> element.

Future Development
Like many technologies, HTML is a fluid specification with new

advancements occurring on a regular basis. But though the language changes,
many of the original principles remain the same. At the time of this book’s
publication, HTML5 represents the most current iteration of the language,
but most past elements of HTML still exist within HTML5 and are regularly
used. Elements of the language do not, for the most part, become obsolete.
Considering this trend, what we have sought to achieve in this book is to

fig. 23

43HTML Deep Dive

provide an evergreen tutorial resource for HTML, one that can be used as a
reference and teaching aid for years to come.

Some readers may wonder about the next iteration of HTML—
presumably HTML6. The answer to that question is, as of now, unclear.
There may not be an HTML6, at least not for quite a while. According to
an influential standards-setting and monitoring community known as the
Web Hypertext Application Technology Working Group (WHATWG),
HTML is best treated as a “living standard.” WHATWG recommends that
interested tech communities continually monitor the way people use HTML
and seek to modify it slowly but responsively as usage evolves and new needs
arise. Because of this incremental “living standard” approach to development,
there may never be another formal release of a comprehensively overhauled
language that warrants the title HTML6. Then again, only time will tell.

As a coding language, HTML may remain quite unchanged for some
time. Changes that occur to web development are more likely to relate to
implementations of other languages, such as CSS and JavaScript.

Chapter Recap

 » The W3C organization maintains and improves the HTML
standard.

 » Web browsers request web pages from web servers, and those
servers then send a response back to the web browser, whose engine
renders the HTML in a visual presentation.

 » HTML can be thought of as a “living standard”—evolving in
response to new technological developments and user needs.

 » A solid understanding of HTML will reduce the time and effort
needed to keep up with new HTML innovations.

45CSS Deep Dive

| 3 |
CSS Deep Dive

Chapter Overview
 » CSS styles HTML elements.
 » Styles can be applied to all, some, or just one element.
 » Not all browsers identically render styled content.

As we mentioned earlier, HTML is a tool to organize, categorize, and
structure content. CSS provides the ability to change the appearance and
shape of that structure in order to provide a better visual experience. While
HTML creates the backbone of the information on a web page, CSS styles
flesh out the content and improve the user experience.

Let’s return to our analogy of visualizing a web page like a house.
HTML allows us to define how many rooms, how many stories, and how
much furniture the house has. CSS lets us define the style and shape of each
room, the organization of the furniture within the rooms, and the colors and
styles of everything from walls to floors. HTML labels the elements, and
CSS applies a set of styling rules to elements with those labels.

As we learned in chapter 1, CSS stands for Cascading Style Sheets. CSS
allows us to create global rules to style all elements of a certain type. For
example, we can create a rule for paragraphs to have a certain indentation
and font size, and this style will “cascade” through every paragraph in the
document. CSS allows us to set general rules for our various styles and to set
exceptions to those rules when needed. We will be exploring CSS in much
more detail later, but for now, let’s expand on the concept by continuing with
our house analogy.

Let’s say you have decided that all windows in the house will be three feet
wide and four feet tall, with white trim. You can specify this information in
a global style sheet for windows. However, you may have some exceptions to
these rules. For instance, bathroom windows will only be two-and-a-half feet
wide and will have gray trim. You can provide a set of instructions that says,

“Apply this alternate style to all windows that are also bathroom windows.”
Now imagine there is a single window that you want to be tinted green;

46 HTML & CSS QUICKSTART GUIDE

you need to specify this information about that one individual window. CSS
allows you to apply style rules both broad and narrow in scope to any of the
content created in your HTML documents.

All web browsers have a set of built-in rules for how to interpret
instructions provided in CSS files. For the most part, they handle
this information in the same way. However, there is some variation in
certain areas. Not all CSS rules are supported by all browsers. When
using CSS, it’s always a good idea to ensure that any unique or fancy
effects you employ are supported by the browsers your site visitors are
most likely using.

Background
In the early days of HTML and internet browsers, it was up to the

browser to determine how to organize and lay out HTML code. As a result,
all browsers would display websites differently. Simple things like font, text
size, and color, if not explicitly defined in the existing HTML, would be
determined by the browser and not the author of the web page. Web page
creators had complete control over their content, but not their layout, graphic
style, etc.

While it was possible to style content in the early forms of HTML, doing so
often required the awkward use of various tags (such as and <center>)
within the page to specify layout. Reliance on these HTML tags resulted in
code that was overly busy and difficult to read. It also led to inconsistencies
in the pages of the website. Sites with any significant magnitude and
breadth (comprising multiple pages) were apt to have certain pages using
entirely different methods for styling content. The resulting websites had a
disjointed look and feel and were burdened with overcomplicated HTML
code. Moreover, variations among browsers exacerbated the problem, and the
process of making site changes or updates was extremely time-consuming and
error-prone. Major design updates to change the look and feel of a website
often required recreating all the content. On top of the painstaking nature of
making changes, pages ended up being extremely large, inflating load times.

Inspired by the desire to format web pages like traditional print media,
the producers of various internet browsers began to publish “style sheets.”
Web designers, when designing for a specific browser, could employ these
style sheets and effectively and efficiently exert more uniform and global
control over their website’s layout. Eventually, all major browsers used style
sheets, and by consensus a standard emerged that became known as CSS.

47CSS Deep Dive

How It Works
If HTML provides the building blocks of our web page, CSS allows us

to shape the way these blocks look, work, and interact with the blocks around
them. As HTML provides the structure for the content, CSS provides a set
of rules that allows us to define how these structures appear on the page. CSS
selectors are part of this rule set and help us select the HTML elements we
want to style (figure 24).

A portion of the ClydeBank Media website with CSS disabled (left) and enabled (right)

As mentioned earlier, the C in CSS stands for “cascading,” meaning that
the styling rules we provide will cascade throughout the site. Pure CSS is
displayed as a named selector (such as “p” for paragraph) followed by a list of
properties that will be assigned to this selector, such as the width, font, etc.

There is an important concept in CSS called “inheritance.” To understand
how inheritance works, we need to look at the structure of our HTML
code. In HTML, structures are “nested.” Outer elements are “parents” that
contain other elements within them called “children.” When CSS is applied,
child elements inherit all the defined properties of their parent (typically
font face, size, and color), but child elements can, at the CSS coder’s
discretion, be overridden with a set of rules distinct from those governing the
parent elements.

In figure 26, <div> is the parent element and and <p> are the
child elements. We haven’t gone over any of these elements yet, so don’t

fig. 24

fig. 25

48 HTML & CSS QUICKSTART GUIDE

worry about their function—for now, we’re focused on the structure. The
child elements are completely contained within the parent. The child element
inherits all the properties from the parent, so the (img) image and the (p)
paragraph are styled according to the (div) parent element unless the child
element overrides them with its own selectors.

Let’s look at the three approaches for incorporating CSS into HTML
and the advantages and disadvantages of employing each method.

Inline CSS
Inline CSS styles are added inside individual HTML elements. Inline
CSS bears the closest resemblance to previous versions of HTML, where
each element was styled using HTML tags such as <center>, ,
and <u>. This method of applying CSS has the smallest scope and impact,
because it affects only the HTML element that contains it (figure 27).

The disadvantage of using inline CSS can be inferred from the very
definition of CSS: cascading style sheets. Since inline CSS embedded into
an HTML element affects only that element, this method misses out on
the purpose of using CSS to begin with: to apply universal styling rules
to a document that cascade throughout the document (or multiple pages)
so that each element doesn’t have to be individually styled.

fig. 26

49CSS Deep Dive

Inline CSS affects only the HTML element it inhabits.

Internal CSS
Internal CSS is CSS that is added to a selection of HTML elements
within a single individual HTML page. Usually this is done by placing
a set of <style></style> tags (normally inside the <head></head>
element) in an HTML page. This approach is most likely to be used if
there is only one page to be styled; it quickly loses its effectiveness if a
website has multiple pages.

Internal CSS is placed in the <style> element within the HTML page.

fig. 27

fig. 28

50 HTML & CSS QUICKSTART GUIDE

<!DOCTYPE html>

<html>

 <head>

 <style>

 body { background-color: gray; color: black; }

 h1 { color: white; text-align: center; }

 </style>

 </head>

 <body>

 <h1>This style for H1 is defined via CSS in the head.</h1>

 <p>Example paragraph.

 </body>

</html>

Digital (copy & paste-able) access to all of the code samples in
this book can be accessed in our GitHub account: github.com/
clydebankmedia/htmlcss-quickstartguide.

External CSS
With external CSS, styles are added to multiple pages at once. This
method of applying CSS is most commonly used for more complex web
pages. External CSS uses CSS code in a separate, unique file called a
style sheet that is used as a reference by all the HTML files. The CSS
file is referenced, or “called,” within the <head> tags of the HTML file(s)
(figure 30).

CSS: (make sure it is named style.css in the CSS folder)

 body { background-color: black; color: white; }

 h1 { color: gray; text-align: center; }

HTML: (name it index.html, and note the css/style.css href in the link
element since you created the style.css file in the CSS folder)

03-01.html

fig. 29

03-02.css

51CSS Deep Dive

<!DOCTYPE html>

<html>

 <head>

 <link rel="stylesheet" href="css/style.css">

 </head>

 <body>

 <h1>This style for H1 is defi ned via CSS in the head.</h1>

 <p>Example paragraph.

 </body>

</html>

External CSS is placed in its own style sheet that is then referenced in the HTML page.

Th e style.css fi le in the CSS folder on the explorer pane of Visual Studio Code

03-03.html

fi g. 30

fi g. 31

52 HTML & CSS QUICKSTART GUIDE

Coders are not limited to any one of these methods for applying CSS to
HTML. When mixing methods, however, it is important to realize that a
hierarchy will be in play. Browsers will first apply any external CSS files, and
these files will be applied in the order in which they are called on the page.
Next, the browser will apply any styles listed directly on the page inside the
<style> element. Finally, the browser will apply inline styles.

Applying Styles to Elements
There are three means by which we can apply styles to elements: element

selectors, class selectors, and id selectors. Recall that CSS rule sets must first
use selectors when identifying what is to be modified (figure 32).

Element Selectors
Element selectors identify the type of the element (body, p, a, etc.), select
every instance of that element, then apply the rule to it.

For demonstration purposes, let’s look at the <body> element. This
element contains all the viewable content within an HTML page. We
often use it to set some “default” styles for the page.

 body { color: blue; }

In this example, we are selecting the element “body” on the HTML
page. These rules are being applied to everything that exists within
<body></body> on the page.

After the selector, we open a set of curly brackets {} that will hold our
property declarations.

fig. 32

03-04.css

53CSS Deep Dive

Each property declaration identifies a property (in this case, color).
Then, following the colon, the desired setting for that property (in this
case, blue) is identified. We use a semicolon at the end of each property
declaration.

The result of this small CSS snippet would be to change the color of the
visible text on the page to blue.

Use of the semicolon is required. If left out, both the property missing
the semicolon and the one that follows it are unable to be processed
and will be ignored by most browsers.

Class Selectors
Sometimes we want to apply a style to a subset of elements. For example,
we may want to apply a style to a certain paragraph (or set of paragraphs)
without affecting the others. To accomplish this, we need to establish a

“class” of paragraphs. Elements can be assigned to a class using the class
attribute in HTML.

<p class="callout"> signals the beginning of a paragraph that will be
defined by the “callout” class; the term callout is selected by the user. You
can name a class whatever you please. CSS code will be used to define
the stylistic attributes of this class. Consider the following HTML code:

 <p>

 Lorem ipsum dolor sit amet, consectetuer adipiscing

elit. Aenean commodo ligula eget dolor. Aenean massa. Cum

sociis natoque penatibus et magnis dis parturient montes,

nascetur ridiculus mus. Donec quam felis, ultricies nec,

pellentesque eu, pretium quis, sem.

 </p>

 <p class="callout">

 Etiam rhoncus. Maecenas tempus, tellus eget

condimentum rhoncus, sem quam semper libero, sit amet

adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel,

luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et

ante tincidunt tempus.

 </p>

03-05.html

54 HTML & CSS QUICKSTART GUIDE

 <p>

 Nam pretium turpis et arcu. Duis arcu tortor, suscipit

eget, imperdiet nec, imperdiet iaculis, ipsum. Sed aliquam

ultrices mauris. Integer ante arcu, accumsan a, consectetuer

eget, posuere ut, mauris. Praesent adipiscing. Phasellus

ullamcorper ipsum rutrum nunc. Nunc nonummy metus.

 <p>

 <p class="callout">

 Etiam rhoncus. Maecenas tempus, tellus eget

condimentum rhoncus, sem quam semper libero, sit amet

adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel,

luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et

ante tincidunt tempus.

 </p>

Q: Lorem who?

Answer: The “Lorem Ipsum . . .” dummy text sequence has long been
used as placeholder text in the printing industry. It provides a somewhat
realistic layout of paragraph text for demonstration purposes. There are
extensions in Visual Studio Code that will generate Lorem Ipsum.

Paragraph elements with the “callout” class will inherit its styling,
whereas content between the regular <p> elements without this class
definition will be rendered in a default manner or inherit the styling of
the containing element.

To style the paragraphs with the “callout” class, we use a class selector in
our CSS file. The class selector begins with a period and is followed by
the class name, an open bracket, and an ensuing list of specific attributes:

 .callout{

 color: gray;

 font-style: italic;

 margin-left: 20px;

 }03-06.css

55CSS Deep Dive

As you can see, each attribute is formatted as follows: [attribute type]:
[attribute detail]; and then the selector is concluded with an end-
bracket.

When applied, our class selector would result in output like that shown
in figure 33.

CSS uses strict hierarchies. Class selectors, for instance, rank higher
than element selectors. If you apply a “p” element selector to a
paragraph of text that’s been assigned to a class, the class attributes
will display and the element attributes will be ignored.

Id Selectors
Classes can be used by multiple and varied elements, but an id selector
references a single element on the page. This functions similarly to a class
where we add an HTML attribute to the element in question.

 <h1 id="pageTitle">...</h1>

When writing a rule with the id selector, begin with a “#” and then add
the id of the specified element. For example,

 #pageTitle {font-weight: bold;}

Rules using an id selector override any class selectors that may be assigned
to the element or browser default styles.

fig. 33

03-07.html
and

03-08.css

56 HTML & CSS QUICKSTART GUIDE

Contrasting “class” with “id”
Classes are generally meant to apply to multiple elements, whereas ids
reference only one element. Classes and ids are types of HTML element
attributes that serve no direct function on their own. To further illustrate
that point, let’s examine common usage scenarios for each.

Let’s say we have several paragraphs on a web page for a surf shop. We
have already designated all our paragraphs with a <p> element in our
HTML document. However, our website primarily has two types of
paragraphs, one type for standard information about the surf shop and
another more showy style for info on the shop’s current sales. We want the
ability to apply a certain set of rules to all the sales paragraphs. Therefore,
we are going to establish a style in our CSS document called “bold-red”:

 .bold-red { font-weight: bold; color: red; }

In our HTML document, we can now call this class by modifying our
opening tag as follows:

 <p class="bold-red">

 40% off all surfboards and wetsuits this week. Don’t

miss it!

 </p>

Any element can be given this “bold-red” class, and in this particular
instance, only this paragraph will be styled with the “bold-red” rule.

If this was the one and only bold-red paragraph we needed on the whole
page (or throughout the whole site), then we could use an id instead of
a class definition. Ids style one specific element, whereas classes, once
defined, can be invoked again and again to style a multitude of elements.
In general, CSS rules may apply to several types of elements, so keeping
them flexible saves you time on more complex pages. We could easily
use this “bold-red” class on an h1 tag or any other element we want
to highlight on our page, and it’s much easier to invoke a class than to
recode all your descriptors and attributes.

You may wonder why we should use ids at all if classes are so flexible and
powerful. It’s an excellent question; at first glance, ids seem superfluous.
But since ids allow us to specifically target a particular element, we can
apply specific styles to just that element without resorting to inline styles.

03-09.css

03-10.html

57CSS Deep Dive

Ids are often used to designate a singular exception to a prevailing class
definition: recall our example of the house. As a rule our windows may
all have white trim, but if we want the bathroom window to have gray
trim, then we can assign an id to the bathroom window and style that id
to specify gray trim. This would only affect that one window.

Ids also allow JavaScript to target one specific element on a page.

Inline Styles
Inline styles are used less frequently than the aforementioned selectors.
They are more tedious to apply, but they are still useful for robust
customization and control. They are added to the opening tag of an
element in the HTML. Inline styles will override id, class, and element
selectors as well as browser default styles.

 <h2 style="color: blue;">Matterhorn</h2>

Standard CSS syntax is used (attribute type: attribute detail;)
just as it would be when writing a global CSS rule, even though inline
styles are by definition not global and must be added to every individual
element that the programmer/designer intends to stylize.

The application of inline styles should be constrained to one line of text.

Using the web page starter template (starter.html), included in your
Digital Assets (clydebankmedia.com/htmlcss-assets), try adding various
styles like bold, italics, and color to some sample text. For experience
with all three methods, you can apply the styles inline, directly to the
paragraph element, as a class, or as an id. Be as creative as you want and
experiment with the various colors you can assign by name. The Visual
Studio Code editor, as shown in figure 34, will show a preview of the
color as you type it.

The color preview feature of Visual Studio Code

03-11.html

fig. 34

58 HTML & CSS QUICKSTART GUIDE

Visual Studio Code has a nifty shortcut for creating a starter HTML
template. Type ! then hit ENTER, and a starter template will appear.

Rendering Engines
When a web page is loaded, the code is processed (parsed) from the top

down. The browser will go through the HTML file and each individual
element is created and then styled according to any CSS rules. The part of
the browser that handles this activity is called the rendering engine. As of
this writing, there are a few different rendering engines used in modern
browsers. Apple’s Safari browsers use WebKit. Chrome and Microsoft
Edge use a WebKit variant called Blink, and Firefox uses an engine called
Gecko. There are several others, but WebKit, Blink, and Gecko are the most
widely used.

BROWSER RENDERING ENGINE

Lunascape Gecko, Trident, WebKit

Internet Explorer Trident

Firefox Gecko

Google Chrome WebKit (Blink)

Safari WebKit

Opera v.15+ WebKit (Blink)

As a beginner, you may be wondering why we are focusing on something
as technical as the rendering engines used by different web browsers.
Although HTML and CSS have been mostly standardized, there are still
some variations in the way that different browsers handle the rendering of
your code. This is particularly important when you are deciding which CSS
features to use. In many cases, something that looks fantastic while you are
testing it in Chrome might look strange (or not render at all) when you look
at it in Internet Explorer or Edge.

Identifying and accounting for these inconsistencies is part of the cross-
browser testing that needs to take place before a project is complete. There are
almost always ways to navigate and work around browser inconsistencies, but
it often requires writing multiple sets of rules in your CSS code.

fig. 35

59CSS Deep Dive

As new features are added to browsers, they may display content in
different ways. However, over time they tend to become uniform and
standardized.

How Do I Know Which Browsers to Code For?
Many people will tell you to check the statistics for your site to determine
which browsers the bulk of your users are running. This is always a good
idea. Of course, if you haven’t launched the site yet, how could you know?
As a rule, it’s a good idea to consider, at the very least, the big three or
four: Chrome, Internet Explorer, Edge, and Firefox.

Many analytics tools, such as Google Analytics, are free. Google
Analytics is very popular for this reason and because it provides a large
amount of data about your site traffic, including which browsers your
site visitors are using. Other excellent options for analytics include
Matomo (previously known as Piwik) and AWStats.

How Do I Know How to Size the Elements on My Pages?
In the earlier days of the web, sites were designed to be as wide as possible.
This was because developers simply wanted or needed to take advantage
of every pixel. The more modern and mature response to the question of
appropriate page width is for HTML coders to choose a width that is
appropriate for the content and responsive to the site’s users.

When specifying sizes in CSS (like margins and padding), using
percentages and device-independent intervals allows the browser to scale
the size in proportion to the available screen. For example:

 p { width: 200px; }

This will render paragraphs no more than 200 pixels wide. But using
percentages, like this . . .

 p { width: 80%; }

. . . tells the browser to render a paragraph to be 80% of the available
container, which allows for better scaling across devices.

You can use your analytics software to detect what resolutions your users
are using. One important point to consider is that many users will access

03-12.css
and

03-13.css

60 HTML & CSS QUICKSTART GUIDE

your site on a phone or other mobile device. For this reason, you may
wish to consider using a responsive design that will change the layout of
your site depending on the dimensions of the device being used. We will
be discussing responsive design tips and techniques in chapters 13 and 14.

How Can I Tell Which Features Are Supported?
Browsers are constantly updated with new programming to support
the latest and greatest features. Given this dynamic and ever-evolving
environment, it’s helpful to know which features are supported by which
rendering engines at any given moment. A good reference tool is Can
I Use: www.caniuse.com. This website provides a list of browsers and
browser versions that support specific features and also explains the more
subtle distinctions between rendering engines.

Beyond the Web
Along with HTML, CSS now has uses beyond creation of web

pages. It is used to format e-books, maps, and more, in concert with other
programming languages. CSS as a standard is quite active and is continually
in the process of development, with new functionalities being added regularly.
Like HTML, CSS revisions are now subject to a “living standard” and are
adjusted incrementally based on developer usage and community feedback.
CSS will likely remain with us until we reach a dramatic shift in the way
online data is displayed.

Chapter Recap

 » CSS is applied to elements via inline, internal, or external CSS
rules.

 » CSS rules can apply to all elements, a particular type of element, a
user-defined class of elements, or a specific element marked with
the id attribute.

 » The use of inline CSS is discouraged except for troubleshooting
purposes.

 » Like HTML, CSS is a living standard.

PART II
DIGGING IN

63HTML Structure

| 4 |
HTML Structure

Chapter Overview
 » HTML elements have tags and attributes.
 » Comments do not render on the page.
 » Elements are nested.

Before we begin creating an HTML document, let’s look at the components
that make up an HTML page. As previously mentioned, HTML documents
are essentially text documents that contain content marked up to give
instructions to the browser.

Hopefully, by now, you have chosen your preferred text editor and
web browser. As we venture into part II of this book, be sure to have
these tools handy. It is best to practice these skills as you learn them!

Elements
In our breakdown of HTML structure presented in chapter 1, we looked

at the fundamental building block of HTML, the element (figure 36).

Elements can be easily added to fit the needs of our website. For example,
if our page had a lot of text, we would have multiple elements for different
sections, articles, headers, and footers. On more graphical sites, we would

fig. 36

64 HTML & CSS QUICKSTART GUIDE

have image elements, embedded sound, and possibly video elements as well.
Any content we have on the page will be placed within opening and closing
tags that identify the content inside them.

You may see some HTML elements you don’t recognize in some of our
examples. Don’t worry—we’ll address them. For now, they serve to
illustrate the point in this section.

<!DOCTYPE html>

<html>

 <body>

 <h1>This is a Heading</h1>

 <p>And this is a paragraph of text.</p>

 <section>

 <h2>Here is a Section Heading</h2.>

 <p>And here is a paragraph within a section.</p>

 </section>

 </body>

 </html>

Tags
As we see in figure 37, every element is composed of opening and closing
tags that define the beginning and end of the element. The content of an
element depends on the type.

Regardless of the content, most elements will have an opening tag and a
closing tag.

For example, let’s look at the <html> element. All other HTML
elements are listed inside the <html> element. It is therefore considered
the “highest level” element on the HTML page. As with every other
element, the <html> tag is enclosed between “<” and “>” brackets. The

04-01.html

fig. 37

65HTML Structure

opening tag is <html>, and the closing tag is identical except for the use
of a “/” to designate the end of a block, like this: </html>. All the content
of the <html> element (including whole other elements) exists inside of
these tags.

As seen in figure 38, “html” tags, <html> and </html>, define the
beginning and end of all content on an HTML page. In other words,
everything on an HTML page falls between these two tags (except for
the DOCTYPE tag, which we will cover later in this chapter).

While HTML is not case-sensitive (browsers don’t care whether a
word is typed in upper or lowercase letters), it is good practice to
use a consistent style. It is considered best practice for most element
types to be written in lowercase. In general, most developers agree
that lowercase is easier to read and easier to type. While the DOCTYPE
tag is often found typed in all caps, there’s no hard-and-fast rule
underlying this trend. Sometimes you may see elements written in
camel case (e.g., camelCase), but most of the time that is reserved for
other programming elements on a page, such as JavaScript. It is highly
recommended that you use lowercase element types.

Attributes
Many elements need additional information, which we call attributes.
Attributes allow coders to assign additional options to a tag. We say tag
and not element because attributes are applied to the opening tag of an
element, not the ending tag. If we think of a sentence as being composed
of a subject, a verb, and an object, we can think of attributes as adjectives
or adverbs; they are descriptive of a tag. Even though we only insert
attributes in the opening tag, those attributes apply to the entire element.

fig. 38

66 HTML & CSS QUICKSTART GUIDE

Let’s use our <html> tag as an example and add a language attribute:

 <html lang="en">

 </html>

Here we state that the HTML document will be in English. This is not a
required attribute, because English is defined by default, but this is how
one would indicate that an HTML document is in a different language.

You can find abbreviations for other languages, and what to do when
multiple languages are used, on the World Wide Web Consortium at
www.w3.org.

Attribute tags can also set the class or id of an element. The HTML tag
<div></div>, short for “division,” is used to define and delineate special
sections of HTML.

In this example…

 <div class="callout">

 </div>

…the class of the div is “callout.”

All attribute tags take the following format: name="value", where name
is the name of the attribute (in this case, “class”) and “value” is the value
given to the element.

You can name classes whatever you wish, but for easy future reference
it is a good idea to give them meaningful names that fit their intended
purpose.

Comments
Often you will want to leave notes or comments for your own reference

in your HTML text editor. These notes may relate to the handling of the
project, coding strategies, or future follow-up tasks. You want the notes to be
visible to you and your team members, but you obviously do not want them
visible on the web page itself.

Comments can be entered by enclosing them in <!-- -->

04-02.html

04-03.html

67HTML Structure

<p>

 This text will show on the page inside a paragraph.

 <!-- This is a comment and will not show on the page -->

 This will appear.

</p>

Comments are particularly helpful when one is working with a team.

 <!-- Sarah will code this section on Friday, and Jason

will code the following section next week. Remember to

consult the HTML CSS QuickStart Guide while you work. It’s a

great tool! -->

Comments can also help you distinguish between sections of the page.

<!-- We will feature our fall products in this section -->

HTML Document Format (Basic Structure)
HTML pages are generally built with a consistent structure with a few

main sections. The first item you will encounter when looking at an HTML
page is a declaration known as <!DOCTYPE html>. A “declaration” is a
statement included at the beginning of a piece of code that tells the browser
(or compiler in the case of other coding languages) useful information about
the nature of the following code. In this case, the DOCTYPE declaration
tells a browser to expect an HTML5 document. This is followed by the
<html> designation, which contains all useful information about the page as
well as any content.

Past versions of HTML had differently worded DOCTYPE declarations.

At its most rudimentary level, the content of a web page contains these
elements:

<!DOCTYPE html>

<html>

 <head>

 </head>

 <body>

 </body>

</html>

04-05.html

04-06.html

04-07.html

04-08.html

68 HTML & CSS QUICKSTART GUIDE

You may notice there are two other elements, <head></head> and
<body></body>, contained within <html></html>. Because the tags of these
two elements open and close within the <html></html> element, these
elements are said to be child elements of the <html></html> element. Child
elements are usually indented in the text editor so that anyone viewing the
code can easily see how they relate to the overall hierarchical structure.

Let’s look at a more detailed and fleshed-out example of HTML code to
better see all of these elements in action:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>My First Lorem Ipsum Web Page</title>

 <meta description="This is my first web page!">

 </head>

 <body>

 <h1>Header Lorem</h1>

 <p>

 Lorem ipsum dolor sit amet, consectetuer adipiscing

elit. Aenean commodo ligula eget dolor. Aenean massa. Cum

sociis natoque penatibus et magnis dis parturient montes,

nascetur ridiculus mus. Donec quam felis, ultricies nec,

pellentesque eu, pretium quis, sem.

 </p>

 <p>

 Etiam rhoncus. Maecenas tempus, tellus eget

condimentum rhoncus, sem quam semper libero, sit amet

adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel,

luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et

ante tincidunt tempus.

 </p>

 <p>

 Nam pretium turpis et arcu. Duis arcu tortor, suscipit

eget, imperdiet nec, imperdiet iaculis, ipsum. Sed aliquam

ultrices mauris. Integer ante arcu, accumsan a, consectetuer

eget, posuere ut, mauris. Praesent adipiscing. Phasellus

ullamcorper ipsum rutrum nunc. Nunc nonummy metus.

 <p>

 </body>

</html>

04-09.html

69HTML Structure

<!doctype html>
As previously mentioned, the DOCTYPE declaration appears before
anything else at the top of the document. You can think of a declaration
as a message to the reader (in this case, the browser) that explains the
code that follows. For example, if you were reading a book in Old
English, there might be a statement at the beginning of the book saying,

“This book is written in an archaic form of English. You may encounter
odd spellings or word usage.” That’s all a declaration is: an alert to the
browser.

In older versions of HTML, this tag was considerably longer, but it
was greatly simplified in HTML5. You must use this if you plan to use
HTML5-specific elements, or you may get strange results from some
web browsers.

In this chapter, and in many long-form examples throughout this book,
we’ll display the DOCTYPE declaration in code samples, but in shorter
samples it will be omitted. A wavy line like this ~ will denote the omission
of this boilerplate code.

html
After the DOCTYPE declaration, all content on the page lies between a
beginning <html> tag and a closing </html> tag. The HTML element
serves as a container for the rest of the code on the page.

Head
The head tag contains the <title> tag and metadata for the web page.
The title tag gives the document a name, and metadata provides the
browser and search engines with additional information. The title is used
in the name of a window, tab, or bookmark, but the metadata is not
directly shown to the user (except, possibly, in search engine results). If
the title isn’t set, then the browser will use the name of the HTML file
(for example, index.html).

The head element also contains information that helps the browser
properly display the page, and it provides a first chance to include any
CSS or JavaScript.

Let’s take a closer look:

70 HTML & CSS QUICKSTART GUIDE

 <head>

 <meta charset="utf-8">

 <title>My First Lorem Ipsum Web Page</title>

 <meta description="This is my first web page!">

 </head>

In this example, there are a total of three tags within the head element:
the title tag and two meta tags with different attributes. Meta tags are
self-contained elements that only have the required information in an
HTML attribute.

Let’s examine the two meta tags we used in this example.

<meta charset="utf-8">

Here, we define the character set of the document. In our example, we
select UTF-8, which includes characters you’ll find in most European
languages like English, Spanish, German, French, and Portuguese.

<meta description="This is my first web page!">

This meta tag gives search engines a description of the document. While
not required, it helps with search engine rankings and should be defined
when possible.

Body
The <body></body> element includes everything that will be visible in
the browser window.

Nesting
It is important that HTML programmers avoid improper overlapping of

tags. All child tags should be closed before you proceed to close the parent
tags. For example, the following code will not work correctly:

 <html lang="en">

 <head>

 </head>

 <body>

 </html>

 </body>

04-10.html

71HTML Structure

In this example, the body tag is being closed after the last html tag. This
is incorrect because elements must be closed in a last-in-first-out order. In
other words, you cannot close a parent tag without making sure the child
tags are closed.

While some browsers are more forgiving than others of mistakes in
HTML code, your results will likely be unpredictable if you don’t follow
these structures.

In the examples, I have indented all nested content. This is not
required for the browser to understand the code, but it makes the
code a lot easier for a human to read and debug. Proper indentation
is considered a best practice, but don’t worry if your indentation isn’t
perfect. There are even some tools, such as DirtyMarkup, that will fix
indents for you.

Putting It All Together
Returning to our main snippet of sample code from earlier in this chapter,

“My First Lorem Ipsum Web Page,” let’s open it up in a browser and see how
it looks.

You’ll note there is no styling in figure 39. The only things we see are
the title (in the browser tab), a header, and three paragraphs. The font is the
browser’s default font (typically Times New Roman). A font isn’t the same
as a character set and can be defined in CSS—we’ll cover that in chapter 8.

You’ve just built your first web page and displayed it in your web browser!

fig. 39

72 HTML & CSS QUICKSTART GUIDE

ADDING A DESCRIPTION AND FIXING THE TITLE

It’s time to resume your role as HTML/CSS programmer as we attempt
to spruce up the website of a fictitious business—ClydeBank Coffee Shop.

If you haven’t yet downloaded the ClydeBank Coffee Shop website,
please do so from www.github.com/clydebankmedia/clydebank-
coffee-shop. See appendix V for detailed instructions.

Our client states that their website doesn’t rank well in search engines.
Although a wide variety of techniques could address this, the most obvious
thing we can fix is the lack of a meta description tag.

In the index.html file, we’ll see these items nested within the <head>
element:

 <head>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width,

initial-scale=1, shrink-to-fit=no">

 <title>Home</title>

 <link rel="stylesheet" type="text/css" href="css/style.

css">

 </head>

Open your index.html file for the coffee shop site in your code editor.
Replace “Home” with the page title “ClydeBank Coffee Shop,” and then,
using the appropriate code, add the meta description “ClydeBank Coffee
Shop features premium coffee at an affordable price.” Save your changes. If
you aren’t sure how to do this, you may need to spend some time reviewing
this chapter, especially the “head” subsection. You can also reference appendix
V for a walk-through, but I recommend you try it first on your own.

Once this change has been made, search engines will better understand
our page and present it in the search results in a friendlier fashion. You can
verify the change by reloading the page in your browser and noting the title of
the tab. It should now say “ClydeBank Coffee Shop” instead of “Home.” The

04-11.html

www.github.com/clydebankmedia/clydebank-coffee-shop
www.github.com/clydebankmedia/clydebank-coffee-shop

73HTML Structure

meta description doesn’t show on the web page itself, but you can verify this
change was made by viewing the source in the browser (usually CTRL+U)
and examining the head element.

Chapter Recap

 » HTML is composed of elements and content within the elements,
delineated between tags.

 » Comments in HTML aren’t shown to the end user but are helpful
for notetaking and team projects.

 » An HTML document contains a DOCTYPE declaration, an html
element, a head element, and the body element, which contains all
visible content on the page.

 » HTML elements are nested together to form logical structures.

75Basic HTML Elements

| 5 |
Basic HTML Elements

Chapter Overview
 » HTML uses elements for structure.
 » A wide assortment of HTML elements is available.
 » Div and span tags allow for logical content grouping.

In the last chapter, we addressed the basic structure of an HTML page. To
reiterate, HTML pages consist of a DOCTYPE declaration and “head” and

“body” sections. In this chapter, we will pursue a more precise understanding
of how some of the most common HTML tags work.

Let’s look at some basic HTML. I encourage you to fire up your Visual
Studio Code editor and experiment with the various HTML elements we
discuss in this chapter.

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8">

 <title>Carter Dome</title>

 </head>

 <body>

Carter Dome

Carter Dome, or simply The Dome, is a mountain located in

Coos County, New Hampshire. The mountain is part of the

Carter-Moriah Range of the White Mountains, which runs along

the northern east side of Pinkham Notch. Carter Dome is

flanked to the northeast by Mount Hight and to the southwest

by Wildcat Mountain (across Carter Notch).

The origins of Carter Dome’s name is unknown. Local folklore

suggests that it was named after a hunter named Carter,

while a neighboring peak is named after his hunting partner,

05-01.html

76 HTML & CSS QUICKSTART GUIDE

Hight.

The mountain is ascended from the west by the Carter Dome

Trail and Nineteen Mile Brook Trail, and from the east by

the Black Angel Trail.

Statistics

Elevation: 4,832 ft (1,473 m)

Prominence: 2,821 ft (860 m)

Coordinates: 44°16'02"N 71°10'44"W

 </body>

</html>

 All Carter Dome-related content used here and elsewhere in this text is from Wikipedia
 and is used per the Creative Commons Attribution-ShareAlike 3.0 Unported License.

If we look at the raw HTML code, we can see that the information
presented is relatively straightforward. Th e content is grouped in an organized
fashion. We can see headers and clear paragraph breaks, and some list items.
We would expect this code, when rendered, to be readable and understandable,
right? Let’s load the code into a web browser and see what it looks like.

Right away we can see that the browser has ignored our careful formatting.
Everything is displayed as a solid block of text. Th ough our markup was
suffi cient to tell the browser to (a) use HTML, (b) use the UTF-8 character
set, (c) title the page “Carter Dome” (which can be seen on the browser tab),
and (d) add a bunch of text to the body, we did not tell the browser how to
organize and display the text.

fi g. 40

77Basic HTML Elements

As shown in figure 40, paragraph breaks are ignored by the web browser.
Browsers are not intuitive, so we need to provide a set of instructions via
HTML markup to tell the browser how to organize the text.

When formatting text, the browser will ignore extra spaces (any
beyond one), tabs, and line breaks as well as HTML comments. The
only exception is the <pre></pre> element, which is used to format
source code that should be displayed exactly as written.

Paragraphs
To break text into paragraphs, we need to define where a paragraph begins

and ends. Paragraphs in HTML are defined using the <p> tag. To mark a
paragraph, we place a <p> at the beginning and a </p> at the end, like this:

 <p>Carter Dome</p>

 <p>Carter Dome, or simply The Dome, is a mountain located

in Coos County, New Hampshire. The mountain is part of the

Carter-Moriah Range of the White Mountains, which runs along

the northern east side of Pinkham Notch. Carter Dome is

flanked to the northeast by Mount Hight and to the southwest

by Wildcat Mountain (across Carter Notch).</p>

 <p>The origins of Carter Dome’s name is unknown. Local

folklore suggests that it was named after a hunter named

Carter, while a neighboring peak is named after his hunting

partner, Hight.</p>

 <p>The mountain is ascended from the west by the Carter

Dome Trail and Nineteen Mile Brook Trail, and from the east

by the Black Angel Trail.</p>

 <p>Statistics</p>

 <p>Elevation: 4,832 ft (1,473 m)</p>

 <p>Prominence: 2,821 ft (860 m)</p>

 <p>Coordinates: 44°16'02"N 71°10'44"W</p>

05-02.html

78 HTML & CSS QUICKSTART GUIDE

After adding these <p> elements, if we save and refresh our page, we will
get a result like the following (figure 41):

As you can see, the page is beginning to take shape. The paragraphs are
clearly shown with line breaks in the page, not just in our code.

Headings
Headings are commonly used to visually delineate sections of text in a

site. Headings in HTML take the format of “h” followed by a number to
identify the level of heading.

In our HTML code for the “Carter Dome” web page, we currently have
our heading inside <p> tags. Let’s swap the <p> tags for <h1> tags. The “1”
portion of the heading tag tells the browser we want it to show as the highest-
level heading (with the largest font size).

 <h1>Carter Dome</h1>

When we refresh the page, we will instantly notice the change. The <h1>
tag is not unlike the <p> tag in that, when applied, it creates a paragraph
break. However, the heading tag will, by default, bold the text and increase
the font size (as in figure 42). Additionally, <h1> headings have more space
above and below them than do normal lines of text.

Size and spacing around elements in HTML are often overridden in CSS.

fig. 41

79Basic HTML Elements

Now let’s wrap the “Statistics” heading inside h2 tags, like so:

 <h2>Statistics</h2>

If you reload the page, you will see that the h2 tag has an effect similar to
the h1, except that, by default, it’s a little smaller (figure 43).

fig. 42

fig. 43

80 HTML & CSS QUICKSTART GUIDE

HTML has six default headings of diff erent sizes:

 <h1>This is heading 1</h1>

 <h2>This is heading 2</h2>

 <h3>This is heading 3</h3>

 <h4>This is heading 4</h4>

 <h5>This is heading 5</h5>

 <h6>This is heading 6</h6>

Th is HTML will, by default, display as follows (fi gure 44):

There are no fi rm limits on the use of h1 tags, but you’ll rarely fi nd
more than one h1 tag on a page, since they are main headings.
Sections of text are generally titled with h2, then subsections within
each of those are titled with h3, and so on.

Headings are primarily used for document structuring purposes.
CSS gives us the ability to style these in any way, but they should remain
hierarchical (that is, h2 should delineate sections of text on a page, and h3
should be used for subsections, etc.). Th is may seem overly rigid—especially
since HTML allows you the fl exibility to structure headings however you
choose—but there are advantages in adhering to a sequential and hierarchical
approach with headings.

For web users with visual disabilities, text readers use headings to
navigate a page. If a page is poorly structured, it will create a bad experience
for those users.

fi g. 44

81Basic HTML Elements

Also, search engines tend to attribute greater importance to higher-
level headings. When a search engine indexes a site, lower-level elements
(h2, h3, etc.) are logically grouped with the content they decorate, thereby
assigning more precise meaning to that text for the ranking algorithm.
Using good heading structure will help your site rank more favorably in
search engine results.

Lists
You may wish to break up points of data or key ideas into lists. In HTML,

we designate lists in two ways. For numbered, or “ordered,” lists we use the
 tags to specify the beginning and ending of the list. For simple
“unordered” lists (such as those with bullet points), we use . For
both types of lists, each element is identified as a “list item” and is marked
with tags.

Let’s try this with the “Statistics” section of our page using this code:

 <h2>Statistics</h2>

 Elevation: 4,832 ft (1,473 m)

 Prominence: 2,821 ft (860 m)

 Coordinates: 44°16′02″N 71°10′44″W

The code will display as shown in figure 45.

05-03.html

fig. 45

82 HTML & CSS QUICKSTART GUIDE

If we chose to make this an ordered list (though it does not really make
sense in this situation), we could do it like this:

 <h2>Statistics</h2>

 Elevation: 4,832 ft (1,473 m)

 Prominence: 2,821 ft (860 m)

 Coordinates: 44°16′02″N 71°10′44″W

 . . . which would display as follows (fi gure 46):

By default, all list items will be left-indented. Each element will
appear on its own line. Lists can be styled in many ways to make them
extremely useful for several purposes, such as navigation bars. We will discuss
alternate uses for lists in chapters 9 and 14.

EDITING THE COFFEE SHOP MENU

Add “Americano” to Your Coffee Shop Menu
Let’s return to our great work in progress, the ClydeBank Coff ee Shop
website. It was just brought to your attention that the coff ee shop is going
to off er Americanos for $2.25. Update the website to refl ect this change.
You can fi nd a walk-through of how to do this in appendix V.

Edit, Save, Refresh, and Repeat
For the most satisfying work experience, remember to keep your web
page (.html fi le) open in a browser as you make edits in the code editor.

05-04.html

fi g. 46

83Basic HTML Elements

After you make and save your edits, you can simply refresh the web page
in your browser window and your changes will instantly render. This edit,
save, refresh, and repeat workflow will become a common habit in your
web design career and will allow you to experiment quickly with new
ideas as you continue to learn the ropes of HTML and CSS.

Links
Now is the moment you’ve been waiting for. The feature that makes

HTML unique from other markup languages is hypertext. HTML uses
“hyperlinks,” commonly known as links, to connect sites with other sites or
with web pages within the existing site.

Links are designated by “anchor” elements. The anchor tags, <a>,
are responsible for creating that ubiquitous blue “link” text seen on many
websites.

The <a> element can be used for many purposes, but for now let’s focus
on its most popular usage: creating links. Wrapping the <a> tags around
content—typically text or an image—makes the content clickable.

To demonstrate, let’s show a simple text-based link:

 click me!

The <a> tag denotes that a piece of text, in this case click me, is to be an
anchor, meaning the user can click on it. Wrapping content between the
<a> and tags tells the browser that the content is intended to serve as a
link. The href attribute (which stands for hypertext reference) tells the browser
where to send the user upon clicking.

Any file or page pointed to with the href attribute needs complete
information or the link will not work.

In our preceding example, clicking on the link will send the user to a
local page (that is, on the same website) named newpage.html. This type of
link is called a “relative” link, meaning the file newpage.html is assumed to
be in the same directory as the current HTML document.

If we attempt to direct a hyperlink to a location that does not exist, the
web browser will return a “404 Not Found” error message.

Q: What is a 404 error, anyway?

05-05.html

84 HTML & CSS QUICKSTART GUIDE

Answer: All web browsers use what we refer to as HTTP (hypertext
transfer protocol) access codes to identify whether a file has been retrieved
or delivered, as well as to provide a whole host of other information. You
have likely seen these messages many times (sometimes customized to say
something like “Oops! The page you are looking for isn’t here.”). When
clicking on a link, you are providing instructions to the web browser to look
for the item specified by the href attribute. The browser will perform an HTTP
GET command to call the location specified. If the command succeeds, then the
browser will return a 200, which means “OK.” There are several reasons why
a request can fail, but the 404 Not Found error is by far the most common.

MOST COMMON HTTP STATUS CODES

CODE STATUS MEANING

200 OK The request was successful.

301 Moved Permanently
The requested URL has changed. The new
URL is provided in the response and the
browser is directed to the new page.

302 Found
The requested URL has been temporarily
changed. The browser is redirected to the
new page.

304 Not Modified

This status informs the browser that the page
hasn’t been modified, so requesting a new
copy of it isn’t necessary. This saves time and
bandwidth.

403 Forbidden
The visitor doesn’t have the permissions
necessary to access this content.

404 Not Found
The requested page couldn’t be found on
the server.

500 Internal Server Error
A problem in the website’s backend code is
preventing the page from being served to
the browser.

503 Service Unavailable
This indicates that the server is overloaded or
the backend functionality is offline.

fig. 47

85Basic HTML Elements

We mentioned that our link to newpage.html is a relative link. Relative
links can be used to link to content within the same site, but linking to other
websites requires an “absolute” link. In an absolute link, the entire URL
(universal resource locator) must be specified. For example:

Google

Relative links only use the file (and sometimes path) part of the URL
structure, but absolute links use the entire URL, including protocol, site,
and, optionally, path and file. Since each website handles its file structure
differently, files and paths may not be needed in the destination absolute
URL, but the protocol and site name will always be included (figure 48).

Though we’re discussing HTTP, most links these days use HTTPS, which
stands for hypertext transfer protocol secure. The “secure” portion
indicates that encryption is provided over the HTTP connection,
protecting requests and responses between web server and web
browser from prying eyes. This encryption uses a technology
commonly called SSL, though this is an older term and TLS (transport
layer security) is now used.

Relative paths are usually used for local pages within a site, but you are
free to use absolute paths. If you do use absolute paths, changing your domain
name (the “site” portion of the URL) becomes a lot more cumbersome,
because you will have to manually change all your absolute links.

The “target” attribute tells the browser in which frame to open the link.
Since frames are rarely used nowadays, the most common use of the target
attribute is to tell the browser to open the link in a new tab. To do this, set
the target attribute to “_blank,” like so:

Google

05-06.html

fig. 48

05-07.html

86 HTML & CSS QUICKSTART GUIDE

In HTML5, the “download” attribute was introduced to the <a> tag.
This allows you to specify that the file should be downloaded rather than
viewed. Consider the following example:

 Download this file

If you hadn’t used the download attribute, the text file (files/file.txt)
would have been displayed directly in the browser. But in this case, due to
the download attribute, the file will be downloaded.

Another type of link that uses the <a> tag is the “anchored” link, which
can be used to link to a different section of the current page. Also known as
placeholders, jump links, and in-page links, anchor links are often used on
large pages (think of sites with a multitude of different content sections, such
as Wikipedia).

To use an anchored link, you must first add an id attribute to your
destination heading. In the following example, we will identify an h2 heading
with the name “stats”:

 <h2 id="stats">Statistics</h2>

Now that the heading has a named id, we can set up a link to that heading
anywhere on the page using “#stats”:

 View the statistics

In HTML and in CSS, “#” always refers to an id attribute.

Images
In many cases, we will want to add images to our web pages. HTML

uses the element to tell the browser to load an image. Image elements
do not require closing tags, because all the needed information is provided
via their attributes.

The primary attribute of the element is the src attribute. This
attribute acts much like the href attribute of the <a> tag in that it requires
a file name or URL. In this case, however, rather than following a link to
another page, the src attribute tells the browser where to find the image file.

05-08.html

05-09.html
and

05-10.html

05-11.html

87Basic HTML Elements

Just like with a link, you can use either a relative or an absolute path to
the image file:

<!-- This path starts from the same folder of the HTML file -->

<!-- This path starts from the site’s root directory -->

In the first example, we are using a relative path to reference the file
Carter-Dome.jpg in the images folder. In the second line, we use the absolute
path.

Be careful when using absolute paths with the element! If you
are loading an image from another site, you should seek permission
from the website owner, as you are using their server resources to
serve the image to your viewers.

Copyrights are important. You should only use images on your site that
are yours or that you have permission from the copyright holder to
use. To do otherwise puts you in serious legal jeopardy. I recommend
using the search engine at Creative Commons to search for free-to-use
images: https://search.creativecommons.org/

If you need to refer to an image or file that’s in a directory above the
current folder, you can use the .. shortcut to refer to that path.

This is especially useful when referring to files in CSS because the CSS
file will likely be in a folder called CSS, so the two-dot shortcut will tell the
browser to go up one directory (from the CSS file itself). At that point, the
relative path takes over, in this case, “images/Carter-Dome.jpg,” telling the
browser where to find the image.

In any of these cases, it is best to avoid using spaces or special characters
in file names, as some servers and browsers may not process these names
correctly. If you need a space, use an underscore or dash instead, as we have
done in “Carter-Dome.jpg.”

As mentioned in the introduction, it is best to keep your images in a
designated directory—one that is separate from your HTML files. In the
case of our Carter-Dome.jpg image, we are pointing to our image in a local
directory called “images.”

88 HTML & CSS QUICKSTART GUIDE

The image will be displayed in the browser in its native (actual) size if the
width and/or height attributes are not specified in the element, so it
is important to resize the image file to meet the design requirements of your
page. You can use the width or height attributes to resize the image during
page rendering, or use CSS to set sizing specifications (we will discuss this
in chapter 7). Using the correct size saves bandwidth and provides a better
experience for users (especially those with slower connections).

The numbers for each of these dimensions, height and width, are specified
in units called pixels. Pixels are small points that together make up an image.
An image that is 600 pixels wide and 800 pixels tall contains 480,000 pixels.
Pixels are not the same size on every screen, because different devices render
pixels with different densities. We’ll address this further when we discuss
CSS in chapter 7 and in appendix III.

Even if the image file is sized correctly, it’s still a good idea to specify the
width and height, so the browser knows how much space to reserve while the
page is rendering.

As a best practice, “alternate text” should be added to all images. Alternate
text describes the image and serves several important functions:

 » It helps search engines identify the image (search engines cannot
“see”—not yet, anyway).

 » It provides an important service to visually impaired people
who may rely on alternate text audio transcriptions in their web
browsing.

 » It provides displayable placeholder data in the event the image does
not load properly.

Alternate text is added using an “alt” attribute in the element:

 <img src="images/Carter-Dome.jpg" height="600" width="800"

alt="A picture of Carter Dome">

05-12.html

05-13.html

05-14.html

89Basic HTML Elements

Other Tags
There are a few other commonly used tags that warrant discussion in

this chapter. The following tags have very simple effects and do not require
closing tags.

 » <hr> Use this tag to produce a “horizontal rule,” or a line across the
page. This helps to divide content; for example, to separate sections
of a page. A typical use is to divide the footer from the rest of the
page.

 »
 Use this tag to produce a manual line break. This is especially
helpful when you want to place line breaks inside of paragraphs.

Q: A break is a break, right? How does a coder decide whether to begin
a new <p> element or use the
 tag?

Answer: Paragraphs separate groups of sentences into meaningful chunks
of text. They usually start with a thesis or proposal and end with a conclusion.
A new paragraph starts a new thought and, by keeping your text organized
as in a regular document, provides benefits in both visual style and logical
format and flow. The
 tag does not start a new paragraph, and this gives
you the freedom to control the display of text within a <p> element without
disrupting the logical organization of the page.

Divs and Spans
So far, every HTML element discussed has had a specific and singular

purpose that is immediately observable when using that element in a web
page. Divs and spans are a bit different. By default, if you designate text,
images, or any other elements contained in a div or a span, it will make no
visual changes to your document. These two elements are designed to work
with CSS to allow you to style parts (span) or full sections of content (div) in
a unique way.

By default, <div> does nothing visually but provides a way to identify a
block of content, usually via CSS or JavaScript. It is like the <p> tag in that it
is often used to logically group blocks of content.

, like div, has no effect on the layout of text itself. Instead, it
provides a way to logically group smaller blocks of content, usually within
<div></div>. While <div> refers to larger segments of elements,
designates single lines of text.

90 HTML & CSS QUICKSTART GUIDE

Let’s demonstrate how and <div> work together:

<!DOCTYPE html>

<html lang="en">

<head>

 <title>Div vs. Span</title>

 <style>

 span {

 color: white;

 background-color: darkgrey;

 }

 div {

 color: lightgrey;

 background-color: black;

 }

 </style>

</head>

<body>

 <header>

 <h1>DIVs vs SPANs</h1>

 </header>

 <main>

 <div>The div element provides a way to identify a

block of content that can be styled by CSS specified in the

style element.</div>

 <p>Without the style element, a div would be

indistinguishable from a paragraph within the body of

an HTML document. However, paragraphs like this aren’t

automatically styled unless specified in the style element.</p>

 Spans

 are not blocks

 of text,

 so they remain

 inline without wrapping like divs

 <div><p>You can even put a span inside of

a div if there is something inside requiring special

styling</p></div>

 </main>

</body>

</html>

05-15.html

91Basic HTML Elements

If we set our div formatting to light grey text on a black background, and
our span formatting to white text on a dark grey background, we should get
a web page that is displayed like this (fi gure 49):

<div class="div-example">

 <p>This is a large block of text. We are using multiple

lines.</p>

 <p>As we can see, we can use paragraphs inside div

elements. This serves to break up the layout.</p>

 <p>We can have multiple paragraphs inside a div, but they

are all still seen as part of the div, decorated with the

"div-example" class.</p>

 <p>On occasion, we may want to<span class="span-

example">style a single line of text without any breaks</

span>, so we enclose it within a span element.</p>

</div>

If you try this on a page, you’ll see very little display formatting other
than the line breaks provided by <p> tags. However, the <div> and
tags will prove useful when formatting with CSS.

Visual Studio Code has a nifty shortcut for designing multiple elements
that is most useful for creating divs and spans. Type div*3, then hit
ENTER, and three div elements will appear. Replace div with span or
any other element, and 3 with the number of elements you want to
create.

Semantic Elements
A semantic element is an HTML element named after its intended

purpose. Th e name of a semantic element, like <header>, precisely defi nes its
content type, position, and purpose. Non-semantic elements, such as <div>,
are important for page structure, but the tags do not describe the element’s
function.

fi g. 49

05-16.html

92 HTML & CSS QUICKSTART GUIDE

The benefits of semantic elements extend far beyond providing a friendly
naming scheme. Semantic elements make it easier to read, understand, and
maintain HTML code. Browsers can display semantic elements in a way that
makes sense for the user’s device. For example, when you print something from
your browser, semantic elements allow the browser to easily recognize text
intended for printing while skipping elements like headers and footers that
might print awkwardly or consume excess ink and paper. Additionally, screen
readers and accessibility extensions can better interpret the organization and
context of important parts of a document.

Even though semantic elements serve a defined purpose within the
overall logical flow of the HTML document, CSS can style and position
them in ways that might deviate from their intended purpose or display (as is
the case with any HTML element).

Header
The <header> element denotes content that is intended for the top, or
head, of the page. Here’s an example:

 <header>

 <h1>Welcome to Our Site</h1>

 <p>Come for the information. Stay for the cookies.</p>

 </header>

When used inside another semantic element like <article></article>,
the header element can be used to mark content that serves as an
introduction to the rest of the content within the containing element. An
example of this can be found under the “Article” heading of this chapter.

Footer
The <footer> element specifies content intended for the bottom of the
page. Consider this example:

 <footer>

 <p>Copyright © 2020, Our Magnificent Company, All

Rights Reserved.</p>

 <p>Please read our Terms of Use</

a> and Privacy Policy.</p>

 </footer>

05-17.html

05-18.html

93Basic HTML Elements

As with the <header> element, a <footer> can exist within another
element and serve to mark content intended to be at the bottom of the
containing element.

Aside
The <aside> element allows you to mark a section of content to be
separate from the rest of the article. This is commonly used for quotes,
definitions, and callouts.

 <aside>

 <p>IMPORTANT: Content in this article

may be completely fictitious.

 </aside>

Article
The <article> element provides a logical way to delineate a piece of
content separate from the rest of the site. An article element may contain
(but is certainly not limited to) a blog article, a social media post, or even
a comment. Any content that is independent from the rest of the page
can be wrapped inside an article element.

An article is not limited to text. It may have images, tables, or even other
semantic elements within it. Consider this example:

 <article>

 <header>

 <h2>A Tale of Two Articles</h2>

 <p>By Charlie Kitchens, Feb 20, 2020</p>

 </header>

 <p>It was the best of articles and the worst of

articles. Some article written long ago, never mind precisely

how long, was phenomenal. Others? Not so much.</p>

 </article>

Here we wrap introductory content, such as the title, author, and date,
inside a header element within the article element. In this case, the
article element is serving as a container for other elements while still
maintaining its stated purpose of being an article.

05-19.html

05-20.html

94 HTML & CSS QUICKSTART GUIDE

Section
The <section> element serves as a logical collection of other parts or, as
the name implies, sections of a page.

Consider a blog page with a header, footer, menu, sidebar, and list of
articles. Each of those elements has a stated purpose obvious in the name,
but the section element provides a more generic way to group elements.
For example, if a page has multiple articles, a section element can contain
those articles to keep them separate from the other structural parts of
the page.

You can see an example of the section element in use in code snippet
05-21.

Main
The <main> element contains the primary content on your page, providing
a canvas where all other semantic elements can logically organize within
a master containing element. Now we can use all the elements we’ve
learned about to form a logical, self-explanatory structure for our page.

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>An Outstanding Blog</title>

</head>

<body>

<header>

 <h1>Welcome to Our Site</h1>

 <p>Come for the information. Stay for the cookies.</p>

</header>

<main>

 <section>

 <article>

 <header>

 <h2>A Tale of Two Articles</h2>

 <p>By Charlie Kitchens, Feb 20, 2020</p>

 </header>

 <p>It was the best of articles and the worst of

05-21.html

95Basic HTML Elements

articles. Some article written long ago, never mind precisely

how long, was phenomenal. Others? Not so much.</p>

 <aside>

 <p>IMPORTANT: Content in this

article may be completely fictitious.

 </aside>

 <p>You may be surprised to learn that the

internet contains a wide assortment of articles of varying

quality. Finding good articles can be difficult, so consider

the source of everything you read.</p>

 </article>

 <article>

 <header>

 <h2>Another Great Article</h2>

 <p>By Mark Samuel Clemons, Feb 17, 2020</p>

 </header>

 <p>One of the crowning achievements of my

childhood was convincing my friends to write an article

for me. It wasn’t as easy a crime as my infamous fence

whitewashing scheme, but it was nevertheless effective.</p>

 </article>

 </section>

</main>

<footer>

 <p>Copyright © 2020, Our Magnificent Company, All

Rights Reserved.</p>

 <p>Please read our Terms of Use

and Privacy Policy.</p>

</footer>

</body>

</html>

Putting It All Together

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8">

 <title>Carter Dome</title>05-22.html

96 HTML & CSS QUICKSTART GUIDE

 <meta description="Carter Dome is a mountain located

in New Hampshire.">

 </head>

 <body>

 <h1>Carter Dome</h1>

 <img src="images/Carter-Dome.jpg" height="600"

width="800" alt="A picture of Carter Dome">

 <p>See statistics or find additional reading on Carter Dome.</p>

 <p>Carter Dome, or simply The Dome, is a mountain

located in Coos County, New Hampshire. The mountain is part

of the Carter-Moriah Range of the White Mountains, which

runs along the northern east side of Pinkham Notch. Carter

Dome is flanked to the northeast by Mount Hight and to the

southwest by Wildcat Mountain (across Carter Notch).</p>

 <p>The origins of Carter Dome’s name are unknown.

Local folklore suggests that it was named after a hunter

named Carter, while a neighboring peak is named after his

hunting partner, Hight.</p>

 <p>The mountain is ascended from the west by the

Carter Dome Trail and Nineteen Mile Brook Trail, and from

the east by the Black Angel Trail.</p>

 <hr>

 <div id="stats">

 <h2>Statistics</h2>

 Elevation: 4,832 ft

(1,473 m)

 Prominence: 2,821

ft (860 m)

 Coordinates:

44°16'02"N 71°10'44"W

 </div>

 <hr>

 <div id="additional">

 <h2>Additional Reading</h2>

 <p>For more information, please see the <a href="

https://en.wikipedia.org/wiki/Carter _ Dome"> Wikipedia

article on Carter Dome

97Basic HTML Elements

 </div>

 </body>

</html>

You may have noticed that the example uses the id and class attributes on
some of its div and span elements. The id attributes provide a way to link to
those sections on the page, but the class attributes are, as of yet in our studies,
unused. We’ll get into that in the next chapter.

EDITING THE "ABOUT" PAGE AND NAVIGATION

“About” Page
The ClydeBank Coffee Shop needs an About page. We made the about.
html file back in the introduction, but we didn’t add content. It is merely
a copy of template.html. Open the about.html file in your text editor
and a paragraph tag in the main content area. The main content area can
be identified as the div element with the following comment:

 <!-- CONTENT GOES HERE -->

Remove that comment and place the following text in a paragraph tag:

ClydeBank Coffee Shop welcomes you to our website. If you’re in the area, we
kindly ask you to stop by and have a cup with us.

To complete the About page, change the title tag to “About ClydeBank
Coffee Shop.” Don’t forget to close the paragraph tag, then refresh the
about.html file in your browser to see your changes. Feel free to add
additional text if you wish.

I recommend trying this change on your own. If you get stuck, you can
refer to appendix V, “ClydeBank Coffee Shop Solutions” under “Chapter
5: About Page.”

98 HTML & CSS QUICKSTART GUIDE

Navigation
Our client called for our help to address another issue—some of the links
in the navigation menu don’t work correctly. We can certainly fix that
with our newly gained knowledge of links.

If you haven’t yet, please download the ClydeBank Coffee Shop
website from our GitHub site: www.github.com/clydebankmedia/
clydebank-coffee-shop.

In the index.html file, you’ll see these items nested within the navigation:

<div class="container">

 <li class="active">Menu

 About

 Events

 Contact

</div>

The pound sign # normally denotes an in-page link, but in this case, it’s
used as a placeholder. The browser will display the link, but clicking on
it will perform no action. The links should point to the appropriately
named pages.

 » Home – index.html
 » About – about.html
 » Events – events.html
 » Contact – contact.html

If you did not complete the coffee shop exercise at the beginning of
the book where you create an about.html file, then you obviously
can’t link to your About page. Take a moment to go back to the
Introduction chapter and find the section called “Accessing the
Horrible Coffee Shop Website.” Complete the exercise found at the
bottom of that section.

Open your text editor and change these links to the pages above as
needed (you only need to do it for the about.html page, but you’ll need
to make this change in all of the .html files in the site). If you are unclear

05-23.html

www.github.com/clydebankmedia/clydebank-coffee-shop
www.github.com/clydebankmedia/clydebank-coffee-shop

99Basic HTML Elements

on why or how this is done, you may need to spend some time reviewing
this chapter, specifically the “Links” section. The answer is in appendix
V, but try it on your own first.

Here’s a quick tip. Since you’re going to be updating your navigation links
in several HTML files, use the “Open Folder” option in your text editor.
Go to File >> Open Folder, then select the folder containing your locally
hosted coffee shop site (the one you downloaded from GitHub and saved
onto your computer). All HTML and CSS files from that folder will
open in your text editor. You will be able to quickly move from file to file
using your text editor’s navigation menu or tabs (figure 50).

Be sure to add the about.html link to the template.html file as well,
and save all your changes after you make them in the text editor. And
remember, don’t be shy with your text editor. Click on some new buttons;
explore some of the various functionalities that you don’t currently
understand. If you feel you’ve messed something up with your website,
just use Ctrl+z to undo it. You’re going to learn a lot through play and
experimentation. Enjoy it. And if you get stuck, you can reference
appendix V, but please try this task on your own. When you’re done,
you’ll have fixed the navigation on the website and let visitors know those
pages will be coming soon. Great job!

fig. 50

100 HTML & CSS QUICKSTART GUIDE

Chapter Recap

 » HTML requires elements to provide structure and organization.

 » Headings and paragraphs organize text.

 » Links can be relative, where they assume the content is in the same
directory, or absolute, where the full location, including site name,
is specified.

 » <div> and tags provide organizational structure but
generally serve as a way to style content via CSS and provide
functionality with JavaScript code.

 » Semantic elements are named after their intended use on a page
and provide well-formatted, easy-to-maintain, and easy-to-read
structure.

101CSS Structure

| 6 |
CSS Structure

Chapter Overview
 » Content is defined by HTML and styled by CSS.
 » CSS rules are made up of selectors and properties.
 » CSS has a cascading hierarchy.

Until now we have been dealing with textual content in HTML. We have
used tags for logically grouping text into paragraphs and sections (via <div>),
adding images, and even linking to other pages and sites. Since organization
has largely been our focus, we have been at the browser’s mercy regarding
how our code is visually presented to the user.

That’s where CSS comes into play. HTML defines the content, and CSS
styles it. With CSS, we can override the visual defaults of the browser and
adjust how it displays our content in a wide variety of ways. CSS allows us
to define attributes and appearance for all our tags and gives us the power to
create styles that can apply to multiple tags and div segments on our page.

Beyond appearances, though, CSS liberates our HTML from having to
define appearance and lets our HTML code focus on content. By separating
content and style, we gain tremendous advantages in code readability and
maintainability.

Where CSS “Lives”
CSS rules can be placed in many locations (in descending order with the

preferred, best-practice usage on top). We covered this in chapter 3, but since
the file structure and interaction of HTML and CSS files can be confusing,
let’s do a quick review before diving further into this topic. CSS rules can be
designated in the following ways:

 » Defined via a separate .css file (called a style sheet)
 » Included within <style></style> tags within <head></head>
 » Included within <style></style> tags anywhere in the HTML
 » Placed “inline” within individual tags

102 HTML & CSS QUICKSTART GUIDE

.css Files
Generally the best and most common approach to using CSS is to store
CSS rules in a separate file that can be referenced repeatedly by multiple
pages on a site.

This is handled by calling it within <head> using a special <link> element.

 <link rel="stylesheet" type="text/css" href="style.css">

You can see that the <link> element uses an “href ” attribute much like
the <a> element. We specify in the “rel” (relation) attribute that we
are referencing a style sheet and that the type is text/css. Like
elements, <link> elements do not need closing tags.

You can include multiple style sheets in the <head> element in the same
way, like this:

<head>

 <link rel="stylesheet" type="text/css" href="style.css">

 <link rel="stylesheet" type="text/css" href="style2.css">

</head>

The second style sheet, style2.css, will be appended to the previous
sheet. If any selectors have new rules, they will override any existing
rules in style.css.

You may also use multiple <style> elements inside the <head> or <body>,
though combining them into one, or, ideally, using a .css file, is preferred.

The use of .css files follows the DRY (Don’t Repeat Yourself) principle in
allowing you to specify CSS rules once and use them on as many pages
as you like. Changing the CSS file allows you to quickly alter the look
of the entire site.

Style Tags
Style tags allow for the inclusion of CSS rules directly on the HTML
page. Unlike CSS files, <style> tags apply only to the page on which
they are used. The most common way to use the <style> tag is to place it
in the <head> element, like this:

06-01.html

06-02.html

103CSS Structure

<head>

 <style>

 p {

 font-weight: bold;

 color: red;

 }

 h1 { font-size: 12x; }

 </style>

</head>

You can also place the <style> element anywhere in the <body> element,
but this isn’t the preferred method because CSS rules applied in the body
will override any .css files or <style> elements in the head.

Inline Styling
To include any CSS styling on an individual element, you create a named
“style” attribute and set it to match the styling you would like for that
specific instance of that element. For example:

 <p style="font-weight: bold; color: red;">This will be

bold-red.</p>

This inline style applies only to this paragraph element on this HTML page.

06-03.html

06-04.html

fig. 51

104 HTML & CSS QUICKSTART GUIDE

The web browser will interpret CSS rules in the order in which they are
received. Each subsequent rule overrides any previous rule. Any rules you
place in the <head> element with <style> tags will be interpreted in the
order specified and not given precedence over any referenced .css files. Rules
placed in a <style> element in the <body> will always be processed last,
in the order listed in the code. Inline styles will override any CSS rule, no
matter its source or location in HTML (figure 51).

An Example CSS File
A CSS file is essentially a series of rules made up of selectors and

properties. Here is a typical CSS file:

 /* Set a default font and size for the entire document */

 body {

 font-family: Arial, Helvetica, sans-serif;

 font-size: 12px;

 }

 h1 { font-size: 22px; }

 h2 { font-size: 18px; }

 h3 { font-size: 16px; }

 .bold-text { font-weight: bold; }

 .red-text { color: red; }

What makes this a CSS file is simply a .css extension at the end of the file
name. For example, “style.css” is recognized as a CSS file, but the “style” part
of the file name can be anything you like. You could use the rules featured
here in a <style> element as well.

In this file, the body, h1, h2, and h3 tags are redefined with specific
attributes, and two CSS classes are created: .bold-text and .red-text. There
is also a comment at the top of the file set apart with /* and */. Any text
between these two markers is ignored by the browser.

While there is no strict organizational requirement for the file, it is
generally best practice to define overrides in a logical, hierarchical manner.
For example, since <body> is the containing element of the document content,
override it first. Then drill down into other elements. This organization will
keep the file easy to read and maintain.

06-05.css

105CSS Structure

There is one other item about the format that is worth noting. The { }
characters contain the properties we define. If there are several properties in
a rule, specifying them one per line is visually appealing and easy to read:

 body {

 font-family: Arial, Helvetica, sans-serif;

 font-size: 12px;

 }

In contrast, the heading tags in this example have only one property
assigned, so listing the property on the same line maintains that readability:

 h1 { font-size: 22px; }

 h2 { font-size: 18px; }

 h3 { font-size: 16px; }

Of course, you do not have to stick to this arrangement, but it is a common
method of CSS file organization. Whichever styling you choose, consistency
and readability are the keys to clean, maintainable code.

Selectors
As we’ve previously discussed, CSS rules are made up of selectors and

properties. The selector is the element or type of element that we wish to
modify, and the properties are the rules that we wish to apply to it.

Since this is crucial to the forthcoming content, let’s review the different
types of selectors that are available to us.

Element
Element selectors simply refer to HTML elements, such as p, h1, div,
span, etc. Element selectors can be applied to any element that has a
closing tag. For example, if we want all content that lives within <p>
elements to be bold and in a purple font, then we would describe our p
selector using the “font weight” and “color” properties:

 p {

 font-weight: bold;

 color: purple;

 }
06-06.css

106 HTML & CSS QUICKSTART GUIDE

Class
A class is a type of CSS rule that matches no HTML element by name
but can be used to style any number of HTML elements. In our previous
example, we defined two classes—bold text and red text. If we want to
bold just one paragraph, we assign the bold-text class to that specific
paragraph, like so:

HTML:
 <p>This is a standard paragraph.</p>

 <p class="bold-text">This paragraph is bold. It stands

out!</p>

 <p>This is a standard paragraph, too.</p>

We can use our red-text class in a similar manner:

 <p>This is a standard paragraph.</p>

 <p class="red-text">This paragraph is red. It stands out

more!</p>

 <p>This is a standard paragraph, too.</p>

These paragraphs with class definitions are given the attributes assigned
in the CSS file. Since the font color is set to red in the red-text class, that
paragraph will be given red text.

Now let’s say we want to change all the special paragraphs with red text
to purple. All we have to do is change the applicable CSS rule:

CSS:
 .red-text { color: purple; }

Now the text inside the paragraph will be purple, even though the class
name is still red-text:

HTML
 <p>This is a standard paragraph.</p>

 <p class="red-text">This paragraph is red. It stands out

more!</p>

 <p>This is a standard paragraph, too.</p>

The properties of a CSS class define its appearance and behavior, not the
class name you give it. In this case, you have two choices: rename the

06-07.html

06-09.css

06-10.html

107CSS Structure

class (which could be difficult if it is used many times throughout your
site) or create a new rule. Given that you want to color the text purple,
creating a new rule would be best.

Let’s look at our updated style sheet:

CSS
 /* Set a default font and size for the entire document */

 body {

 font-family: Arial, Helvetica, sans-serif;

 font-size: 12px;

 }

 h1 { font-size: 22px; }

 h2 { font-size: 18px; }

 h3 { font-size: 16px; }

 .bold-text { font-weight: bold; }

 .red-text { color: red; }

 .purple-text { color: purple; }

One final note about CSS classes—you can use multiple classes on an
element, like this:

HTML
 <p class="bold-text red-text">

 This paragraph shines so much you need shades just to

look at it!

 </p>

By combining the bold text and red text classes, we created an easy and
consistent way to give a paragraph special attention.

When creating your CSS classes, try to focus on as few properties as
possible, and consider combining classes in some elements for easier
readability and fewer lines of code.

Id
Ids allow you to reference specific instances of elements in your HTML.
While class element rules reference every instance of that element, ids
reference only a specific use of an element.

06-11.css

06-12.html

108 HTML & CSS QUICKSTART GUIDE

Going back to our previous CSS example, let’s add an id definition:

 /* Set a default font and size for the entire document */

 body {

 font-family: Arial, Helvetica, sans-serif;

 font-size: 12px;

 }

 h1 { font-size: 22px; }

 h2 { font-size: 18px; }

 h3 { font-size: 16px; }

 .bold-text { font-weight: bold; }

 .red-text { color: red; }

 .purple-text { color: purple; }

 #top-ad {

 background-color: yellow;

 color: red;

 }

Now we’ve added an id called “top-ad.” It will only be used once per page
and will feature red text on a yellow background. Not a chance a reader’s
eyes will miss it! Let’s use it on a page:

 <body>

 <p id="top-ad">SUMMER SALE ON NOW!</p>

 <p>You’ll love our prices. 50% off? That’s so yesterday.

Try 70% off!</p>

 <p>We have the best widgets

money can buy.</p>

 </body>

Here, the first paragraph will be given our lovely yellow/red hot-dog-
stand color combination. And in the middle of the third paragraph, we
invoked a class style to bold a word inside the paragraph.

You cannot have more than one instance of the “top-ad” id on a single
page, but you can use classes as many times as you like, and even
combine them.

06-13.css

06-14.html

109CSS Structure

Selectors are first applied to elements, then to classes, and finally to ids.
If we set both an id and a class on an element in the HTML, and the
rules conflict with one another, the browser will choose the properties
associated with the id over those of the class.

Pseudo-Classes
Pseudo-classes are identifiers added to a CSS selector that let you style an

element in a specific state or apply a style to a specific subset of that element.
If you read that sentence three times and are scratching your head, don’t
worry—this is a complex topic that is best explained with an example.

A common use of a pseudo-class is to decorate the various states of the
anchor (link) element. Let’s consider these two examples:

CSS
 a { color: red; }

HTML
ClydeBank Media

In this example, the links will be colored red instead of the browser
default, which is usually blue. However, links have various states, including
visited, active, and hover. Let’s expand our example:

CSS
 a:link { color: red; }

 a:visited { color: purple; }

 a:active { color: black; }

 a:hover { color: green; }

HTML
ClydeBank Media

Google

Yahoo

In the three-link example, any unvisited link will be colored red, a visited
link will be purple, the active (current) link will be black, and when you hover
over the link it will turn green. Save this HTML and CSS in your browser
and observe this behavior for yourself.

06-15.css
and

06-16.html

06-17.css

06-18.html

110 HTML & CSS QUICKSTART GUIDE

Link, visited, active, and hover are pseudo-classes. They define states of
the anchor element. Most elements have a “hover” state, so you can create
interesting effects with any element.

Nested Elements
Pseudo-classes can also be used to define the style of elements within
other elements. Consider this example:

CSS
 article h2 {

 font-size: 16px;

 font-weight: bold;

 }

HTML
 <article>

 <h2>A Super Interesting Article</h2>

 <p>You have to read this!</p>

 </article>

In this case, only the h2 elements within article elements will be set
to have 16-pixel bold fonts. H2 elements outside article elements will
continue to be styled as usual.

:first-child / :last-child / :nth-child(n)
You can also use :first-child and :last-child to style only the first and
last child occurrences of an element. For example, if you wanted the first
paragraph of any article to be bold, you’d use this:

 article p:first-child { font-weight: bold; }

If you wanted to apply a style to the second paragraph, you would use the
:nth-child(n) pseudo-class.

 article p:nth-child(2) { font-weight: bold; }

Adjust the value of n (in the previous example, 2) to match your desired
position.

06-19.css

06-20.html

06-21.css
and

06-22.css

111CSS Structure

There are other pseudo-classes that are common to most elements.
Check out the “List of CSS Pseudo Classes” at www.clydebankmedia.
com/htmlcss-assets for a complete record of all pseudo-classes.

Pseudo-Elements
Pseudo-elements allow you to apply CSS styles to specific parts of an

element, or to add content before, after, or within an element. Pseudo-
elements use a syntax similar to pseudo-classes except they use two colons
between the element and the pseudo-element name.

Let’s look at a very practical example using the ::first-line pseudo-
element.

CSS
 article::first-line { font-style: italic; }

HTML
 <article>

 <p>Those interested in learning more about HTML

and CSS should consult the ClydeBank Media HTML and CSS

QuickStart Guide. It is a fantastic resource.</p>

 </article>

In this example, the first line of the article will be rendered in an italic
font. The extent of the “first line” is based on the width of the browser window.
On a phone, it may represent just a few words, but on a wide-screen device it
may encompass the entire first paragraph, if the font is small.

In the same vein as first-line, you can use ::first-letter to style the first
letter of a text-based element. You can also use the ::selection pseudo-element
to alter the style applied by the browser when a user clicks that element on
your web page.

::before and ::after
The ::before and ::after pseudo-elements allow you to add text before
and after elements on a page.

If we want to add NOTE: before each paragraph, we use ::before, like
this:

06-23.css

06-24.html

www.clydebankmedia.com/htmlcss-assets
www.clydebankmedia.com/htmlcss-assets

112 HTML & CSS QUICKSTART GUIDE

 p::before { content: "NOTE: "; }

If we want to style this inserted content, we can do that, too.

p::before {

 content: "NOTE: ";

 font-weight: bold;

 color: red;

 }

Construct an HTML page with at least a paragraph of text. Use ::fi rst-
letter to increase the font size, bold, and italicize it. Th is technique is
sometimes used in books for additional style and interest (fi gure 52).

Decorative styling of the fi rst letter of a paragraph

CSS Cascade Hierarchy
CSS, by defi nition, “cascades” between styles. Rules follow, or cascade

over, the HTML elements they decorate.
We have discussed the cascading order of CSS rules (from external fi les

to <style> elements to inline styles) and the selector hierarchy. But properties
have a hierarchy, too.

One situation where this is most evident is when we use third-party CSS
fi les and frameworks. Some of them are quite large, and it’s impossible to
know every element and class defi nition. Because of this, we are sometimes
forced to use the !important declaration on properties to ensure that our
overrides percolate to the top of the priority chain. Here’s an example:

06-26.css

fi g. 52

06-25.css

113CSS Structure

 .very-important { font-weight: bold: !important; }

In this case, the bolding of text in an element with this class name will
override most other rules, even if the font-weight is set to a different value by a
competing CSS rule. This is extremely helpful for troubleshooting confusing
rule cascade issues and for quick, one-off fixes.

However, if you find yourself using !important more than occasionally,
then you have an issue with the structure of your CSS rules. This power,
when used sparingly, is helpful, but it can quickly turn into a mess if you
aren’t careful.

Continuing with Carter Dome
Remember our Carter Dome page from chapter 5? In the “Putting It
All Together” section, we built a complete HTML page. Not a great
page, but complete (sort of). Unfortunately, it had no styling beyond the
browser defaults. Let’s try using what we learned in this chapter to spruce
up the Carter Dome page. Go to our GitHub repository for this title at
www.github.com/clydebankmedia/htmlcss-quickstartguide. Locate the
complete Carter Dome web page code found near the end of chapter 5
(Snippet_05-22.html).

Open your text editor and create a new file: File >> New. Then copy all
the Carter Dome code into the text editor.

Create a <style></style> section in the <head></head> and add CSS
code to designate interesting modifications for the heading and paragraph
text.

Save this file somewhere on your computer. Be sure to save it as file
type “.html,” as it may save as a text file by default. Next, open the newly
created .html file with your browser and behold your masterpiece. If you
don’t see anything new, try refreshing the page.

Keep your text editor and browser open. Make changes to the code and
save them in your text editor. Then refresh your browser to see those
changes rendered instantly.

06-27.css

114 HTML & CSS QUICKSTART GUIDE

If you’re feeling extra adventurous, don’t use <style> tags, but create
a whole new style.css fi le and link to your style sheet in the <head>
element of the Carter Dome page.

Press the gas pedal on your newfound CSS knowledge, and feel free to
experiment with ideas you don’t quite understand yet (or ideas suggested
by your text editor). Remember, you’re not yet on the clock, clearing
lucrative billings from clients. You’re just trying to learn how things work.
Try to create the coolest looking web page you can. What do you come
up with?

Can you beat this?

fi g. 53

115CSS Structure

Chapter Recap

 » HTML code defines content and structure, and CSS applies style
to those structures.

 » CSS rules contain selectors that reference HTML elements, classes,
and ids. Those selectors are assigned properties that modify the
appearance and behavior of those elements.

 » CSS can be placed in a .css file, in a style element in the head
element, in a style element within the body element, or inline via
the “style” attribute on the opening tag of an HTML element.

 » Pseudo-classes allow you to style specific states and variations
of elements, while pseudo-elements let you style specific parts of
elements and add content before and/or after an element.

117Using CSS to Size and Space Elements

| 7 |
Using CSS to Size and Space Elements

Chapter Overview
 » CSS uses a box model for formatting.
 » Elements have size, border, padding, and margins.
 » Border boxing makes spacing easier.

Much of the power of CSS’s formatting abilities lies in the CSS “box model.”
The box model is a specific set of properties that are commonly used to
delineate various elements of a web page layout. Properties that control the
margin, border, and padding define the spacing around elements on the page.

If we think of HTML elements as a set of discrete blocks, the box model
helps us specify how those blocks should be arranged, both in relation to
other elements and on the page itself.

Imagine cars on a road. If we think of each element as a car, then we can
specify the width of a lane and the amount of space between cars. We can
also specify elements specific to each individual car, such as how the seats are
placed in relationship to the body of the car.

Using the box model, we can specify the dimensions of the element’s
content, the padding that specifies space around the content, and a border of
the content (the outer body of the car), which specifies thickness, style, and
more. We can use margins to create an invisible force field around the vehicle,
so that nothing can bump up too close (figure 54).

fig. 54

118 HTML & CSS QUICKSTART GUIDE

Content
The “content” part of the box model is simply the portion that is to be

displayed. It can be text, images, or any other HTML element (usually)
wrapped within a <div> element. Divs are quite helpful in delineating content
sections on a page because they don’t do anything themselves—they simply
serve as containers for content.

We can control the dimensions of a block of content by changing its width
and height properties. We can make it a fixed size or specify dimensions in
percentages so that it is relative to the size of the page (or containing element).

Let’s go back to our example style sheet from chapter 6.

CSS
 /* Set a default font and size for the entire document */

 body {

 font-family: Arial, Helvetica, sans-serif;

 font-size: 12px;

 }

 h1 { font-size: 22px; }

 h2 { font-size: 18px; }

 h3 { font-size: 16px; }

 .bold-text { font-weight: bold; }

 .red-text { color: red; }

 .purple-text { color: purple; }

 #top-ad {

 background-color: yellow;

 color: red;

 }

To demonstrate content sizing, we can start with an image. On our
fictitious sales page, we would like to add a picture of a car.

HTML

If we want to alter the image’s dimensions, we have three options in CSS:
define the properties in an inline style, use a custom class, or use an id. It’s
generally best to avoid inline styles, so we should create a class or id. Recall
that ids are used only once on a page, but classes can be used as many times

07-01.css

07-02.html

119Using CSS to Size and Space Elements

as we like. Since this would be the only picture of a car on this page, it is best
to give it an id, like this:

HTML

Now let’s define the image’s size.

CSS
 #car {

 width: 640px;

 height: 480px;

 }

With this CSS rule, we assign the properties width and height, in pixels
(px), to the element with the id of “car.” (See figure 55.)

The car, dimensions 640x480, surrounded by padding, border, and margin

07-02.html

07-04.css

fig. 55

fig. 56

120 HTML & CSS QUICKSTART GUIDE

If we want the car image to be resized according to the size of the
containing element (in our case, the screen), we can use a percentage indicator:

 #car {

 width: 25%;

 height: 25%;

 }

Now the image will be resized to 25% of the width and height. You can
set one of these attributes to “auto” and have the browser calculate the other
dimension for you in proportion to the first one.

When considering dimensions of content like images, it is important to
remember that your page will be viewed on a variety of devices. You might
be fine with a car image expanding to 1000 pixels or more on a large monitor,
but that size yields poor results on mobile devices.

To help alleviate this issue, CSS provides a max-width and a max-height
property. Specifying one or both of these ensures that an image can never be
resized past a certain point. And, as you might have suspected, we can also use
min-width and min-height to specify minimum sizes. Let’s put this into practice.

CSS
 #car {

 width: auto;

 height: auto;

 min-width: 320px;

 min-height: 240px;

 max-width: 1280px;

 max-height: 960px;

 }

HTML

Under these settings the image cannot be reduced to more than 320 by
240 pixels, nor be enlarged to more than 1280 by 960 pixels (figure 57).

You may have noticed that these minimum and maximum numbers are
relative to each other. The minimum width size is 320 pixels, which is half of
the default 640 pixels we defined earlier. The maximum width size is 1280
pixels, which is double the original width and four times the minimum. You
are not required to use this technique, but doing so helps ensure your images
are not awkwardly scaled by the browser.

07-05.css

07-06.css

07-07.html

121Using CSS to Size and Space Elements

fig. 57

122 HTML & CSS QUICKSTART GUIDE

Padding
Th e padding property creates space between the content of an element

and its outer edge. Th is is used to make room between elements so they aren’t
crowded on the page.

Padding extends the background properties (image, color, etc.) of the
content area. Text or images inside an element of padding will appear to have

“bumpers” around them that retain the background style. Padding can be set
for the top, right, bottom, and left of an element. Let’s put this into practice.

Remember our atrociously colored yellow and red ad (Snippet_07-01.
css)? Let’s add some padding around it (fi gure 58):

#top-ad {

 background-color: yellow;

 color: red;

 padding: 10px;

 }

Th e padding space will still have the background color of the element,
but the ad text will now have space around it. In this case, by specifying
padding: 10px;, we are assigning ten pixels of padding to the top, right,
bottom, and left. We can specify each side individually, too:

 #top-ad {

 background-color: yellow;

 color: red;

 padding-top: 10px;

 padding-right: 12px;

 padding-bottom: 10px;

 padding-left: 12px;

 }

CSS provides a shorthand method for specifying all sides of an element,
designated in a clockwise fashion: top, right, bottom, and left. Each value is
separated by a space:

07-08.css

fi g. 58

07-09.css

123Using CSS to Size and Space Elements

 #top-ad {

 background-color: yellow;

 color: red;

 padding: 10px 12px 10px 12px;

 }

Th is produces results identical to those specifi ed individually.
If the top and bottom or left and right dimensions match, we can

condense this code even further. Th e browser will assume that if only two
padding dimensions are specifi ed, the fi rst is the top and bottom and the
second is the left and right:

 #top-ad {

 background-color: yellow;

 color: red;

 padding: 10px 12px;

 }

Borders
To create a border around an element, we specify the border’s width, style,

and color. Let’s return to the example of our vibrant ad. Say we want to give
it a purple border. It is doubtful anyone would ever use such an awful color
combination, but it would certainly draw the visitor’s attention (fi gure 59).

 #top-ad {

 background-color: yellow;

 color: red;

 padding: 10px 12px;

 border: 1px solid purple;

 }

07-10.css

07-11.css

07-12.css

fi g. 59

124 HTML & CSS QUICKSTART GUIDE

In this case, the border will be one pixel thick, solid in style, and colored
purple. Th is border will be applied to all sides of the div, but we can specify
diff erent borders if we like. For example, the following border specifi cation
creates a somewhat three-dimensional eff ect (fi gure 60):

 #top-ad {

 background-color: yellow;

 color: red;

 padding: 10px 12px;

 border-top: 3px solid gray;

 border-right: 3px solid black;

 border-bottom: 3px solid black;

 border-left: 3px solid gray;

 }

Making the bottom and right borders darker than the top and left ones
gives the “box” of the ad a drop-shadow eff ect. In chapter 8 we will explore
adding such eff ects via CSS, but this simple demonstration shows how each
border can be diff erent if we so desire.

Additionally, we can specify individual properties of the entire border.
Th is is useful if we want to specify, for instance, a border size and a color but
are otherwise content to accept the default style.

 #top-ad {

 background-color: yellow;

 color: red;

 padding: 10px 12px;

 border-width: 1px;

 border-color: purple;

 }

07-13.css

fi g. 60

07-14.css

125Using CSS to Size and Space Elements

Margins
We use margins to create spacing between elements on the page. While

padding gives us room within elements (like the distance between seats in a
car), the margins serve as a buffer zone between elements (other cars on the
road). If we want all images on the page to have a five-pixel margin around
them, then we will specify it like this (figure 61):

 img { margin: 5px; }

Like padding and borders, margins can be set individually for top, right,
bottom, and left:
 img {

 margin-top: 5px;

 margin-right: 10px;

 margin-bottom: 5px;

 margin-left: 10px;

 }

Just like padding and borders, you can specify them in one line:

07-15.css

fig. 61

07-16.css

126 HTML & CSS QUICKSTART GUIDE

 img { margin: 5px 10px 5px 10px; }

or

 img { margin: 5px 10px; }

Negative Margins
You can assign negative numbers to margins. This allows an element to
break the margin boundaries of the element next to it. It’s helpful when
you want to overlap a series of elements (figure 62).

CSS
 #red-car { margin-left: -20px; }

HTML

In this example, the right side of the red car image is overlapped by the
other car image by 20 pixels.

Box Sizing
The box-sizing property specifies the method we use to determine the

overall size of an element. Let’s go back to our car analogy—we can look at
box sizing as a way to define the amount of space we need for our car on the

06-17.css
and

06-18.css

06-19.css
and

06-20.html

fig. 62

127Using CSS to Size and Space Elements

road. There are several ways to do this. By default, if we don’t define box size,
our element is measured exactly as we say it is; if our content is forty pixels
wide, that’s how much space is used. However, we need to consider the other
cars on the road. If a roadway was fifteen feet wide and there were two cars
on it that were each seven-and-a-half feet wide, they would technically fit,
but they’d be jammed up against each other and neither could move.

Space on a web page is similar. We usually want space between our
elements so that the layout isn’t claustrophobic. That’s where the box-sizing
property “border-box” comes into play.

However, if we use the border-box property, this will define the borders
as part of the content. While this decreases the amount of space available
for content, it is more realistic, so we don’t try to jam things into the box
that won’t fit. This can provide us with better control over the overall size.
Using border-box is particularly useful for sites that need to be flexible or
responsive.

This is a personal preference—you could handle box sizing in other ways.
But many web designers use border-box as the default box-sizing property
when laying out commonly used elements at the beginning of a project, as it
makes spacing calculations easier.

The following code can be used to set all the elements on a page to use
border-box.

*:before, and *:after are types of pseudo-elements. We’ll address
these in a later chapter, but for now, just know that they direct all
elements contained in the HTML element to use border-box.

CSS
 html { box-sizing: border-box; }

 *, *:before, *:after { box-sizing: inherit; }

07-21.css

128 HTML & CSS QUICKSTART GUIDE

Chapter Recap

 » The CSS box model is a representation of the space and borders
around elements.

 » Padding describes the space around the content but within the
content’s boundary.

 » Border describes the style, color, and size of a line around the
content.

 » Margins describe the space between elements.

129Text Formatting

| 8 |
Text Formatting

Chapter Overview
 » Fonts are arranged in families.
 » CSS can adjust font face, color, shadow, and more.
 » Fonts can be loaded from the Web.

In the last chapter we covered element sizing, padding, and borders with CSS.
In this chapter, we will deal with the formatting of text inside those boxes.

Font
Before we discuss the individual properties of fonts, let’s go over the

broad aspects of fonts and the selection and use of font on a web page.
Fonts are arranged in families. Serif and sans-serif are the two primary

families. The little lines at the end of a letter are called serifs, and thus fonts
that feature these attributes are called serif family fonts. If a font doesn’t have
these lines, it is called sans-serif (meaning without serif).

In general, serif fonts are older and are commonly used in printing,
whereas sans-serif fonts are more modern and more often used on screens.
Choosing a font is largely an aesthetic decision, though readability and user
experience are important considerations.

fig. 63

130 HTML & CSS QUICKSTART GUIDE

Font-family
The font-family attribute allows us to assign a list of fonts, in order of
preference, to an element. If the first font listed isn’t available, the browser
will fall back to the next, and so on until it reaches the end of the list, so
it is best to specify the fonts in order of priority.

In the example from chapter 7, we specified a font-family for the body
element:

 /* Set a default font and size for the entire document */

 body {

 font-family: Arial, Helvetica, sans-serif;

 font-size: 12px;

 }

 h1 { font-size: 22px; }

 h2 { font-size: 18px; }

 h3 { font-size: 16px; }

 .bold-text { font-weight: bold; }

 .red-text { color: red; }

 .purple-text { color: purple; }

 #top-ad {

 background-color: yellow;

 color: red;

 }

First, the browser will try to use Arial. If Arial can’t be found, it will use
Helvetica. If neither of those is present on the system, the default sans-
serif font will be used.

Note that assigning the font-family attribute to the body element will
result in the chosen fonts being applied to all text on the page, unless the
rule is overridden with a style or via an inline style.

Font-size
The font-size property specifies how large we would like the text to
appear. Length units are usually set in pixels (px) but can also be set in
other units, including the following (figure 64):

08-01.css

131Text Formatting

px Pixels (devices have different pixel density, so sizes will vary)

em Value is relative to default size of element (1.5 em = 1.5 times current size)

rem Value is relative to root element (html)

mm Millimeters

in Inches

cm Centimeters

Let’s say we want our exciting ad copy to be twice as big as the default. In
that case, we’ll set it like this:

 #top-ad {

 background-color: yellow;

 color: red;

 font-size: 2em;

 }

How do we know the default size? In our example CSS, we set the font-
size of the body element to 12 pixels. So, the element with the top-ad id
will be 24 pixels.

It’s worth noting that the em size is relative to the containing element. In
most cases, this is the body, but if the top-ad element is inside another
element, like this . . .

HTML
 <div id="our-header">

 <div id="top-ad">

 Don’t miss this sale!

 </div>

 </div>

. . . and #our-header has another font size set:

CSS
 #our-header { font-size: 14px; }

fig. 64

08-02.css

08-03.css

08-04.css

132 HTML & CSS QUICKSTART GUIDE

Then the 2 em font size on the top-ad element will double the #our-
header font size and not the body size. This will yield a 28-pixel font.
When using em, it’s important to take note of any containing elements
that might be present. We can bypass this potential ambiguity by using
rem, because the rem unit uses the root (html) size, not the size of any
containing elements.

Font-weight
The font-weight property is used to increase or decrease the “boldness”
of the text. Font weight can be defined with either predefined names or
numeric value.

Our four predefined (and preferred) named settings are “normal,” “bold,”
“bolder,” and “lighter.” If we decide to use numeric values instead of a
predefined name, then we will be working in increments of 100, from
100 to 900. The higher the number, the greater the boldness value; 400
corresponds to “normal” and 700 corresponds to “bold.”

Not every font has a specified bold value, so specifying anything other
than “normal” in the font-weight attribute could have little to no effect. If
you will be using bold text, it is important that you test it with the font(s)
you wish to use.

As if our top-ad wasn’t eye-catching enough, we’re now going to bold
the text:

 #top-ad {

 background-color: yellow;

 color: red;

 font-size: 2em;

 font-weight: bold;

 }

Line-height
In some cases, the default line spacing in a browser is not adequate
for our design needs, so we can specify the height of a line. The line-
height property defines how much space is used for each line of text.
The default height rendered by most browsers is 120% of the font-size
setting (figure 65).

08-05.css

133Text Formatting

We can specify line height using a name, a percentage, or a ratio, and the
default values are as follows: normal, 120%, and 1.2, respectively. In this
example, we set the line height for all paragraphs to 1.4:

 #special-paragraph { line-height: 1.4; }

In the previous example, we are using a proportional line height with a
ratio of 1.4. You can use a pixel value, but when setting line heights for
multiple elements, it is best to specify a proportional line height. Th is
helps avoid issues with the built-in diff erences in default line heights for
headings and other non-text elements.

Letter-spacing
Th e letter-spacing property allows us to alter the space between letters
in text. Any values we use are treated as relative off sets to the default
spacing. If we set the letter spacing to one pixel, one pixel will be added
between each letter in the element. Specifying a negative value will cause
letters to overlap each other.

CSS
 .larger-spacing { letter-spacing: 2px; }

HTML
 <h2 class="larger-spacing">This header has an extra 2px

between its letters</h2>

fi g. 65

08-06.css

08-07.css
and

08-08.html

fi g. 66

134 HTML & CSS QUICKSTART GUIDE

Color
To change the color of text within a block of text, we define the “color”

property. Colors can be defined in three ways: by name, hexadecimal code,
or RGB code.

All modern web browsers currently support 140 named colors. Visit
www.clydebankmedia.com/htmlcss-assets to access the "Color Bank"
link in your Digital Assets.

Named Colors
The easiest yet most limited way of adding color to text is to use the
named color. For instance, our red-text class changes all text in that class
to red:

 .red-text { color: red; }

Hexadecimal Code
Hex code allows us greater flexibility in color choice. Colors in HTML
and CSS can be represented in a simple format known as “hexadecimal,”
or “Base 16.” Hexadecimal color codes are represented using a string
of six characters composed of numbers and letters from A to F. A “#”
character is placed in front of our character string to indicate that it is
a hex number. For example, #000000 represents black, or the complete
absence of color. White is represented by #FFFFFF.

If we want to display red in hexadecimal, we can convert the preceding
code to this:

 .red-text { color: #FF0000; }

The hex number for most colors is quite a bit more jumbled than the basic
black (#000000), white (#FFFFFF), and red (#FF0000). For example,
we get a nice shade of blue using the following code:

 .royal-blue-text { color: #4169E1; }

08-09.css

08-10.css

08-11.css

135Text Formatting

Simple primary and secondary colors can be written in shorthand. Red
can be written simply as #FF0, black as #000, and white as #FFF.

RGB
The third way of specifying colors is with RGB (red, green, blue) notation.
Colors on a screen are composed of different levels of red, green, and
blue light, and specifying these levels in values from 0 to 255 allows us to
create the full spectrum of visible display colors.

To display our previous example in RGB, we would use:

 .red-text { color: rgb(255, 0, 0); }

Red is the result of this RGB configuration because there are 255 units
of red light intensity (the maximum intensity), and there are zero units of
green and blue intensity. In our royal blue example, red has an intensity
of 65, green 205, and blue 225:

 .royal-blue-text { color: rgb(65, 205, 225); }

Text Shadow
Beyond these basic settings, there are interesting effects that we can apply

to text to make content pop out on a page. A property called “text-shadow”
can be used to create a handful of unique special effects, such as 3D lettering,
blurring, and glow.

The text-shadow property requires the following values:

 text-shadow: horizontal-shadow vertical-shadow;

The horizontal shadow value tells the browser in pixels (or another unit
such as em) how large the horizontal shadow should be, while the vertical
shadow, as its name suggests, defines the length of the vertical shadow. You
can optionally specify a color and a blur radius (the strength of a blur effect
on the shadow).

Let’s add an effect to the text of our #top-ad element:

08-12.css

08-13.css

08-14.css

136 HTML & CSS QUICKSTART GUIDE

CSS
 #top-ad {

 background-color: yellow;

 color: red;

 font-size: 2em;

 font-weight: bold;

 text-shadow: 2px 2px #C0C0C0;

 }

In the previous example, we added a 2-pixel by 2-pixel shadow colored
#C0C0C0 (a light silver). If we want to soften the shadow, then we can add a
blur radius. Th is is a very small and subtle change but will make the shadow
appear more natural.

CSS
 #top-ad {

 background-color: yellow;

 color: red;

 font-size: 2em;

 font-weight: bold;

 text-shadow: 2px 2px 1px #C0C0C0;

 }

Th is will add a slight blur to the shadow. If this is our top-ad element…

HTML
 <div id="top-ad">ON SALE NOW!</div>

…then it will look like this (fi gure 67):

Text shadow is not supported in some older web browsers.

Custom Web Fonts / Google Fonts
Historically, web developers were restricted to a very limited list of web-safe

fonts. Using a font that most computers did not have meant that the font was

08-15.css

08-16.css

08-17.html

fi g. 67

137Text Formatting

rendered on a user’s screen with a default substitute. The font-family attribute
helped browsers pick alternative fonts if a special font was unavailable.

This limitation affected graphic design choices. Those wishing to use
special fonts often resorted to creating images of their decorative text and
loading them onto the page with the img tag. Because of this historical
limitation, many sites continue to use a set of default fonts that are available
on most browsers. Times New Roman, Arial, Helvetica, and Verdana are
still popular, as these fonts (or namesake equivalents) are installed on most
devices.

Thankfully, we now have a way to load any font we want. Unfortunately,
not all browsers agree on the method web designers can use to load them.
But there are tools like Font Squirrel’s Webfont Generator that allow us to
generate the variations of code required to display a custom font.

Nearly all fonts have license agreements, so unless a font is known to
be in the public domain, be sure you have permission to use it on
your website.

Google Fonts allows developers to select from a wide variety of fonts,
identify the different font weights and font styles that can be used (italic,
etc.), and even see the language support for each selection. The CSS is also
presented and can be easily copied and pasted into your code.

Visit www.clydebankmedia.com/htmlcss-assets to access your Digital
Assets containing updated URLs that will direct you to Font Squirrel’s
Webfont Generator and Google Fonts.

Regardless of how you implement your custom web fonts, the technique
for using them is the same. Just add them to the font-family declaration with
appropriate fallback fonts. The following example uses a Google font called
Open Sans:

 h2 {

 font-family: 'Open Sans', Arial, Helvetica, sans-serif;

 font-size: 28px;

 line-height: 1.4;

 letter-spacing: 4px;

 }
08-18.css

138 HTML & CSS QUICKSTART GUIDE

Custom web fonts behave in the same way as any other font; all the CSS
properties we discussed can be applied to them. However, custom fonts have
a slight drawback. To work properly on a site, they must be downloaded to
the user’s machine at the time the page loads, which adds a small amount
of additional load time. Site speed is an important consideration for both
user experience and search engine optimization, so you should only load
fonts via CSS that you intend to use. Large, decorative fonts will take more
time to load, so consult the file size (and Google Font’s load statistics) for
more information.

Practice Exercise
Remember our Carter Dome example? Here’s a new and improved

version. But if you save this and view it in a browser, it will appear unchanged.

HTML
<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8">

 <title>Carter Dome</title>

 <meta description="Carter Dome is a mountain located

in New Hampshire.">

 <link rel="stylesheet" href="style.css">

 </head>

 <body>

 <h1>Carter Dome</h1>

 <img src="images/Carter-Dome.jpg" height="600"

width="800" alt="A picture of Carter Dome">

 <p>See statistics or find additional reading on Carter Dome.</p>

 <p>Carter Dome, or

simply The Dome, is a mountain located in <span class="blue-

text">Coos County, New Hampshire. The mountain is

part of the Carter-Moriah Range</

span> of the White Mountains</

span>, which runs along the northern east side of <span

08-19.html

139Text Formatting

class="blue-text">Pinkham Notch. <span class="bold-

text">Carter Dome is flanked to the northeast by <span

class="blue-text">Mount Hight and to the southwest by

Wildcat Mountain (across <span

class="blue-text">Carter Notch).</p>

 <p>The origins of Carter

Dome’s name are unknown. Local folklore suggests

that it was named after a hunter named Carter, while a

neighboring peak is named after his hunting partner, Hight.</

p>

 <p>The mountain is ascended from the west by the

Carter Dome Trail and <span

class="blue-text">Nineteen Mile Brook Trail, and from

the east by the Black Angel Trail</

span>.</p>

 <hr>

 <div id="stats">

 <h2>Statistics</h2>

 Elevation: 4,832 ft

(1,473 m)

 Prominence: 2,821

ft (860 m)

 Coordinates:

44°16'02"N 71°10'44"W

 </div>

 <hr>

 <div id="additional">

 <h2>Additional Reading</h2>

 <p>For more information, please see the Wikipedia

article on Carter Dome

 </div>

 </body>

</html>

140 HTML & CSS QUICKSTART GUIDE

This page is full of text, so it’s an excellent canvas on which to apply the
text formatting processes we’ve learned. In addition to some span elements,
a relative link containing a reference to style.css has been added to the head
element. In the same directory, create a file called style.css and put some text
formatting CSS rules in it, as shown:

CSS
 body {

 font-family: Arial, Helvetica, sans-serif;

 font-size: 12px;

 }

 h1 { font-size: 22px; }

 h2 { font-size: 18px; }

 .bold-text { font-weight: bold; }

 .blue-text { color: blue; }

When you reload the Carter Dome HTML file, you will notice it now
displays in Arial font with more precisely sized headers and colored text
highlighting locations and key terms in the article. Try experimenting with
various font names, colors, and other styles.

LOOK AND FEEL

Our client isn’t a fan of the gray color scheme of the ClydeBank Coffee
Shop website. They inform us that it should be brown, not gray. Since the
colors were specified in css/style.css (the css/ denotes that the style sheet
is in the CSS folder), we can easily change this.

If you haven’t yet downloaded the ClydeBank Coffee Shop website,
please do so from www.github.com/clydebankmedia/clydebank-
coffee-shop.

08-20.css

www.github.com/clydebankmedia/clydebank-coffee-shop
www.github.com/clydebankmedia/clydebank-coffee-shop

141Text Formatting

In the style.css file, there are several places where the client’s chosen
colors are defined. Rather than specifying them all, we’re not giving you any
hints this time. Try to change these colors on your own.

 » Change the header background color to a light brown color named
“sienna.”

 » Change the navigation menu background color to “chocolate” and
the text color to white.

 » Change the footer background color to chocolate.

These colors are just our recommendations; you don’t have to use those
values. Feel free to experiment with different colors.

Once you’ve made the changes, open index.html (or refresh, if you have
it open already) and see the changes. Thanks to your hard work, the site is
already looking a lot better! As always, if you get stuck, the answers are in
appendix V.

Chapter Recap

 » Fonts are grouped into families, and similar fonts can be specified
for your text via the font-family property.

 » Web designers used to be restricted to the fonts installed on the
visitor’s computer, but now fonts can be loaded from the web server
and displayed on the page.

 » Font, size, color, decorations, boldness, shadow, and more can be
added to your text.

143Layout/Format

| 9 |
Layout/Format

Chapter Overview
 » CSS allows elements to be positioned in a variety of ways.
 » Elements can float and deviate from the normal flow of HTML.
 » CSS Flexbox allows for dynamic positioning of elements.

In this chapter, we will explore how to lay out your web page. Until now, we
have been using simple elements to put content on the page, assign those
elements ids and classes, and style them with CSS. Now it’s time to explore
how objects are sized and positioned, and how to use “floating” to break free
from the linear style of development and create regions of content on your page.

Position
The CSS position property tells the browser how an element should be

positioned on the page. There are four possible values for position: static,
relative, fixed, and absolute.

static
The default setting, static, tells the browser to follow the normal flow
of the page. Elements will appear in the order they are presented in the
HTML code. Since this is the default, you only need to set the position
to static if you are changing the position attribute of a nested element (for
example, a <p> inside a <div>) and you want the inner element to deviate
from its container.

relative
Relative position specifies that any formatting we provide for an element
will be relative to its normal position. When we set a position to relative,
we usually define additional properties like top, right, bottom, and left.
This lets us describe the desired position in relation to the normal position.
Here’s an example:

144 HTML & CSS QUICKSTART GUIDE

CSS
 .relative-position {

 position: relative;

 left: 20px;

 }

HTML
 <div>

 I have a hard time relating to this div.

 </div>

 <div class="relative-position">

 I can relate to this div.

 </div>

This CSS rule will move the div 20 pixels left of its normal position.

fixed
Elements given a position of “fixed” will hold their position on the page
relative to the viewport. In other words, even if you scroll the page, the
item will stay in place. This can be useful for keeping a static link menu
on the page, keeping a “Back to Top” link in the bottom right corner, or
keeping a footer from disappearing when the visitor scrolls. Remember
our #top-ad element? Let’s make it “stick” to the top:

CSS
#top-ad {

 position: fixed;

 top: 0;

 right: 0;

 width: 640px;

 background-color: yellow;

 color: red;

}

HTML
 <div id="top-ad">This ad not only catches your attention

but insists on sticking around!</div>

09-01.css

09-02.html

09-03.css

09-04.html

145Layout/Format

The class “top-ad” sets the top and right positions to 0 and sets the fixed
position attribute. This will always keep the footer at the top of the view,
regardless of how much the user scrolls.

absolute
If we want an element to be fixed in relationship to its containing element
rather than to the viewport, then we use absolute position. When we set
an element to absolute, it will look for the nearest ancestor (that is, any
element that contains it) with a position property not set to “static” and
will position itself to be fixed in relation to that element.

Let’s consider the following code:

HTML
 <div class="the-parent">

 This is the parent (ancestor) element, called the-

parent, which is set to relative.

 <div class="the-child">

 This child element, called the-child, is set to

absolute. Its properties will be in relationship to the

parent element.

 </div>

 </div>

Next, we will apply the CSS:

CSS
 div.the-parent {

 position: relative;

 background-color: #CCCCCC;

 width: 400px;

 height: 200px;

 border: 1px solid black;

 }

 div.the-child {

 position: absolute;

 background-color: #ffffff;

 top: 80px;

 right: 0;

09-05.html

09-06.css

146 HTML & CSS QUICKSTART GUIDE

 width: 200px;

 height: 100px;

 border: 1px solid black;

 }

Th e resulting layout will look something like this (fi gure 68):

Floating Elements
With the position attribute, we can move elements around on a page and

specify where we want them based on the page, viewport, or parent element.
Rather than assigning specifi c locations, we may want an element to fl ow
with the text. We use the fl oat property to accomplish this.

fl oat
Let’s look at this HTML code:

HTML
<div class="sidebar">

 <p>Excerpt from: A Floating Home by Cyril Ionides & J. B.

Atkins</p>

 </div>

 <div class="main-text">

 <h1>A Floating Home</h1>

 <p>One winter I made up my mind that it was necessary

to live in some sort of vessel afl oat instead of in a house

on the land. This decision was the result, at last pressed

fi g. 68

09-07.html

147Layout/Format

on me by circumstances, of vague dreams which had held my

imagination for many years.</p>

 <p> These dreams were not, I believe, peculiar to myself.

The child, young or old, whose fancy is captive to water,

builds for castles in Spain houseboats wherein he may spend

his life floating in his element. His fancy at some time

or other has played with the thought of possessing almost

every type of craft for his home—a three-decker with a

glorious gallery, a Thames houseboat all ready to step into,

a disused schooner, a bluff-bowed old brig. He will moor

her in some delectable water, and when his restlessness

falls upon him he will have her removed to another place.

Civilization shall never rule him. As though to prove it he

will live free of rates, and weigh his anchor and move on

if the matter should ever happen to come under dispute. Nor

will he pay rent resentfully to a grasping landlord. For a

mere song he will pick up the old vessel that shall contain

his happiness. Her walls will be stout enough to shelter him

for a lifetime, though Lloyd’s agent may have condemned her,

according to the exacting tests that take count of sailors’

lives, as unfit to sail the deep seas.</p>

 </div>

Now let’s style the “sidebar” and “main-text” divs with CSS:

CSS
 .sidebar {

 float: right;

 height: 100px;

 width: 200px;

 padding: 5px;

 border: 1px solid black;

 }

 .main-text { border: 1px solid #333333; }

Our resulting display will look like this (figure 69):

09-08.css

148 HTML & CSS QUICKSTART GUIDE

At fi rst glance, fl oat may seem like the other relative positioning methods
previously described. But with fl oat we don’t specify any specifi c location
or off set information—we only tell the browser to place the element on
the right or left of other elements.

clear
Float allows us to shift elements to the left or right, but once multiple
elements are involved it’s easy to experience overlapping or unexplained
results. To prevent this, we use the clear property. When we set clear, we
are telling the browser to start over with fl oat positioning. Let’s add a
clear property to the main-text div, like so:

.main-text {

 border:1px solid #333333;

 clear: right;

 }

Here we are telling the browser that no fl oating element can exist to the
right of the main-text element, thus resetting the fl oat until the next row
(fi gure 70).

fi g. 69

09-09.css

fi g. 70

149Layout/Format

CLEAR VALUES

none the default setting, allowing elements to float on either side

left no elements can float to the left

right no elements can float to the right

both no floating elements will appear on either side of the specified element

inherit the element will inherit the clear value from its containing element

As you can see, using float and clear in concert gives us a lot of control in
the layout of our page.

When we set up floating elements, we can run into issues when content
(usually an image) is larger than its container. Float, like other relative
positioning methods, can allow the image to bleed over the edge of its
container.

Consider this example:

HTML
 <div class="carter">

 <img src="images/carter _ dome _ view.jpg" id="carter-

pic" alt="Carter Dome" height="120" width="160">

 This is a picture of Carter Dome.

 </div>

Now let’s add a basic CSS float.

CSS
 .carter {

 border: 1px solid #000;

 padding: 5px;

 }

 #carter-pic { float: right; }

Our rendering will look something like this (figure 72):

fig. 71

09-10.html

09-11.css

150 HTML & CSS QUICKSTART GUIDE

Had there been enough text, the image would be fully contained within
the div. To handle this situation, we can assign “auto” to the overfl ow
property in our div, like so:

 .carter {

 border: 1px solid #000;

 padding: 5px;

 overfl ow: auto;

 }

Now the image fi ts within the element (fi gure 73):

Th is will work in many cases, but you may run into issues where the
margin or padding of one of the elements causes a display issue. A better
way to handle this is to use a CSS technique called “clearfi x”:

.carter {

 border: 1px solid #000;

 padding: 5px;

 overfl ow: auto;

 }

 .carter::after {

 content: "";

 clear: both;

 display: table;

 }

fi g. 72

09-12.css

fi g. 73

09-13.css

151Layout/Format

The ::after suffix allows you to append properties to the content
after the element. In this case, we’re adding an empty string ("") and
a clear: both to prevent overlap. The display: table (that is, the
display property set to table) causes the additional empty content to be
displayed as though it were a table. We’ll dive into the display property
in the next section.

Float and clear allow for some interesting page layouts. For example, we
can create a horizontal grid of three boxes.

HTML
 <div class="grid">

 <div class="box">

 <p>Box 1</p>

 </div>

 <div class="box">

 <p>Box 2</p>

 </div>

 <div class="box">

 <p>Box 3</p>

 </div>

 </div>

CSS
 .box {

 float: left;

 width: 33.33%;

 padding: 50px;

 border: 1px solid #000000;

 }

 .grid::after {

 content: "";

 clear: both;

 display: table;

 }

 .box, .grid, .grid::after { box-sizing: border-box; }

This HTML/CSS will render this layout (figure 74):

09-14.html

09-15.css

152 HTML & CSS QUICKSTART GUIDE

First, we created classes for box and grid (specifi cally grid::after),
then told the browser, via the box-sizing property set to the value border-
box, to include border and padding in the element’s calculated width and
height.

ADVERTISEMENT

Th e ClydeBank Coff ee Shop is running a promotion this month—free
delivery on all orders over $15. You can’t beat that. Since it’s such a great deal,
we’re going to add it to the ClydeBank Coff ee Shop website via a banner at
the top of the page. Th ough you can use the yellow background color we used
in the previous absolute positioning example, feel free to experiment with
various background and text colors.

You might think that position: absolute would be ideal for this, but
unfortunately that will cut off the top part of the header. To fi x this, you can
set top, left, and right to 0 and use position: relative.

Try this on your own. If you get stuck, you can always refer to the answer
key in appendix V.

Display
Th e display property, as its name suggests, specifi es how an element is to

be displayed, if at all. Th ere are lots of values in this property, so we’ll now
focus on the most frequently used.

Check out www.clydebankmedia.com/htmlcss-assets for some
additional display properties. The link you’re looking for is called

“Display Properties.” Go fi gure.

fi g. 74

153Layout/Format

none
If the display property is set to “none,” the element will not display on
the page. You might wonder why you would go to the trouble of defining
an element in HTML only to prevent it from being displayed. The most
common use case for this is when you need to hide an element initially
(for example, an error box), then display that element after a certain
condition has been met. This is usually paired with JavaScript code.

For instance, consider a class defined as follows:

 .error-message { display: none; }

Now let’s create an error message:

 <div class="error-message">

 <p>Something went wrong!</p>

 </div>

The error message won’t be shown until the display property is changed,
via JavaScript, to anything but “none.”

inline
An inline display will show all elements as part of one line, regardless of
their normal HTML attributes.

For instance:

 <div>

 This is some text.

 <p class="inline-paragraph">This is a paragraph.</p>

 And here is some more text

 </div>

If we define the following CSS:

 .inline-paragraph { display: inline; }

Then the paragraph element will be treated as part of the same line, like
this (figure 75):

09-16.css

09-17.html

09-18.html

09-19.css

154 HTML & CSS QUICKSTART GUIDE

block
A display value set to “block” will treat each element of text as its own
separate block on its own line.

 .block-paragraph { display: block; }

Th e same HTML will display like this (fi gure 76):

While this is expected behavior in HTML, allowing the developer to
assign this value is helpful when they need to revert to block layout inside
containing elements that use a diff erent display property.

I usually force elements to behave like blocks via the display: block
attribute when converting links to navigation—especially for mobile,
when the links need to stack.

inline-block
Th e inline-block value defi nes the display layout as a hybrid of the block
and inline styles. In this case, an element with this value will display
inline but as part of a block layout.

HTML
 <div>

 This is some text.

 <p class="inline-text">This is a paragraph.
It has a

line break, but is still part of this block</p>

 And here is some more text

 </div>

fi g. 75

09-20.css

fi g. 76

09-21.html

155Layout/Format

CSS
.inline-text { display: inline-block; }

Th is will display as follows (fi gure 77):

Navigation Bar
Until now, the display property may have seemed abstract and theoretical,

but in page navigation, the display property is invaluable. It was noted in
chapter 5 that, in addition to providing bullets and numbered lists, navigation
bars also benefi t from the list element. Let’s put that functionality to use.

Say we have a simple list of pages we want to use in our site:

 Home

 About

 Learn More

 Contact

By default, it would look like this (fi gure 78):

In some situations, this might be useful, but we can make it far more
interesting. Let’s add a little bit of styling using some of the CSS techniques
we have learned in this chapter:

09-22.css

fi g. 77

09-23.html

fi g. 78

156 HTML & CSS QUICKSTART GUIDE

CSS
 .main-nav {

font-family: verdana, sans-serif;

 font-size: .8rem;

 list-style-type: none;

 margin: 0;

 padding: 0;

 overfl ow: hidden;

 background-color: #333333;

 }

 .main-nav li { fl oat: left; }

 .main-nav li a {

 display: block;

 color: #EEEEEE;

 text-align: center;

 padding: 10px 12px;

 text-decoration: none;

 }

Now we need to modify our HTML to include the class names. Note
that in the previous CSS the li and a elements are listed after .main-nav,
so rather than all li and a elements being redefi ned, only those inside a
containing element with the main-nav class will be aff ected.

HTML
<ul class="main-nav">

 Home

 About

 Learn More

 Contact

Th e result is a stylish navigation bar (fi gure 79):

09-24.css

09-25.html

fi g. 79

157Layout/Format

Using the float property, we told the browser to have all list elements
forgo their usual vertical arrangement and horizontally align to the left. The
overflow property set to “hidden” on the main nav prevents a new line on the
navigation bar from being created by the browser. Setting text-decoration:
none on an element in the list prevents links from being underlined, giving
the overall design a nicer look.

CSS Flexbox
In previous versions of HTML and CSS, page layout tended to follow

a grid pattern. There were essentially four different element-arrangement
strategies: “block” for handling blocks of content within a web page, “inline”
for handling strings of text, “table” for representing two-dimensional data,
and “positioned” for specifying the explicit position of items on a page. Now
that pages are being viewed on a wider variety of devices, this grid lacks the
flexibility needed to automatically arrange elements on multiple screens.

Recently, the concept of “flex” or “flexbox” layout has emerged. The flexbox
strategy expands on the four traditional layout display values with additional
values that instruct the browser on how to stack, wrap, and arrange elements.
This model allows for layout without using floats or relative positioning,
thereby avoiding the dreaded overlap issues associated with these techniques.

Imagine a bag of marbles. If you lay the bag on the table, the marbles
will align in a roughly horizontal fashion. Putting the bag of marbles in your
pocket forces the marbles into tighter arrangement. The marbles will remain
in the bag but will reorient themselves to fit the available area.

To construct flexbox-style layouts, we begin by defining an HTML
structure with a container and then add a few internal elements.

HTML
 <div class="flex-container">

 <div>1</div>

 <div>2</div>

 <div>3</div>

 <div>4</div>

 <div>5</div>

 </div>

Visual Studio Code has a nifty shortcut for designing multiple elements
that is most useful for creating divs and spans. Type div*3, then hit
ENTER and three div elements will appear. Replace div with the
element and 3 with the number of elements you want to create.

09-26.html

158 HTML & CSS QUICKSTART GUIDE

In our CSS, we set the display property of the parent element “fl ex-
container” to fl ex. Let’s give it a light gray background color:

CSS
 .fl ex-container {

 display: fl ex;

 background-color: #CCCCCC;

 }

We can now defi ne the behavior of any div elements within our fl ex-
container class.

 .fl ex-container > div {

 background-color: #ffffff;

 margin: 10px;

 padding: 20px;

 font-size: 30px;

 }

Th e resulting display will look something like this (fi gure 80):

Flex also allows us to alter the way the content displays. We can change
the display to a column format using the fl ex-direction property (fi gure 81):

 .fl ex-container {

 display: fl ex;

 fl ex-direction: column;

 background-color: #CCCCCC;

 }

09-27.css

09-28.css

fi g. 80

09-29.css

159Layout/Format

Sometimes content will not fi t in a single line. If we set the fl ex-wrap
property to “wrap,” the browser will display the layout in a line if there is
enough room; if not, it will create a new line to display the remaining content.
Th is allows us to adapt to a wide variety of screen widths (fi gure 82).

There are many more CSS fl ex properties. For a complete listing, go
to www.clydebankmedia.com/htmlcss-assets and look for the “Flex
Container List.”

Moving Forward
In part II, we’ve covered the basics of HTML and CSS. With this

knowledge, you can build simple and attractive web pages. In part III, we’ll
cover more advanced topics to help you style your pages to look great on
all devices, including tablets and phones. We’ll also explore HTML forms,
allowing you to collect data from your visitors.

fi g. 81

fi g. 82

160 HTML & CSS QUICKSTART GUIDE

You’ve done a great job! See you in part III!

Chapter Recap

 » With CSS, we can position HTML elements in a variety of ways.
In addition to altering the flow and order of presentation, we can
make elements float outside their normal position, stick to a side of
the window, or even disappear.

 » The list element can be used to build an attractive and functional
navigation bar.

 » CSS Flexbox allows elements in a container to adapt to the size of
the screen on which they are being displayed, giving the designer
tremendous layout flexibility.

PART III
ADVANCED

163HTML Junk Drawer

| 10 |
HTML Junk Drawer

Chapter Overview
 » HTML/CSS provides a cornucopia of bells and whistles.
 » Learn to use emojis, multimedia, tables, and more.

In part II, we covered the basics of HTML and CSS. With practice, the
concepts discussed will become second nature to you.

Since web design is a broad topic covering many different techniques
and technologies, it’s impossible to memorize every component. Part III will
cover more advanced topics that you will need to reference but might not use
in your everyday web design work.

You might wonder why we called this chapter the “HTML Junk Drawer.”
Every home, from a tiny house on wheels to a sprawling estate, has a junk
drawer—that place where we stash anything and everything we don’t know
where else to put. And the word junk is actually a misnomer, as we regularly
turn to our junk drawer when we need a paperclip, a twist tie, or some other
mundane but valuable tool that helps us solve a problem. The topics we’ll
cover in this cornucopia of a chapter are incredibly useful tidbits of web
design knowledge. Let’s get started!

Superscript and Subscript
You can add superscript and subscript text to a web page via the <sup></

sup> and elements (figure 83).

 <p>The quick brown fox jumped over the lazy red dog. The

quick brown fox ^{jumped} over the lazy red dog. The

quick brown fox jumped over the lazy red dog. The quick

brown fox jumped over the _{lazy red} dog.</p>
10-01.html

164 HTML & CSS QUICKSTART GUIDE

Th e sup (superscript) and sub (subscript) elements in action

It’s important to note that adding superscript and subscript text can
adjust the containing line down or up depending on font size and line height.
To mitigate this, you can increase the line height for all text so the browser
doesn’t need to off set that value for just one line.

Abbreviations
Th e <abbr></abbr> element allows you to add abbreviations to your

HTML documents. When you use abbr, the browser will underline the
abbreviation with a dotted line and display the value of the title attribute as a
hint when the mouse hovers over the text (fi gure 84).

 <p>The quick brown fox jumped over the <abbr title="Lazy

Red Dog">LRD</abbr>. The quick brown fox jumped over the

lazy red dog. The quick brown fox jumped over the lazy red

dog. The quick brown fox jumped over the lazy red dog.</p>

Th e abbr element underlines and defi nes the LRD abbreviation.

Blockquotes and Cite
Th e <blockquote></blockquote> element indents the content it

contains and provides an optional cite attribute. Web designers often use it
to display quotes from other sources. If desired, you can put the exact quote
within the <q></q> element, and the citation (usually used as a footnote) can
be displayed with the <cite></cite> element (fi gure 85).

fi g. 83

10-02.html

fi g. 84

165HTML Junk Drawer

 <p>The quick brown fox jumped over the lazy red dog. The

quick brown fox jumped over the lazy red dog. The quick

brown fox jumped over the lazy red dog. The quick brown fox

jumped over the lazy red dog.</p>

 <blockquote cite="Mr. Fox, The Quick Silver Anthology,

1999">

 <p><q>The quick silver fox jumped over the lazy yellow

dog. The quick silver fox jumped over the lazy yellow dog.

The quick silver fox jumped over the lazy yellow dog.</q></p>

 </blockquote>

 <p>The quick brown fox jumped over the lazy red dog. The

quick brown fox jumped over the lazy red dog. The quick

brown fox jumped over the lazy red dog. The quick brown fox

jumped over the lazy red dog.</p>

 <cite>Mr. Fox, The Quick Silver Anthology, 1999</cite>

Th e second paragraph is contained within the block quote element.

At the time of publication, Chrome and Firefox do not do anything
special with the block quote, cite, and q elements beyond indenting the block
quote, italicizing the cite, and putting quotes around the q element. You may
wonder why one would bother with these elements at all if the browser won’t
fully utilize them. Using HTML5-compliant elements, even if the browser
doesn’t do anything special with them at the moment, helps to “future-proof ”
your website and aids browser plugins, screen readers, and other tools. By
coding for upcoming features, you’ll have a jump-start on the next generation
of browser technology.

10-03.html

fi g. 85

166 HTML & CSS QUICKSTART GUIDE

You can override the handling of these (or any other) elements via CSS.
For instance, a trade journal may want to use its house style, which involves
drawing a thick border to the left-hand side of the block quote, highlighting
quotes (via the q element) by setting the background-color attribute of q to
yellow, and positioning the cite in the footer or setting it to use a smaller font.

 /* Add a thick border to the left of blockquote */

 blockquote { border-left: 3px solid black; }

 /* Give quote (q) a neon-yellow background */

 q { background-color: #FFFF33; }

 /* Make cite a smaller font and a lighter color */

 cite { font-size: 80%; color: gray; }

Pre and Code
Th ere are times when you want to display programming code on a web

page. Fortunately, HTML has a solution—the <pre></pre> and <code></
code> elements.

Th e <pre> tag (short for preformatted) opens a section of code, and the </
pre> tag closes it. Anything in between is displayed in a monospaced font—
where each letter and character occupies an equal amount of horizontal space
(fi gure 86).

 <pre>

 This is an example of computer code.

 </pre>

If you press the ENTER key while typing text, the text will be wrapped
to the next line both in your HTML fi le and when displayed in the browser.

Using the pre element

Th e <code> tag opens a section of code in much the same way as <pre>,
but <code> is intended for inline use, much like . Just like <pre>, the
browser renders code in a monospaced font, but the formatting is a bit
diff erent (fi gure 87).

10-04.css

10-05.html

fi g. 86

fi g. 87

167HTML Junk Drawer

You can override the handling of these (or any other) elements via CSS.
For instance, a trade journal may want to use its house style, which involves
drawing a thick border to the left-hand side of the block quote, highlighting
quotes (via the q element) by setting the background-color attribute of q to
yellow, and positioning the cite in the footer or setting it to use a smaller font.

 /* Add a thick border to the left of blockquote */

 blockquote { border-left: 3px solid black; }

 /* Give quote (q) a neon-yellow background */

 q { background-color: #FFFF33; }

 /* Make cite a smaller font and a lighter color */

 cite { font-size: 80%; color: gray; }

Pre and Code
Th ere are times when you want to display programming code on a web

page. Fortunately, HTML has a solution—the <pre></pre> and <code></
code> elements.

Th e <pre> tag (short for preformatted) opens a section of code, and the </
pre> tag closes it. Anything in between is displayed in a monospaced font—
where each letter and character occupies an equal amount of horizontal space
(fi gure 86).

 <pre>

 This is an example of computer code.

 </pre>

If you press the ENTER key while typing text, the text will be wrapped
to the next line both in your HTML fi le and when displayed in the browser.

Using the pre element

Th e <code> tag opens a section of code in much the same way as <pre>,
but <code> is intended for inline use, much like . Just like <pre>, the
browser renders code in a monospaced font, but the formatting is a bit
diff erent (fi gure 87).

10-04.css

10-05.html

fi g. 86

fi g. 87

 <p>Enter <code>dir</code> on the command line to see a

list of fi les.</p>

Using the code element

Special Characters
Th e symbols on top of the number keys on a standard keyboard are the

most frequently used non-alphanumeric characters. However, in some cases,
you’ll want to use characters that aren’t on a standard keyboard. While you
can insert them from a character map application on your computer or copy
and paste them from another page, this won’t work if the page character set
(confi gured via the charset meta tag) doesn’t match the inserted character. It
isn’t practical to change this every time you want to use a special character, so
the safest and most compatible method of adding a unique symbol is to use
an HTML entity code.

An HTML entity code starts with an ampersand followed by a word and
ends with a semicolon. Th is unlikely combination tells the browser to render
the unique character instead of the code symbols (fi gure 88).

 <p>© Copyright 2020, ClydeBank Media, All Rights

Reserved.</p>

Th e copyright sign is a commonly used symbol. Sometimes you’ll see an
open parenthesis, the letter C, and a closed parenthesis, like this: (C). Th at’s
adequate but doesn’t look as good as an actual copyright symbol.

Th e copyright symbol in action

Th ere are hundreds of special characters you can use in your HTML
documents. Several of the most commonly used are featured in fi gure 89.

10-06.html

10-07.html

fi g. 88

168 HTML & CSS QUICKSTART GUIDE

SYMBOL NAME HTML ENTITY CODE

© Copyright ©

™ Trademark ™

® Registered Trademark ®

€ Euro Currency €

← Left Arrow ←

→ Right Arrow →

↑ Up Arrow ↑

↓ Down Arrow ↓

N/A Non-Breaking Space

To grab the code from figure 89, visit the GitHub code repository at
www.github.com/clydebankmedia/htmlcss-quickstartguide and locate
Snippet_10-08.html.

Emojis
Emojis have become an indispensable part of life. Odds are you’ve used

one today in a text, message, or social media post. Fortunately, adding emojis
in HTML is as easy as adding a named HTML entity. Emojis are inserted
by inserting an ampersand prefix followed by the pound sign and the number
of the emoji entity. The code is closed with a semicolon (figure 90).

 <p>Would you like a 🌻?</p>

Emojis, like all HTML entities, are simply characters in the UTF-8
character set. Since they are like any other character, they can be manipulated
with CSS (figure 91).

 <p>Would you like a <span style="font-size:

50px;">🌻?</p>

fig. 89

10-08.html

10-09.html

10-10.html

169HTML Junk Drawer

Th e rendered display of the fl ower emoji

Th e fl ower, rendered in a 50-pixel font size

Since HTML emojis are displayed via an HTML entity code, you might
be wondering if you can use entity code numbers instead of words for all
HTML special characters. As you might suspect, you can. For example, the
copyright symbol can also be shown with ©. Still, it’s much easier to
remember ©, so it’s generally best to use the named HTML entities
when possible.

For an extensive list of HTML entity codes for emojis, access your
Digital Assets at www.clydebankmedia.com/htmlcss-assets. Check out
the “Emoji Codes Galore” link to become a master emoji coder.

Audio and Video
Adding audio and video to a web page used to be an involved aff air, with

web designers usually resorting to third-party plugins like RealPlayer™ and
Adobe Flash™. Fortunately, HTML5 includes audio and video elements that
make it easy to add multimedia content to your web page.

Audio
Th e aptly named <audio></audio> element lets us insert an audio player
with a specifi ed fi le directly into the web page. Th e audio element expects
a contained <source> element to specify the fi le to play:

 <audio controls>

 <source src="assets/welcome.mp3" type="audio/mp3">

 </audio>

fi g. 90

fi g. 91

10-11.html

170 HTML & CSS QUICKSTART GUIDE

An audio control

Th e controls property of audio enables the “audio control” display in the
browser with play, time, volume, mute, and index for scrubbing through
the audio content (fi gure 92). If you omit controls, it will not be displayed,
and JavaScript code will be required to control the player. For the sake of
user sanity, browsers usually require some action (mouse-clicking, key-
pressing, etc.) before music can be played.

You can specify multiple sources in diff erent formats. MP3 is generally
well-recognized, but you can use OGG, MP4, AAC, and others. In this
example, the browser will fi rst try to use the MP3 fi le specifi ed. If it
doesn’t have support to play MP3s, the browser will load and play the
OGG fi le.

 <audio controls>

 <source src="assets/welcome.mp3" type="audio/mp3">

 <source src="assets/welcome.ogg" type="audio/ogg">

 </audio>

Video
Th e <video></video> element works much the same as the <audio>
element in that it permits playback of multiple video types and has a
display that can be toggled via HTML attributes. However, the video tag
adds a few more properties, including support for various subtitle tracks
and a resizable screen (fi gure 93).

 <video width="640" height="480" controls>

 <source src="welcome.mp4" type="video/mp4">

 <track src="welcome _ en.vtt" kind="subtitles"

srclang="en" label="English">

 <track src="welcome _ es.vtt" kind="subtitles"

srclang="es" label="Spanish">

 Your browser doesn’t support video playback.

 </video>

fi g. 92

10-12.html

10-13.html

171HTML Junk Drawer

A video control

Th e width and height attributes allow you to specify the size of the
video. If possible, use the exact dimensions of the video with matching
aspect ratio (that is, ratio-consistent width and height values) for the
best performance and appearance. To enable controls, ensure that the
controls attribute is present in the video opening tag.

If you want to display subtitles, add the <track> element, as previously
shown. A VTT fi le represents subtitles in the WebVTT format, a W3C
standard for subtitles. Various software programs allow for editing these
fi les or creating one from scratch in a text fi le.

Finally, you can specify the text you want to display if the video element
isn’t supported in a user’s browser. In this example, it will say: “Your
browser doesn’t support video playback.”

Embedding a YouTube Video
You might think the video tag would be the natural choice for embedding
a YouTube video on a web page. While that works for an MP4 video fi le,
it doesn’t work with a YouTube video, because YouTube includes its own
custom player, advertising, and other code along with the video.

Fortunately, YouTube provides an easy way to grab the HTML code
necessary to show a video on your page. Just click the Share button
underneath the video and choose the Embed option. A window will
appear with options that will let you customize the player, along with a
box displaying the code for you to paste onto your web page.

fi g. 93

172 HTML & CSS QUICKSTART GUIDE

Image Sets
When the element was introduced in chapter 5, the src attribute

was described as the method of specifying the URL of the image to display.
This is entirely correct, but we cautioned you to avoid using pictures sized
differently than the intended size on the screen, to save bandwidth and reduce
page load time. Image resizing and optimization is an excellent strategy. Still,
users with large screens may see a poor-quality image, and pages with high-
quality images may waste bandwidth on small screens.

Enter the <picture> element. Just like the <audio> and <video>
elements, <picture> allows you to specify multiple file sources for the image
to be displayed. This ensures that the browser will load the correctly sized
image for the device.

 <picture>

 <source media="(min-width: 1024px)" srcset="/images/

flower-1024.jpg">

 <source media="(min-width: 640px)" srcset="/images/

flower-640.jpg">

 <source media="(min-width: 320px)" srcset="/images/

flower-320.jpg">

 </picture>

In this example, browsers on devices with screens at least 1024 pixels
wide will load the /images/flower-1024.jpg image file. Browsers on smaller
devices will load the appropriate file depending on the media attribute.
Resizing the browser window will load the proper image for the minimum
width specified. Finally, the img tag inside the picture element will load the
/images/flower.jpg in the rare case that the browser doesn’t support the
picture element.

There’s one additional trick you can use with the source element that allows
you to specify different versions of a file to meet different size requirements
without having to use multiple source lines. Let’s use the srcset attribute to
condense our previous example into more concise code.

 <picture>

 <source srcset="=/images/flower-320.jpg, /images/

flower-640.jpg 640w, /images/flower.jpg 1024w" media="(min-width:

320px)">

 </picture>

10-14.html

10-15.html

173HTML Junk Drawer

In our reworked example, we specify, via the media attribute, that the
minimum width must be 320 pixels, the size of the smallest image, /images/
fl ower-320.jpg. Th en, /images/fl ower-640.jpg should be shown on screens
with a width of 640 pixels and, fi nally, /images/fl ower.jpg should be used
on screens with 1024-pixel width or greater.

While this may seem like a lot more work, using the picture element will
help you design more responsive pages that use images suited to the size of
the screen. As a bonus, you’ll save bandwidth and reduce the page load time
of your website.

Tables
Tables are quite useful for displaying tabular, spreadsheet-like data. At

one time, before div and CSS, some coders used tables to form the layout
of web pages. Using tables for layout is outdated, doesn’t scale on diff erent
devices, and is very frowned upon by modern web designers. But the table
element still provides a fantastic way to display data.

Consider this screenshot example of retail sales data (fi gure 94).

A table made with Microsoft Excel

You could simply save the screenshot as a JPG or PNG fi le and insert
it into your web page, but this isn’t good practice, for a variety of reasons.
An image takes a separate HTTP or HTTPS request to the web server,
increasing download and rendering time in the browser. If, for example, you
wanted to add a new row for 2021’s sales fi gures, you’d have to update the data
in Excel, take a new screenshot, and upload the new image to your web server.

Th e simpler and better approach is to use the <table></table> element.
Here’s an unstyled HTML rendition of the data in fi gure 94.

 <table>

 <tr>

 <th>Year</th>

 <th>Shirts</th>

 <th>Shoes</th>

fi g. 94

10-16.html

174 HTML & CSS QUICKSTART GUIDE

 <th>Pants</th>

 </tr>

 <tr>

 <td>2017</td>

 <td>$420,392</td>

 <td>$18,304</td>

 <td>$34,912</td>

 </tr>

 <tr>

 <td>2018</td>

 <td>$480,221</td>

 <td>$17,952</td>

 <td>$36,112</td>

 </tr>

 <tr>

 <td>2019</td>

 <td>$491,919</td>

 <td>$16,844</td>

 <td>$46,924</td>

 </tr>

 <tr>

 <td>2020</td>

 <td>$501,029</td>

 <td>$15,124</td>

 <td>$39,947</td>

 </tr>

 </table>

Parts of a Table
As you can see, the table element contains the headers, rows, and columns
of all the data to be displayed. Let’s explore the related elements in detail.

tr: Tables are composed of rows that run horizontally. The <tr></tr>
element (short for table row) marks the start and end of a new row.

td: The <td></td> element (short for table data) contains the contents
of a column. Each row can have one or multiple columns, but every row
should have the same number of columns. In situations where you wish
columns to span more than one cell, you can use the colspan attribute.

175HTML Junk Drawer

 <td colspan="2"></td>

In this example, two columns are spanned, but you can use as many
columns as you wish as long as it doesn’t exceed the table’s total number
of columns.

th: The <th></th> element (short for table header) acts just like a <td></
td> column except its contents are bolded and set apart from a normal
column. This is often used to name a column.

thead: The <thead></thead> element is used to group header columns,
similar to the <head></head> element in an HTML document.

tbody: The <tbody></tbody> element is used to group content columns,
similar to the <body></body> element in an HTML document.

tfoot: The <tfoot></tfoot> element is used to group footer columns,
similar to the <footer></footer> element in an HTML page.

The th, thead, tbody and tfoot elements are not required but are
available to be used if the layout calls for them.

Styling the Table
In figure 94, the table’s top row and border were slate gray. We can easily
accomplish a similar look with CSS.

 table { border: 1px solid blue; }

 th {

 background-color: darkblue;

 color: white;

 font-weight: bold;

 }

 td { padding: 5px; }

For easier reading, you can set the background color of every other row to
gray, with the nth-child selector applied to even-incremented tr elements.

 tr:nth-child(even) { background-color: lightgray; }

10-17.html

10-18.css

10-19.css

176 HTML & CSS QUICKSTART GUIDE

Now let’s add the CSS shown previously and slightly modify our example
to demonstrate colspan and alternating odd/even rows. To center the text
in a cell with colspan, we’ll create a class called center-cell (figure 95).

CSS
 table { border: 1px solid blue; }

 th {

 background-color: darkblue;

 color: white;

 font-weight: bold;

 }

 tr:nth-child(even) { background-color: lightgray; }

 td { padding: 5px; }

 .center-cell { text-align: center; }

HTML
 <table>

 <tr>

 <th>Year</th>

 <th>Shirts</th>

 <th>Shoes</th>

 <th>Pants</th>

 </tr>

 <tr>

 <td>2017</td>

 <td>$420,392</td>

 <td>$18,304</td>

 <td>$34,912</td>

 </tr>

 <tr>

 <td>2018</td>

 <td colspan="2" class="center-cell">$480,221</td>

 <td>$36,112</td>

 </tr>

 <tr>

 <td>2019</td>

 <td>$491,919</td>

 <td>$16,844</td>

 <td>$46,924</td>

 </tr>

10-20.css

10-21.html

177HTML Junk Drawer

 <tr>

 <td>2020</td>

 <td>$501,029</td>

 <td>$15,124</td>

 <td>$39,947</td>

 </tr>

 </table>

A table styled with CSS demonstrating alternating row highlighting and a
colspan="2" on the 2018 row

IFrames
Th e <iframe></iframe> element, short for inline frame, allows you to

embed HTML code from another website or page.
You should use care when embedding an iframe on your page. If you use

an iframe to include content from another site, you do not have any control
over what content the web browser fetches in the frame. If the site changes
the URL or blocks your site from including the content, your frame will be
broken, at best, and could possibly display unexpected content. Additionally,
frames are vulnerable to a type of attack known as cross-site scripting, so
you’re opening the door to potential security issues.

If you fi nd yourself reaching for an iframe to solve a problem, there are
likely better ways to address your issue. Consider using a scripting language
like JavaScript or backend code like PHP. Nevertheless, despite their
disadvantages, iframes can be useful in some situations. Even if you elect
not to use them in your own builds, you may encounter them if you maintain
other websites, so it’s helpful to know how they work.

<iframe src="https://www.clydebankmedia.com" width="640"

height="480"></iframe>

fi g. 95

10-22.html

178 HTML & CSS QUICKSTART GUIDE

In this example, the front page of ClydeBankMedia.com will load inside
the frame. You don’t have to reference an external website—an iframe can
reference a file on the same site.

 <iframe src="menu.html" width="640" height="480"></iframe>

You aren’t required to use width and height attributes, but if you don’t,
the browser will define these values.

Chapter Recap

 » Elements like sup, sub, abbr, blockquotes, and cite allow you to
add features frequently found in professional documents and white
papers.

 » Use pre and code elements to display code on your web pages.

 » HTML supports special characters and emojis.

 » Multimedia features can be added to your web pages via the audio
and video elements.

 » HTML tables are ideal for displaying tabular data but should not
be used for general layout.

10-23.html

179HTML Forms

| 11 |
HTML Forms

Chapter Overview
 » Forms allow user input.
 » The input element provides for data entry.
 » HTML5 has built-in input validation.

You have likely used countless HTML forms while browsing the internet.
Forms are used for search boxes, contact pages, logins, registrations, and
checkout pages, and are combined in complex arrangements to form
applications like webmail and social media platforms.

Forms Overview
Forms employ both frontend code for display and backend code to process

and use the submitted data. Since this book focuses on HTML and CSS, we
can’t cover the backend code, but as a web designer, you’ll often be called
on to design the form while a programmer is tasked with making use of the
submitted data to perform tasks on the web server.

Recall from chapter 1 that backend languages, like PHP and Python,
run on the web server and perform functions that both process user
data and display dynamic content to the user. Forms play an integral
role in connecting the user with the databases and functionality of
the server.

An HTML form is a group of elements that allow user input. These
elements can accept a wide variety of input types, including name, email,
phone number, option selections, and even file uploads. These input elements
are given a name, and the data entered by the user is associated with that
element name and is either sent to another URL, processed by JavaScript
code on the page, or both.

180 HTML & CSS QUICKSTART GUIDE

Forms are set apart from other parts of the page via a <form> tag. At the
end of the form, a closing </form> tag is used. Th e <form> tag has several
attributes that are important in instructing the browser in how to handle the
submission of the data entered by the user (fi gure 96).

The examples in this section will work fi ne in your browser for testing,
but until a backend script is added to process the input and do
something with it, they won’t do anything on their own. These code
snippets will just be used for illustrative purposes. The “Processing
Form Input with PHP” section of this chapter provides some sample
PHP code that will send this form’s input to an email address.

An example contact form, styled with CSS

Action
Th e “action” attribute of the form is perhaps most important. It instructs
the browser where to send the data submitted by the user. If this attribute
is omitted, the data is sent to the same page. Th e URL can be either an
absolute or a relative URL.

 <form action="contact.html">

fi g. 96

11-01.html

181HTML Forms

If the form is to perform some task, like send an email, add data to a
database, or something similar, then the action must point to a page
(usually a PHP script or other backend language file) that actually
processes the data from the form. In this example, without extra code,
an HTML page like contact.html can only use JavaScript to parse form
input variables.

Method
The “method” attribute instructs the browser as to what kind of request
will be used to submit the form’s data. This can be either GET or POST.
If the method is not specified, GET is used.

 <form action="contact.html" method="POST">

Both GET and POST requests receive responses from the server. The
difference between them is in how the user-provided data is sent. To
illustrate both points, we’ll display an example form and explain how
user-submitted variables are handled with both methods.

GET: When form data is sent via GET, the browser simply requests
the URL specified in the action attribute with an HTTP/S GET request.
This request merely asks for the page or file to download, without any
additional HTML headers. User data is added to the end of the URL.

GET FORM
 <form action="contact.php" method="GET">

 <label for="name">Name</label>

 <input type="text" name="name" required>

 <label for="message">Message</label>

 <textarea name="message" rows="5" cols="60"

maxlength="2000"></textarea>

 <input type="submit" name="submit" value="Send

Message">

 </form>

GET URL AFTER SUBMIT
 https://www.yoursite.com/contact.php?name=Jim&message=He%20

is%20dead

A question mark is added after the file name, then, for each input element
within the form, the name attribute from the form is specified, followed

11-02.html

11-03.html

182 HTML & CSS QUICKSTART GUIDE

by an equals sign and then the content of the field as submitted by the
user. Any special characters, including spaces, are “escaped,” that is,
transformed into a number sequence, so that they don’t interfere with
browser or server parsing of the URL. Any spaces are replaced with %20,
where the percent sign denotes the start of a special sequence and 20
is the number of the space character. %20 is by far the most common
URL code used in HTML to accommodate input that would disturb the
structure of the URL.

POST: Forms with their method attribute set to POST will instruct the
browser to send the form data to the web server via an HTTP/S POST

request. This type of request sends the form input data to the web server,
and the server usually responds with HTML content. This keeps all
input data out of the URL and facilitates more complex input, such as
when the user uploads a file to your form.

POST FORM
 <form action="contact.php" method="POST">

 <label for="name">Name</label>

 <input type="text" name="name" required>

 <label for="message">Message</label>

 <textarea name="message" rows="5" cols="60"

maxlength="2000"></textarea>

 <input type="submit" name="submit" value="Send

Message">

 </form>

POST URL AFTER SUBMIT
 https://www.yoursite.com/contact.php

Note that the URL is simply contact.php—no variables are appended to
it. Instead, the name=Jim and message=He%20is%20dead are POSTed
to the server as headers. Headers are additional pieces of data that are
sent along with each request to a web server and that aren’t shown in the
URL.

The GET method is fine for simple forms with one or two input
elements, but if a lot of user data is submitted via the form, the
resulting URL can become quite unwieldy. I recommended using POST
in those cases.

11-04.html

183HTML Forms

Name
The “name” of the form is optional but helpful, especially when several
forms exist on the same page. Form names can be referenced by JavaScript
or server-side languages like PHP to determine which form inputs should
be processed.

 <form name="contact" action="contact.html" method="POST">

Id
As with all HTML elements, an id attribute can be specified. This is
helpful for using the form with JavaScript code. The id attribute is not
passed to the server. It is optional.

Target
With the “target” attribute, you can instruct the browser to submit the
page in a new window by setting the target to _ blank.

 <form action="contact.html" method="POST" target=" _ blank">

Key Elements
Now that we’ve explored the form element and its attributes, it’s time to

dive into the building blocks of forms—the HTML components that provide
opportunities for user interaction. In these examples, we will omit the form
opening and closing tags for the sake of brevity, but on a real web page they
would almost always be part of a form.

Input
An <input> element provides a way for a user to enter data into your
form. It has a wide variety of attributes that control the display and
functionality of the form.

Before we get into the types of input (text, email addresses, files, etc.), we
should explore its traditional attributes. In the following examples, we’ll
assume that the type attribute is set to text, which allows for generic
input with characters and numbers. Later, we’ll dive into more specific
types of input.

Name: The “name” attribute provides a way to reference the data entered
into the input element. The name of the input element is used when
sending GET or POST data to the web server (figure 97).

11-05.html

11-06.html

184 HTML & CSS QUICKSTART GUIDE

 Subject:

 <input type="text" name="subject">

A text input box

If the user specifi es “A Summer Day” in this fi eld and it’s used in a GET
form (fi gure 98), then upon submission the URL becomes:

https://www.yoursite.com/contact.html?subject=A%20Summer%20Day

A text input box named “subject” fi lled in with the text “A Summer Day”

Id: Th e “id” attribute of the input element isn’t required but is helpful for
use in JavaScript.

Style: An input element can be styled with a CSS class. If we wanted to
bold the text of the input box, we could create a class and attach it to the
input box via the class attribute.

 .subject { font-weight: bold; }

 <input type="text" name="subject" class="subject">

Type: Th e “type” attribute allows you to specify the format of input that
will be accepted in the fi eld. In the previous examples, we’ve assumed

“text,” which is the most generic specifi cation. However, there are a wide
assortment of types that allow you to defi ne precisely the kind of data you
want to accept. Some of the input types provide user interface elements
that help the user specify the desired value. For example, the range type

11-07.html

fi g. 97

fi g. 98

11-08.css
and

11-09.html

185HTML Forms

displays a slider, the date and time types display formatting helpers and
up/down arrows to toggle months and years, and radio and checkbox
fields are sized appropriately on each device.

VARIOUS INPUT TYPES

TEXT
text Generic text

number Generic number (no letters allowed)

email Email address

tel Phone number

url Website address (URL)

search Search input (behaves like text)

password Behaves like text but obscures characters for more secure entry

DATE AND TIME
month Provides for month and year input

week Provides for week and year input

time Provides for time input in hh:mm:ss AM/PM

date Provides for mm/dd/yyyy input, adjusting for localized
international variants

datetime-local Provides for mm/dd/yyyy date and hh:mm:ss AM/PM time
input, adjusting for localized international variants

MULTIPLE CHOICE / CHECK

radio

Displays circular buttons to select from multiple options. Text
for options is supplied via a <label> element. If selected by
user, value attribute is sent to server. To force selection among
multiple elements, give each input radio element the same
name attribute.

checkbox
Displays a checkbox the user can toggle on and off. Text for
the option is supplied via a <label> element, and the value
is specified via the value attribute.

fig. 99

186 HTML & CSS QUICKSTART GUIDE

SUBMISSION

button
Displays a button. The value attribute is displayed as the
button text. By itself, it doesn’t do anything, but when paired
with JavaScript it can trigger action on the page.

reset

Displays a button that resets all input elements to their default
or preselected values. Text on the button is taken from the
value attribute. Use this element with caution on long forms,
as accidentally clearing a long form can raise a user’s blood
pressure to dangerous levels.

submit Displays a submit button, allowing for submission of the form
given the action and method values.

image

Same as submit but the src attribute of the input element
is used to specify the URL of an image to use instead of
the submit button. You need to specify width and height
attributes of the image.

SPECIAL PURPOSE

range
Displays a slider allowing for a range of numbers. Requires
min and max input attributes to be set with a minimum and a
maximum number.

color
Provides a color selection box, allowing the user to specify a
particular color. Value becomes the hex color code of the user-
selected color.

file Displays a file upload box, allowing the user to upload a file.
Parsing of the file must be done by backend server code.

hidden
This input element is not displayed on the page. Instead, the
name and value attributes are used to pass a variable to the
processing page.

Readonly: Specifying the “readonly” (read only) attribute tells the
browser to prevent the user from changing the field.

 <input type="tel" name="phone" value="123-456-7890"

readonly>

While not absolutely required, it doesn’t make much sense to use the
readonly attribute without specifying a value. This is often done on forms
to indicate that the user can’t change some parts of it but can change
others. The field is still displayed, and the user can click the input box,

11-10.html

187HTML Forms

but they cannot change the value. Input fi elds marked as readonly are
still sent to the server in a GET or POST request.

Disabled: Th is is similar to readonly, except the fi eld will not be selectable
and will not be sent to the server. Most browsers will set the background
to gray to indicate it cannot be clicked on or changed (fi gure 100).

A disabled input text box

Both readonly and disabled accomplish the same goal of preventing
users from editing the contents of the input box. However, a disabled
input box provides a visual indication that the box is not editable and
may reduce the confusion or frustration that a readonly input box may
cause in a user.

Placeholder: Th is attribute’s value tells the browser to display text that
hints as to the type of input the user should enter into the fi eld (fi gure 101).

 <input type="text" name="name" placeholder="Please enter

your name">

By default, most browsers will display this text in a lighter shade than
usual and will clear the placeholder text when the user clicks in the fi eld
or starts to enter data. Th e placeholder value is not sent to the server, even
if the fi eld is empty.

An input text box with a placeholder

Th e placeholder can be styled as a pseudo-element using the ::placeholder
selector.

 ::placeholder {

 color: darkgray;

 font-style:italic;

 }

fi g. 100

11-11.html

fi g. 101

11-12.css

188 HTML & CSS QUICKSTART GUIDE

Required: Specifying the “required” attribute on an input element
instructs the browser to require the user to put a value in the field. We’ll
cover this topic later in this chapter under “HTML5 Validation.”

 <input type="text" name="name" required>

In this case, the text box called “name” would have to have some text
entered before submission was possible.

Autofocus: When this attribute is set, the field will automatically become
the input focus when the page loads. This means that a user can simply
start typing when the page loads and this input field will start receiving
the data. You should only specify one autofocus on a page.

 <input type="text" name="name" autofocus>

Autocomplete: This instructs the browser to enable or disable
autocomplete. By default, autocomplete is on. A browser does not have to
honor this, and limiting your users’ choices for inputting data may cause
user frustration, so judicious use of this attribute is advised.

 <input type="text" name="username" autocomplete="off">

Step: For certain input types, namely range, number, and the date/time
types, specifying “step” allows you to adjust the increment and decrement
values when the user toggles through the acceptable choices. It is best
used with min and max.

 <input type="range" name="pressure" min="0" max="100"

step="5">

Pattern: The “pattern” attribute allows you to create special restrictions
on input. We’ll cover this in the “HTML5 Validation” section of this
chapter.

Submit: Every HTML form must have a way for a user to input and then
submit the data. While input elements are usually used to collect data,
the “submit” type is used to create a submit button the user can click to
trigger the form’s submission.

11-13.html

11-14.html

11-15.html

11-16.html

189HTML Forms

 <input type="submit" name="submit" value="Send Message">

In this example, a submit button is created with the text “Send Message.”

Labels
Label elements are used to display text alongside most input elements;
they are generally used right before an input element. They make it easier
for screen readers and some browser add-ons to identify form input
elements and can also help mobile users by providing a larger area to tap
to select the input field in question.

Specifying the “for” attribute on the label element allows you to tell the
browser exactly which input field the label should be associated with.

 <label for="email">Your Email</label>

 <input type="email" name="email">

Placeholder attributes (discussed in the previous section) can eliminate
the need for labels with some text fields, but labels are extremely useful
elsewhere, such as with radio selection input types:

 <p>What is your favorite color?</p>

 <input type="radio" name="color" value="Red">

 <label for="Red">Red</label>

 <input type="radio" name="color" value="Blue">

 <label for="Blue">Blue</label>

 <input type="radio" name="color" value="Green">

 <label for="Green">Green</label>

Fieldset and Legend
Complicated forms can be intimidating and cumbersome for the user.
Breaking the form into smaller related groups makes it easier to fill. The
<fieldset></fieldset> element can encapsulate input fields and labels,
allowing you to display your form data logically. The <legend></legend>
element gives the fieldset a name, allowing the user to separate it from
the rest of the fields (figure 102).

11-17.html

11-18.html

11-19.html

190 HTML & CSS QUICKSTART GUIDE

 <form>

 <fi eldset>

 <legend>Personal Details</legend>

 <label for="name">Name:</label>

 <input type="text" id="name" name="name">

 <label for="age">Age:</label>

 <input type="text" id="age" name="age">

 </fi eldset>

 <fi eldset>

 <legend>Company Details</legend>

 <label for="company">Company Name:</label>

 <input type="text" id="company"

name="company">

 </fi eldset>

 <input type="submit" value="Submit">

 </form>

Two groups of input elements separated by fi eldsets with legends

Th e two fi eldsets contain the inputs and labels for each group, and the
legend element provides a name for the fi eldset. Th e fi eldset and legend
elements, like all other HTML elements, can be styled with CSS to
provide an even more visually appealing layout of your form.

11-20.html

fi g. 102

191HTML Forms

Textarea
A textarea is essentially a text type of input that accepts multiple lines
of text. It has most of the same attributes as an input element, with a
few specific options that cater to longer text input. The textarea tag is
different from the input element in that it has a closing tag and has no
value attribute. The predefined value of a textarea element, which you
would normally set with value="", is simply the content between the
opening <textarea> tag and the closing </textarea> tag.

In this example, we’ll use all of the special attributes and explain them
in detail.

 <textarea name="message" rows="5" cols="60"

maxlength="2000" wrap="hard"></textarea>

Rows: With the rows attribute, you can specify the “height” of the text
box in rows. The text area will accept more rows of text than are specified
in “rows,” but at least the specified number of rows will be displayed. The
height of a row is determined by the height of the font of the text box.
This can be overridden with CSS by overriding the textarea element or
attaching an id or class to it.

Cols: The cols attribute allows you to specify the “width” of the text box
in columns. A column is simply one character width and, as with rows,
this adjusts according to the size of the text box’s font. It can be refined
in CSS by overriding the textarea element or attaching an id or class to it.

Maxlength: If you set the maxlength attribute, you can limit the total
number of characters that can be entered by the user into the textarea
field.

Wrap: Text entered into a textarea element is wrapped to the next line for
the user but is not wrapped in the data submitted to the server. This is the
default behavior and is defined by setting “wrap” to “soft.” Specifying the

“hard” setting for wrap inserts new-line characters (returns) after each
wrapped line before sending it to the server.

Resize (via CSS): Many browsers allow users to resize a text area in both
height and width. Because of this, the page formatting can be affected
negatively. To avoid this, consider using the CSS resize property:

11-21.html

192 HTML & CSS QUICKSTART GUIDE

resize: vertical; /* allows resizing only for the height */

 resize: horizontal; /* allows resizing only for the width */

 resize: none; /* allows no resizing */

Select: Th e select element creates a dropdown list of several options. It
shares many of the input attributes but has a special syntax for multiple
choice elements. Here’s an example:

 <select name="return">

 <option value="Email">Email</option>

 <option value="Phone">Phone Call</option>

 </select>

In this case, the name of the element is “return” and a dropdown menu
is displayed with the visible options “Email” and “Phone Call.” However,
the name value will be set to “Email” or “Phone,” depending on which
they select. Th e value attribute allows you to specify a value that diff ers
from the displayed value, but if you omit it, then the exact text between
the <option> and </option> elements is used.

If you want to specify a default option, use the select attribute. Th is takes
no parameters and will preselect the option when the page loads.

 <select name="return">

 <option value="Smoke" disabled>Smoke Signals</option>

 <option value="Email">Email</option>

 <option value="Phone" selected>Phone Call</option>

 </select>

In this example (fi gure 103), “Phone Call” will be selected by default.In this example (fi gure 103), “Phone Call” will be selected by default.

A select box with a “selected” default value

11-22.css

11-23.html

11-24.html

fi g. 103

193HTML Forms

HTML5 Validation
Validation is the process of ensuring the user has entered the required

data into your form fi elds.
Historically, JavaScript and server-side code were used to check data the

user submitted before the form was sent to the server. While this approach is
perfectly acceptable, it is no longer necessary to use JavaScript to validate input.

Adding the “required” attribute to an input tag will tell the browser to
check the fi eld to ensure it contains content and, if that check fails, to block
submission of the form.

 <input type="text" name="name" required>

In this example, the fi eld will be selected and, depending on the browser,
a visual indicator will be displayed prompting the user to fi ll in the fi eld
(fi gure 104).

Google Chrome displays this graphic pointing to the invalid fi eld.

Input validation goes beyond a simple check to make sure text is in a box.
If you specify it on a special type of input, like email, it will ensure that a
valid email address is entered (fi gure 105).

 <input type="email" name="email" required>

On an email fi eld, Google Chrome will prompt the user to enter a valid email address.

11-25.html

fi g. 104

11-26.html

fi g. 105

194 HTML & CSS QUICKSTART GUIDE

Select elements can also use validation. You can force the user to select a
value from a select box in two different ways. First, you can specify a default
option with no value and put a required attribute on the select tag.

 <select name="reply" required>

 <option value="" selected>Please select...</option>

 <option value="Email">Email</option>

 <option value="Phone" selected>Phone Call</option>

 </select>

In this example, the user will be forced to choose “Email” or “Phone
Call.” You can also omit the “selected” attribute altogether, like this:

 <select name="reply" required>

 <option value="Email">Email</option>

 <option value="Phone" selected>Phone Call</option>

 </select>

While this method ensures you’ll get a value, it is not guaranteed to
capture the user’s attention, as the field can simply be left to its default value.
The choice of approach in this matter will depend on your preference, the
audience, and the business requirements of the form.

The “min” and “max” attributes can be used to ensure a number entered
by the user was within the desired range. The “maxlength” attribute, as the
name suggests, controls the maximum length of text, text area, and related
fields. But what if you want to make sure a particular type of data is entered,
like a social security number or a United States telephone number? That’s
where pattern matching comes in.

The “pattern” attribute can be paired with the “required” attribute
to indicate that a pattern of text should be used to validate the input field.
This is done using a syntax known as regular expressions, or regex for short.
Regular expressions are extremely powerful; a proper discussion of this
syntax would easily fill an entire book. For now, we’ll focus on a few simple
values you may need.

 <input type="text" name="ssn" pattern=" (̂\d{3}-?\d{2}-

?\d{4})$" required>

The pattern value contains a regular expression to validate a US social
security number. It may seem extremely complex, but breaking it down into
its individual components makes it a bit easier to understand.

11-27.html

11-28.html

11-29.html

195HTML Forms

 » ^ signifies the start of the string
 » (notes the start of the data to be matched
 » \d{3} the \d indicates digit, and {3} means 3, so this means 3 digits
 » ? match the previous character literally (that is, the dash is not part

of a special instruction)
 » \d{2} match 2 digits
 » ? as before, ignore the previous dash (–)
 » \d{4} match 4 digits
 ») closes the definition of data to be matched
 » $ signifies the end of the string

If your form asks for sensitive data, like a social security number
or credit card information, you must make certain that the form is
delivered via an HTTPS (SSL) page. If you are coding the backend
processing of this sensitive information, you must also encrypt and
protect it. Moreover, with sensitive data you should always use the
POST method, to avoid the data being inserted into the URL.

Let’s validate a two-letter country code, like “US” or “CA.”

 <input type="text" name="country" pattern=" (̂[A-Z]{2})$"

required>

This validates correctly with an entry like “US” but would not allow
“USA” or “Canada.” Here’s a breakdown of the regex:

 » ^ signifies the start of the string
 » (notes the start of the data to be matched
 » [A-Z]{2} indicates capital letters A through Z are accepted and we

require two of them
 ») closes the definition of data to be matched
 » $ signifies the end of the string

Don’t worry if you don’t understand regular expressions. You can use
HTML and CSS without even knowing they exist (aside from pattern
matching in input fields). However, knowledge of regular expressions is
beneficial in programming languages, including JavaScript.

It should be noted that, although validating user data with HTML5 or
JavaScript is a good practice, it doesn’t replace the need for server-side data
input validation. Malicious or malformed data sent to a backend script can

11-30.html

196 HTML & CSS QUICKSTART GUIDE

cause a compromise of your website or security issues for your web server. In
the following section, we’ll explore some simple ways to validate data in PHP.

Processing Form Input with PHP
Though there are many options for handling user input, PHP is a

reasonable choice because it’s a simple and common backend language used
on most Linux and Windows web servers. Since your web hosting company
will almost certainly support it, powering a contact form with PHP is a good
choice. In this section, you’ll find an example PHP contact form handler and
some introductory details about PHP. For more information on web hosting,
please consult the more comprehensive discussion about web hosting in
appendix I.

An HTML file is simply a text file with an .html extension, and the
same principle applies to PHP files. For the server to execute a text file as a
PHP script, the file must have a .php extension.

To signify the file will contain PHP code, we place <?php at the beginning
of the file. We can return to HTML mode by closing the PHP mode with
?>. The opening and the closing of a section of PHP code are similar to the
opening and closing tags of an HTML element. Any line of PHP code that
starts with // or # is a comment and is not processed.

 <?php

 // This is some PHP code

 ?>

 <p>This will be shown on the page.</p>

When a contact form (or any form) is submitted via a web browser to
a PHP script, PHP places the value of the input fields (that is, <input>,
<textarea>, <select>, etc.) in a unique structure called an “array” that we
can access from code.

Recall that a form can be submitted via GET or POST. PHP makes
both available to the script, like this:

 <?php

 // Place value of HTML input field "name" in variable

called "name"

 $name = $ _ GET['name'];

This script will take the value of the HTML input field called “name”
and assign it to the variable $name. In PHP, all variables start with a dollar

11-31.php

11-32.php

197HTML Forms

sign. Variables are a container in which to store a value for later processing.
The $ _ GET array is a special variable that contains other variables within
it. These variables are accessed by a “key.” In this case, “name” is the key,
denoting that we want the input field “name” from the array.

What if the form is posted? In that case, we can use the $ _ POST array.

 <?php

 // Place value of HTML input field "name" in variable

called "name"

 $name = $ _ POST['name'];

If we don’t care which method is used, we can use the $ _ REQUEST array.
This is preferable in most cases because it can handle either GET or POST.

 <?php

 // Place value of HTML input field "name" in variable

called "name"

 $name = $ _ REQUEST['name'];

You’ll also note that in the three previous examples, each line of PHP
code shown has a semicolon at the end. In PHP, every line of code must end
in a semicolon. If you omit it, you’ll receive an error.

Placing the value of the input element in a variable doesn’t accomplish
much in the real world. For our script to handle the code, it needs to do
something with the data.

But first, we should make sure the data is valid. HTML provides
validation, as we discussed in the previous section. Still, malicious users and
spammers can use GET and POST variables through external scripts and
can force values into the input fields that would bypass our validations. In
our example code, we’ll use the filter _ var PHP function to ensure the data
is coherent or “sane.”

 <?php

 // Replace with your email address

 $you = "you@youremail.com";

 // Place HTML input fields into variables

 $name = $ _ REQUEST['name'];

 $email = $ _ REQUEST['email'];

 $phone = $ _ REQUEST['phone'];

11-33.php

11-34.php

11-35.php

198 HTML & CSS QUICKSTART GUIDE

 $country = $ _ REQUEST['country'];

 $subject = $ _ REQUEST['subject'];

 $reply = $ _ REQUEST['reply'];

 $message = $ _ REQUEST['message'];

 // Validate email address

 if (filter _ var($email, FILTER _ VALIDATE _ EMAIL)) {

 die("Invalid email.");

 }

 // Build the message to send

 $content = "

 Name: $name

 Email: $email

 Phone: $phone

 Country: $country

 Subject: $subject

 Best Method to Reply: $reply

 Subject:

 $subject

 Message:

 $message";

 // Build mail headers

 $headers = "Reply-to: $email";

 // Send the message

 mail($you, $you, $subject, $headers);

 ?>

 <p>Your message was sent successfully.</p>

This code will work in most simple configurations, but it lacks several
important features, including anti-spam protection and validation for variable
length. A spammer could submit this form many times with promotional or
abusive messages. Since this form sends the mail to your address, this kind
of misuse could become annoying. Additional validation and CAPTCHA
(Completely Automated Public Turing Test to tell Computers and Humans
Apart) challenges may be necessary.

199HTML Forms

This code may not work on all web hosting servers, as each host has
different restrictions and rules about sending emails via PHP code. The PHP
mail() function usually works, but if not, you may have to use custom code.
Your web host should be able to point you in the right direction.

The purpose of this example code is not to provide a complete solution to
all your contact form needs but rather to serve as a starting point for you to
learn more about backend programming languages like PHP.

Putting It All Together
Now that we’ve explored HTML forms, let’s build a contact form with

validation. In your text editor, create the following file and view the results in
your browser. Note that you won’t be able to submit the form because there’s
no backend code, but you’ll be able to see and interact with the form elements.

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8">

 <title>Contact Us</title>

 </head>

 <body>

 <h1>Contact Us</h1>

 <form action="contact.php" method="POST">

 <label for="name">Name</label>

 <input type="text" name="name" required>

 <label for="email">Email</label>

 <input type="email" name="email" required>

 <label for="phone">Phone</label>

 <input type="tel" name="phone">

 <label for="country">Country</label>

 <input type="text" name="country" pattern=" (̂[A-Z]

{2})$" required>

11-36.html

200 HTML & CSS QUICKSTART GUIDE

 <label for="name">Subject</label>

 <input type="text" name="subject" required>

 <label for="reply">Desired Reply</label>

 <select name="reply" required>

 <option value="" selected>Please select...</

option>

 <option value="Email">Email</option>

 <option value="Phone" selected>Phone Call</

option>

 </select>

 <label for="message">Message</label>

 <textarea name="message" rows="5" cols="60"

maxlength=”2000"></textarea>

 <input type="submit" name="submit" value="Send

Message">

 </form>

 </body>

</html>

In this example, we ask for the user’s name, email, phone, country, subject,
and desired reply method, and we provide a space for them to enter a message.
We validate the name, email, country, subject, message, and reply method,
but we do not require the phone number, because they may choose “Email”
as their desired reply method.

The form will POST to contact.php, which can be filled with the PHP
example code we provided in the previous section to process the message.

You don’t have to use PHP—you can use Ruby, Python, or any other
backend scripting language. Covering these other languages is beyond the
scope of this book. Still, as a web designer, you may need to integrate with
several backend languages, and knowing how to build forms and send them
to the appropriate URL will be an invaluable skill.

The following form is functional but is rather plain-looking. Why not
try to spruce it up by using CSS to decorate the heading, input fields,
select box, and labels?

201HTML Forms

CONTACT FORM

The contact.html page of the ClydeBank Coffee Shop website is missing
a contact form. Let’s add one, so visitors can contact the coffee shop.

You can use the PHP file contact.php described in this chapter to send
the email. Our client has informed us that a developer will do that for us. All
we need to do is create the form and add validation.

If you haven’t yet downloaded the ClydeBank Coffee Shop website,
please do so from www.github.com/clydebankmedia/clydebank-
coffee-shop.

We already have a working example of a form in the “Putting It All
Together” section of this chapter. However, it is more detailed than we need.
The client informed us that we only need ask for their name, email address,
and message. Try to copy the form element, the relevant input fields, and the
submit button into the contact.html file. Don’t forget to validate each field.
If you don’t want to use the contact.php included in this chapter, then you
can leave the action to reference contact.html, as a developer will adjust this
after we’re done.

While we encourage you to try this task on your own, you can consult
appendix V if you get stuck. Once you’re done, patrons will have an easy way
to reach the coffee shop via email. Fantastic work!

202 HTML & CSS QUICKSTART GUIDE

Chapter Recap

 » HTML forms allow users to provide input on a web page.

 » The input element is the primary method of data entry. It provides
many options for accepting text, numbers, email addresses, website
URLs, and more.

 » HTML5 provides methods of validating the data that users
enter into your form, including the required attribute and pattern
matching.

 » Backend languages like PHP can process your contact form data
and send an email to you with its contents.

203Cool Tricks

| 12 |
Cool Tricks

Chapter Overview
 » Using CSS enables creativity and efficiency.
 » Use overlays to grab attention.
 » Calculated values make for fast and flexible coding.

The HTML and CSS we’ve learned up until this point covers common
elements and CSS selectors you’ll use every day in web design. Since you’ve
progressed to a more advanced stage in your learning, it’s time to go over
some exciting tricks and techniques that can add additional visual interest
and flexibility to your work while allowing you to save coding time and
enhance your users’ experience.

CSS Gradients
A gradient is a transition between at least two colors. The change can be

gradual or abrupt, but a gradient differs from a border between two colors in
that there is a space where the colors mingle with one another. There are two
primary types of gradients: linear and radial.

You may wonder why you would use CSS to create a gradient when one
is so easily made in Photoshop, GIMP, or pretty much any graphics program.
Until gradients were added to CSS, that’s what web designers had to do.

There’s nothing wrong with that approach, but adding an image to a page,
especially an image that includes important text, puts an extra burden on
the web designer: if you want to change the text, you must change the entire
image. And with CSS, you can style an element with a gradient in a fraction
of the time it takes to download even the smallest image.

Linear Gradients
A linear gradient is a transition of colors along a single line. In figure 106,
we have a square div element with two colors, white and black.

204 HTML & CSS QUICKSTART GUIDE

Here’s the CSS and HTML code:

CSS
 #linear-gradient {

 width: 500px;

 height: 150px;

 background-color: black;

 background-image: linear-gradient(black, white);

 }

 #linear-gradient p {

 text-align: center;

 vertical-align: middle;

 line-height: 150px;

 color: white;

 }

HTML
 <div id="linear-gradient">

 <p>Linear Gradients</p>

 </div>

The div with the “linear-gradient” id has several important definitions.

Even though we’re using a gradient, we are still specifying a background
color in case the browser is too old to support gradients. This is rare, as all
browsers in modern use have this ability, but it’s a good idea to add this
for backward compatibility.

The actual gradient is created in the “background-image” attribute. This
is done via the linear-gradient keyword. At a minimum, you must specify
two colors. In this case, we’ve chosen black and white. But you can specify
additional colors. For example, you could create a rainbow:

fig. 106

12-01.css

205Cool Tricks

 #linear-gradient {

 width: 500px;

 height: 150px;

 background-color: black;

 background-image: linear-gradient(red, orange, yellow,

green, blue, indigo, violet);

 }

We have embedded a paragraph of text inside the div. Because we want
to style this paragraph differently, we specify the p selector after the id
definition:

 #linear-gradient p {

 text-align: center;

 vertical-align: middle;

 line-height: 150px;

 color: white;

 }

Only the paragraph(s) inside this specific div will be styled in this
definition.

Additionally, we centered the text in the div, both horizontally and
vertically, using the “vertical-align” and “text-align” attributes of the
paragraph element. We specified the line-height to match the height of
the containing div so that the vertical alignment would be centered based
on the full size of the div, not just the pixel size of the paragraph element
font. This technique perfectly centers the text in both dimensions.

Even though the linear gradient follows a straight line, it can go in
different directions. We can specify this in our definition:

 #linear-gradient {

 width: 500px;

 height: 150px;

 background-color: black;

 background-image: linear-gradient(to right, black,

white);

 }

12-03.css

12-03.css

12-04.css

206 HTML & CSS QUICKSTART GUIDE

In this case, we specify that the gradient should move from left to right,
with black on the left and white on the right (figure 107).

If we specify “to left” instead, the white will be displayed on the left side
and the black on the right side.

If we specify “to bottom right,” the gradient will move from the top left
corner to the bottom right corner. You can use “to bottom left,” “to top
right,” or any other similar variant to create a diagonal linear gradient.

If you want finer control over the angle, you can specify it in degrees:

 background-image: linear-gradient(45deg, black, white);

You can even provide a negative angle to reverse the direction:

 background-image: linear-gradient(-45deg, black, white);

Use the web page starter template (starter.html) and experiment
with the different gradient options to create your own interesting
patterns. You will need to create a div element, then give it an id with
a meaningful name. In CSS, assign it a width and height, and apply
a gradient of your choice. Now is the perfect time to check out and
experiment with the “Fun with Layering Gradients” link in your Digital
Assets. Go to www.clydebankmedia.com/htmlcss-assets.

Radial Gradients
Radial gradients are a transition of colors in a circular or elliptical shape.
In figure 108, we have a square div element with two colors, white and
black, in a radial gradient.

fig. 107

12-05.css
and

12-06.css

207Cool Tricks

Here is the CSS and HTML code:

CSS
 #radial-gradient {

 width: 300px;

 height: 300px;

 background-color: black;

 background-image: radial-gradient(black, white);

 }

HTML
 <div id="radial-gradient"></div>

By default, the shape is circular, but we can create an ellipse by specifying
it before the colors.

 background-image: radial-gradient(ellipse, black, white);

 We can also specify the center point of the radial gradient:

 background-image: radial-gradient(circle at top right,

orange, yellow, black);

Using the same techniques as with the linear gradient, we can create a
bigger transition with the yellow color and a smaller transition of the
orange color, creating an even nicer gradient:

 background-image: radial-gradient(circle at top right,

orange 10%, yellow 30%, black);

fig. 108

12-07.css

12-08.html

12-09.html
and

12-10.css

12-11.css

208 HTML & CSS QUICKSTART GUIDE

Create the gradient as shown in the last two examples, and you’ll
be treated to a vibrant gradient that looks like the sun in space.
Remember to name the div, assign it a width and height, and specify
its name as an id in your CSS rule.

Sprites
A sprite is usually a small graphic that is used in a larger image. Video

games use sprites to allow the computer to “paint” the screen with ready-
made images from a palette of sprites. It may help to think of sprites like
letters in an alphabet. Instead of painting the screen with letters, the game
(or, in our case, the web browser) can display sprites from a larger palette.

CSS allows you to use one file, composed of multiple images, as separate
graphics. This helps speed up your website by eliminating the need for multiple
requests to the web server. Instead, all necessary graphics are downloaded in
one image (figure 109).

An image composed of sprite images as used in the ClydeBank Coffee Shop

Sprites are often used for buttons, navigational icons, and other small
images that are used frequently throughout a site.

CSS
 #palette {

 width: 40px;

 height: 40px;

 padding: 0;

 border: none;

 background: url('/img/sprites.png') 0 0;

 }

 #guitar {

 width: 40px;

 height: 40px;

 padding: 0;

 border: none;

 background: url('/img/sprites.png') -40px 0;

 }

fig. 109

12-12.css

209Cool Tricks

 #mask {

 width: 40px;

 height: 40px;

 padding: 0;

 border: none;

 background: url('/img/sprites.png') -80px 0;

 }

HTML
 <form>

 <input id="palette" type="submit" name="smile"

value="">

 <input id="guitar" type="submit" name="envelope"

value="">

 <input id="mask" type="submit" name="tag" value="">

 </form>

In this example, we have three buttons—a palette, a guitar, and a mask.
They are wrapped in a form element and each is a submit button, so clicking
on any of them will submit the form. Padding and borders have been set to 0
to hide the traditional submit button effect, and a background image, /img/
sprites.png, has been specified.

At first, you might wonder how this will work. Won’t all three elements
show the same background image? If we didn’t specify the background-
position-x and background-position-y attributes, it would, but by defining the
width and height and specifying these x and y offsets, we can cycle through
the image and display any part of it we wish.

Recall the shorthand method of specifying borders and padding from
chapter 7. In this case, we used the same shorthand approach by appending
these two values, first the x (left) value and second the y (top) value, to the end
of the URL definition in the background attribute. This shorthand method
leads to less typing and a smaller CSS file.

The first image is the palette, and thus the offset, defined by 0 0 in the
palette example, tells the browser that it will find the image at left 0 and
top 0. The second image, a guitar, is found at 40px left and 0 top. The mask
image is found at 80px left and 0 top. Since every image is the same width,
we simply add the width of an image to move from image to image (from left
to right). When we use negative numbers for the y offset, we’re moving the
background to the left. Imagine the element as a window through which we
view various parts of the background image that moves in accordance with
our instructions.

12-13.html

210 HTML & CSS QUICKSTART GUIDE

You can also use multiple rows of images. If you do this, you must
increment the top offset to match the row. For example, if we had a graphic
with two rows of three images, and all were 40 pixels by 40 pixels, we would
specify url('/img/sprites.png') -80px -40px; to show the third image on
the second row.

It is not necessary to specify a unit (px, em, etc.) when specifying a zero
width or height for this or any other position or size element in CSS.

SPRITES

By astounding coincidence, the owner of the ClydeBank Coffee Shop
discovered that you recently learned about sprites. He wants you to use your
newfound knowledge to convert the icons used throughout the site into
 elements with various class names that point to the sprite in question,
eliminating the need to load multiple images on each page and, in turn,
hopefully speeding up the website.

If you haven’t yet downloaded the ClydeBank Coffee Shop website,
please do so from www.github.com/clydebankmedia/clydebank-
coffee-shop.

In the images folder of the coffee shop website, you’ll find a file called
sprite.png that contains all of our icons and the ClydeBank logo. Create the
necessary CSS additions so that the following elements will display
an inline representation of the image.

12-14.html

211Cool Tricks

The names I have assigned for the span classes in this exercise have
the word sprite followed by a dash (sprite–) before the name of the
icon. This technique is called namespacing (the process of creating
namespaces). Namespaces are used to separate names in code to
avoid name collisions with other existing (or future) additions to your
code. For example, without this technique, naming a CSS class “milk”
would work for now but would pose a problem if we later wanted to
add a div with an id of milk.

Once you have created the classes in CSS to enable use of various parts of
this collection of sprites, you will need to change the elements in the
HTML pages to use these elements instead.

HINT: The icons in the sprite image are 40 px wide and 40 px tall.

Try this exercise on your own. If you run into problems, you can refer to
the answer key in appendix V.

HINT: The CSS file, style.css, is in the CSS folder, and the sprite image
is in the images folder. The two-dot shortcut (..) (see the “Images”
section of chapter 5) will be useful here to instruct the browser to go up
one directory before trying to check the images folder for sprite.png.

Transitions
You can add dynamic motion and effects to your HTML elements via

CSS transitions. Transitions allow you to define an initial state, an end state,
and how quickly the change between those states occurs. This basic form of
animation is a bit too abstract to explain in words, so let’s illustrate it with a
practical example.

Say you have an image that you’d like to enlarge when the user hovers
over it. To make this happen, you’ll need to use an initial value and a pseudo-
class variant, :hover, on the element with the image.

CSS
 #car {

 width: 320px;

 height: 240px;

 }

 #car:hover {

 width: 640px;
12-15.css

212 HTML & CSS QUICKSTART GUIDE

 height: 480px;

 transition: width 2s, height 2s;

 }

HTML

In this example, the hover size is twice as big as the normal size.
Additionally, the transition attribute is assigned a two-second width and a
two-second height transition time. The image will be resized when the user
hovers with their mouse, and the transition will take two seconds. The time
in seconds doesn’t have to match—you can specify four seconds for height
and two seconds for width if you like.

You can also transition just width (or just height):

 #car {

 width: 320px;

 height: 240px;

 }

 #car:hover {

 width: 640px;

 transition: width 2s;

 }

Notice that in this example the height for the hover pseudo-class was
omitted. If it had been left in, the image would have instantaneously resized
to the larger height and, over two seconds, resized to the new width, because
no height transition time was specified.

You can add a delay on the transition so that the resize won’t start for a
certain number of seconds.

 #car {

 width: 320px;

 height: 240px;

 }

 #car:hover {

 width: 640px;

 transition: width 2s;

 transition-delay: 1s;

 }

12-16.html

12-17.css

12-18.css

213Cool Tricks

By default, the resize is eased in, meaning it starts a bit slow, gets faster
as it proceeds, then slows again as it ends. If this isn’t what you want, you
can change the behavior of the default “ease” value via the transition-timing-
function attribute.

 #car {

 width: 320px;

 height: 240px;

 }

 #car:hover {

 width: 640px;

 transition: width 2s;

 transition-timing-function: linear;

 }

A linear behavior will eliminate the slow start and finish. You can also
specify ease-in, ease-out, and ease-in-out to further modify this effect.

Transforms
You can animate elements with CSS transformations. Various attributes

allow you to rotate, scale, and even move elements across the page. You
can pair these effects with events, like :hover, to create a truly dynamic
experience for your users.

There are many different CSS transforms, both two and three dimensional.
We’ll cover the most common ones here, but you can see them all in our “2D
and 3D Transforms Index” found in your Digital Assets at clydebankmedia.
com/htmlcss-assets.

Rotation
Recall our car example from the “Transitions” section. To demonstrate
rotation, let’s shift the car 45 degrees to the right.

CSS
 #car {

 width: 320px;

 height: 240px;

 transform: rotate(45deg);

 }

12-19.css

12-20.css

214 HTML & CSS QUICKSTART GUIDE

HTML

To use this example on your local workspace, you’ll need an image. It
doesn’t specifically have to be a car, but if you use a different file name,
change the image source to match. After you save this to an HTML file,
you’ll see the car has been tilted. We can animate this with :hover as
well. When you hover your mouse over the image, the car will rotate.

 #car:hover {

 width: 320px;

 height: 240px;

 transform: rotate(45deg);

 }

Scale
Scaling allows you to expand or contract an element based on a decimal
value. Remember when we increased the size of the car from 320x240
to 640x480 in the beginning of this chapter? You may have noticed that
we doubled the dimensions. It’s important to keep the same aspect ratio,
which is the proportion of the width and height, to avoid distorting an
element (especially an image). Using the scale transform allows us to
specify this multiplier for the width and height of an object.

 #car:hover { transform: scale(2, 2); }

In this example, we have removed the expanded size and specified that
when the user hovers over the car it will multiply the width and height
times two. You can specify different values for each if you wish, and you
can also use numbers smaller than 1, like 0.5, 0.5, for example, to shrink
the image’s width and height by half.

Skew
To skew an element along both its x and y axes, you can use the skewX,
skewY, or skew transforms. skewX and skewY allow you to alter the
applicable axis, and skew takes both axes as values (figure 110).

HTML
<div id="warning">This element is a bit off its rocker!</div>

12-21.html

12-22.css

12-23.css

12-24.html

215Cool Tricks

CSS
 #warning {

 width: 250px;

 height: 30px;

 background-color: gray;

 color: white;

 text-align: center;

 line-height: 30px;

 transform: skew(45deg, 30deg);

 }

Note that in this example we could have specifi ed the skewX and skewY
separately, but using skew is easier if you are going to adjust both axes.

Overlay/Modal Without JavaScript
You have likely run across a website that darkens the view and forces you

to click “OK” or something similar before you can proceed. Th is is called a
modal overlay and is usually used to hide content behind a terms of service
agreement or a newsletter registration. Modal interfaces, like an overlay, limit
the user’s input to a given set of options, creating a very eff ective technique for
requesting your user’s attention.

To construct an example of this technique, we’ll use gradients to create
the overlay.

CSS
 /* */

 .overlay{

 background: rgba(0,0,0, 0.8);

 position: fi xed;

 top: 0;

 right: 0;

12-25.css

fi g. 110

12-26.css

216 HTML & CSS QUICKSTART GUIDE

 bottom: 0;

 left: 0;

 display: none;

 }

 /* Checkbox */

 #onOff{

 position: fixed;

 clip: rect(0,0,0,0);

 }

 #onOff:checked ~ .overlay { display: block; }

 /* Buttons */

 .overlayButton{

 display: inline-block;

 margin-left: auto;

 margin-right: auto;

 background: steelblue;

 border-radius: 8px;

 padding: 10px;

 color: #fff;

 font-weight: bold;

 text-transform: uppercase;

 margin-left: 50%;

 margin-top: 40px;

 text-align: center;

 }

 .overlay .overlayButton { background-color: darkred; }

 /* Background and Fonts */

 body{

 font-family: sans-serif;

 background-color:#556;

 /* Set a linear gradient as the background image

*/ background-image: linear-gradient(30deg, #445 12%,

transparent 12.5%, transparent 87%, #445 87.5%, #445),

 linear-gradient(150deg, #445 12%, transparent 12.5%,

transparent 87%, #445 87.5%, #445),

217Cool Tricks

 linear-gradient(30deg, #445 12%, transparent 12.5%,

transparent 87%, #445 87.5%, #445),

 linear-gradient(150deg, #445 12%, transparent 12.5%,

transparent 87%, #445 87.5%, #445),

 linear-gradient(60deg, #99a 25%, transparent 25.5%,

transparent 75%, #99a 75%, #99a),

 linear-gradient(60deg, #99a 25%, transparent 25.5%,

transparent 75%, #99a 75%, #99a);

 background-size:80px 140px;

 background-position: 0 0, 0 0, 40px 70px, 40px 70px, 0

0, 40px 70px;

}

HTML
 <input id="onOff" type="checkbox">

 <!-- Overlay -->

 <label for="onOff" class="overlay">

 <label class="overlayButton" for="onOff">

 Overlay Off

 </label>

 </label>

 <!-- Button -->

 <label class="overlayButton" for="onOff">

 Overlay On

 </label>

You’ll notice that the class names are composed of two words without
a space, with the first letter of the second word capitalized. This is
camel case, as we introduced in the “Elements” section of chapter 4.
When using longer words to describe classes and ids, it’s good to use
camel case or dashes between the words to make the names easier
to read.

In this example, you can toggle the overlay with the button provided in
the middle of the page. This provides interactive functionality without your
having to use JavaScript, offering faster performance and helping to ensure
that add-ons that block JavaScript won’t interfere with the overlay.

12-27.html

218 HTML & CSS QUICKSTART GUIDE

Keyframe Animation
When web designers wanted to animate parts of their web pages, they

used to turn to plugins like Adobe Flash™. Now it’s possible to animate
elements via CSS.

CSS animation is an in-depth topic, so we won’t be able to go over every
detail of it in this book. Regardless, we can meet most common animation
needs with a discussion and example of keyframes and a few animation
functions.

Animations are simply a series of images (frames) that, when displayed
in rapid sequence, give the impression of seamless movement. Storing
or rendering every frame (25 or more per second) can be taxing on the
browser and bandwidth. Keyframes are frames that define a specific state
of the animation, and the browser uses the properties in these keyframes to
construct the animation between the keyframes. Keyframes can be defined
for the beginning and end of the animation or for points in between. Since
the duration of the animation is controlled separately, the keyframes are
identified by percentage of the total animation (0%, 20%, 80%, 100%, etc.).

That’s a technical explanation, so let’s consider a real-life situation using
our car example. Let’s say we want to move the car image across the screen.
If we had to construct an image of the car’s position at each moment, it might
take hundreds or even thousands of separate images to give the illusion of
movement. A much simpler approach is to give the browser a “start” keyframe
and an “end” keyframe and provide instructions on how to handle the rest.

CSS
 #car {

 width: 320px;

 height: 240px;

 position: relative;

 animation-name: zoom;

 animation-duration: 5s;

 animation-iteration-count: 2;

 animation-direction: alternate;

 }

 @keyframes zoom {

 from { left: 0px; }

 to { left: 500px; }

 }

12-28.css

219Cool Tricks

HTML
 <img id="car" src="images/car.jpg" alt="A motorized

conveyance.">

In this example, the image of the car will move from the left to the right
and back again, over a span of five seconds in each direction. The “from”
and “to” states of the animation define starting and ending positions. In
this case, we’re using the left relative position, but you could use many other
CSS attributes. We assign this keyframe definition with animation-name,
and in the example, “zoom” after @keyframes defines the name of the set of
keyframes we create within the brackets of that selector.

We specify the duration by setting animation-duration to five seconds.
The animation is repeated twice; this is defined by animation-interaction-
count. If you set animation-interaction-count to “infinite,” then the animation
will be repeated infinitely. And the animation is alternated (reversed) each
time via animation-direction.

Another example can be created using the “percent complete” keyframe
option. This works almost identically but allows us to track multiple properties
animated at the same time for one element on the page. In this example, the
CSS properties of the element remain the same, but adjustments are made to
the keyframe animation.

CSS
 #car {

 width: 320px;

 height: 240px;

 position: relative;

 animation-name: zoom;

 animation-duration: 5s;

 animation-iteration-count: 2;

 animation-direction: alternate;

 }

 @keyframes zoom {

 0%{ left: 0px; }

 20% { transform:rotate(-45deg); }

 100%{ left: 500px; }

 }

12-29.html

12-30.css

220 HTML & CSS QUICKSTART GUIDE

HTML
 <img id="car" src="images/car.jpg" alt="A motorized

conveyance.">

In this example, the keyframes “from” and “to” were replaced with
the percent equivalents, 0% and 100%, respectively. Also added is a 20%
keyframe that changes the rotation of the car, leveraging the transform
property we discussed earlier to rotate the car 45 degrees counterclockwise
by the 20% mark of duration. The browser will start this rotation at 0% and
return to the default of 0 degrees rotation by the time the animation is 100%
complete. How is this better? The car does a wheelie! This same technique
could be used if we needed an element to change color and then change back
again, or perhaps have something move in a different axis, as if it was thrown.
With the correct combination of properties you could “throw” a stick across
the screen, changing the distance from the left and having the distance from
the bottom increase and then peak at 50% before coming back down. You
could even add a subtle rotation (as in the previous example).

One other piece of CSS magic that makes this animation work is
position: relative. In this case, the left position is relative to the body
element, but you could wrap this in a div and it would be relative to that.
You can even run multiple animations at once with elements using keyframe
definitions that are different from their containing elements. This advanced
feature would allow you, for example, to animate the wheels of a moving
car if the wheels were a div element within the moving car div. Relative
positioning makes this possible by eliminating the need to specify (and thus
keep track of) the exact pixel-perfect position of every element on the page.

Experiment with various values for the animation settings. You can also
specify background colors and other CSS attributes like size, font, and
even CSS transforms. Just for fun, grab a photo of a family member
and animate them across the page. The opportunities for creativity
with CSS keyframe animation are nearly limitless!

Calculated Values
So far, whenever we have coded an example with a specified size, we have

used absolute values. For example, our car image is 320 pixels wide by 240
pixels high.

12-31.html

221Cool Tricks

 #car {

 width: 320px;

 height: 240px;

 }

CSS has a built-in function for calculating values on the fly. We could
use this:

 #car {

 width: calc(300px + 20px);

 height: calc(200px + 40px);

 }

The browser would add the values together as directed and use them for
the width and height. The previous two examples will produce the same results.
You can add (with +), subtract (with -), multiply (with *), or divide (with /).

You may wonder why someone would use the calc() function when they
could simply specify the total value. If you’re just adding pixels, there isn’t
much of an advantage. The true power of using calculated values is in the
ability to compute unlike values.

Let’s say you want a div to be not quite the width of the screen.

CSS
 #mydiv {

 width: calc(100% - 50px);

 background-color: black;

 color: silver;

 }

HTML
 <div id="mydiv">I’m wide, but not too wide!</div>

Here, we told the browser to make the width 100% but then to
subtract 50 pixels from that. The div will always be 80 pixels less than its
container’s size.

If you haven’t yet downloaded the ClydeBank Coffee Shop website,
please do so from www.github.com/clydebankmedia/clydebank-
coffee-shop.

12-32.css

12-33.css

12-34.css
and

12-35.html

222 HTML & CSS QUICKSTART GUIDE

GRADIENTS

In chapter 8, our client had us give the ClydeBank Coffee Shop website a
new look and feel. Unfortunately, they have grown tired of the color scheme
we implemented and want a new, fresh look for the header.

They still like the sienna-colored header, so after some thought you decide
to add a gradient to the header. You can start with sienna and work in the
color from the menu, saddlebrown. The header is styled in the style.css file,
so your work will focus there. Try to add the gradient on your own. If you get
stuck, the solution is in appendix V.

KEYFRAME ANIMATION

Our client wants to show off work they have done in the coffee shop.
They’ve shared a large image, named background.jpg, that captures the whole
space. You will find background.jpg in the images folder of the ClydeBank
Coffee Shop website.

Using keyframe animation, apply a “camera pan”-style effect to the
<main> element by adjusting the background-position to move the image
right and left. Since we only have one <main> element on the page, we can
get away with applying the CSS animation to it. That said, you may want to
consider assigning the <main> element an id and adding the CSS animation
to it rather than redefining the element.

We want this animation to continue to move, but select an appropriate
timing function to ensure smooth motion. You can test various durations
to avoid a distracting background. Try this on your own first, but if you get
stuck, a solution can be found in appendix V.

If your screen is larger than fifteen inches, the keyframe animation
effect may be less pronounced (or not at all pronounced). But fear
not—even if you have a huge screen, you can simply resize the window
to experience the animation in all its glory! We’ll teach you more about
adjusting your website for various device sizes in the following chapter
on media queries.

223Cool Tricks

Chapter Recap

 » Various CSS features can enliven otherwise static web content.

 » Gradients allow for beautiful and expressive coloring of your web
pages.

 » Sprites allow a single image file to act as the source file for many
images.

 » Becoming proficient in keyframe animation and calculated values
enables CSS coders to be flexible, creative, and efficient.

225Media Queries

| 13 |
Media Queries

Chapter Overview
 » Media queries adjust elements for various devices.
 » Printers and screen readers use media queries.

Designing a web page that looks great on all devices can be quite a challenge.
You have undoubtedly seen web pages that worked just fine on a laptop but
were nearly impossible to use on a phone. Fortunately, responsive design
provides a solution. Responsive design is a philosophy of using relative sizing,
positioning, and media queries to make your page look good on all devices
(figure 111).

The difference between a responsive site and an unresponsive site

fig. 111

226 HTML & CSS QUICKSTART GUIDE

So far, we’ve learned various techniques for addressing sizes in a relative
fashion. You can use percentages for width and height to scale to any screen.
But even for simple web pages, this relative position and sizing just isn’t
enough for every device. On certain screen sizes, some elements, like sidebars
and navigation menus, look better hidden or stacked in a different order.
Navigation menus and advertisements often look terrible when printed.

With media queries, we can assign different rules to various screen sizes.
On a phone, we can collapse the top navigation menu into a small dropdown
menu or move the sidebar to the bottom. On large screens, we can include a
right sidebar or add additional screen elements that would never fit on smaller
devices. And on printers or screen readers, we can omit difficult-to-represent
elements and prioritize useful content.

Structure
There are two primary ways to introduce media queries on your web page.

First, you can use the <link> tag to reference a CSS file for a specific device
and/or size via the media attribute.

 <link rel="stylesheet" media="screen and (max-width:

600px)" href="mobile.css">

 <link rel="stylesheet" media="screen and (min-width:

600px)" href="style.css">

 <link rel="stylesheet" media="print" href="print.css">

In this case, we have defined three CSS files—one for mobile, one for
regular screens, and one to use when the user prints the web page.

We’ll get into the specific syntax for the media attribute in a moment, but
for now let’s examine the alternative approach: the single-file CSS method.
In this example, the main style sheet, often called style.css, handles all three
definitions.

 /* For small screens like phones */

 @media only screen and (max-width: 1000px) {

 background-color: darkgray;

 color: white;

 font-size: 16px;

 }

 /* There are, of course, more elements than color and

font size, but we are just using these two attributes for our

13-01.html

13-02.css

227Media Queries

example */

 /* For larger tablets, laptops, and desktops */

 @media only screen and (min-width: 1000px) {

 background-color: darkgray;

 color: white;

 font-size: 12px;

 }

 /* For the printed page */

 @media print {

 background-color: white;

 color: black;

 font-size: 12px;

 }

In this example, all screens will have a dark gray background and white
text. Smaller screens will have a larger font (16px) and larger screens will have
a smaller font (12px). And the printed page will contain a white background
and black text to avoid wasting ink.

Though we specified only colors and font sizes, you can use any valid CSS
rule inside the @media { } block that you want to apply to that device or size.

The min-width: 1000px and max-width: 1000px keywords in the
size definitions tell the browser to apply the rules for that query only on
screens that are at least 1000 pixels wide and at most 1000 pixels wide,
respectively. You can use any number of pixels for these definitions, but there
are recommendations based on common screen sizes that we’ll explore in the

“Choosing Breakpoints” section in this chapter.
You may notice the “only” keyword used in the previous example. This

makes the media query apply only to a certain device. If we didn’t use it, our
queries would also modify printer and screen reader devices.

On devices with screens that rotate (phones and tablets), we can assign a
query to match a certain orientation.

 @media screen and (orientation: landscape) {

 /* CSS rules here apply to landscape mode (device on

its side) */

 }

 @media screen and (orientation: portrait) {

 /* CSS rules here apply to portrait mode (device

upright) */

 }

13-03.css

228 HTML & CSS QUICKSTART GUIDE

We can use this same technique to adjust our page, depending on the
orientation selected during print setup. It’s impossible to print in both
orientations at once, so only one of these will be used.

 @media print and (orientation: landscape) {

 /* CSS rules here apply to printing in landscape mode */

 }

 @media print and (orientation: portrait) {

 /* CSS rules here apply to printing in portrait mode */

 }

Choosing Breakpoints
Device screen size varies wildly, but a general rule of thumb is that

devices with widths under 1000 are phones or tablets, and screen sizes larger
than that usually belong to laptops or desktops. There are exceptions to this
rule, especially with high-resolution screens, but for optimum readability for
your users, it’s best to use mobile-style menus (that is, the “hamburger menu”)
for screens less than 1000 pixels in width (figure 112).

The hamburger menu

For a list of common device sizes, please reference Screen Sizes on
Popular Devices found at www.clydebankmedia.com/htmlcss-assets.

Content Fit/Feel
You’ve likely been frustrated with a website not working exactly as
intended on your mobile device. You don’t want annoyed users, so
always remember to give some thought to the types of devices your
visitors are likely to use. Various third-party “web analytics” platforms
will allow you to view data on which types of devices are being used to
access your website.

13-04.css

fig. 112

229Media Queries

Placing buttons or selectable elements too close together can present a
usability challenge on phones. Since mobile users tap rather than click,
objects must be spaced far enough apart so that a tap not precisely on
center doesn’t accidentally select something else on the page. This small
area around selectable elements is known as a “tap target” and requires
special consideration on touch screens. You can use additional padding
on input boxes, buttons, and links in your lower-width media queries to
provide a wider area for a user to tap.

As you can see, media queries enable a tremendous amount of
customization and flexibility. Paired with relative sizing, carefully sized
breakpoints, and comfortable tap targets, your website can look pixel-
perfect on any device.

Google encourages websites to be “mobile friendly” (that is,
responsive) and publishes their own guidelines on this topic. Those
interested in search engine optimization and optimal user experience
should review the Mobile Friendly guidelines at developers.google.
com/search/mobile-sites.

Viewport Meta Tag
The viewing area of a web browser is called the viewport. Viewports vary

with the size of the screen and, in the case of a desktop or laptop, the browser
window. For the sake brevity, we have omitted the viewport meta tag in most
examples, but it should be used on all your web pages.

 <meta name="viewport" content="width=device-width,

initial-scale=1.0">

In this default example, the width is set to the device width, and the
scaling (zoom) is set to 1.0. Decimal numbers below 1 instruct the browser to
zoom away from the page, or shrink, making content smaller but fitting more
on the screen at once. Larger numbers will zoom in to the content.

Simulating Screen Sizes
Testing a web design can be challenging, especially considering the vast

array of screen sizes and browsers. There’s nothing like testing on the actual
device, but when you don’t have that luxury, browser development tools can
help make quality assurance a breeze.

13-05.html

230 HTML & CSS QUICKSTART GUIDE

To activate the device toolbar in Chrome-based and Firefox web browsers,
open the development tools with F12, then click on the device icon in the top
right, as shown in fi gure 113.

The toggle icon for the device toolbar in both Chrome and Firefox. (Th e design of this icon
may change in future browser versions.)

Th e left-hand pane displaying the web page will shrink. Th is will display
the responsive toolbar, allowing you to select from an array of devices and
screen sizes (fi gure 114). Th e responsive toolbar is invaluable for testing
media queries and page compatibility with various screen widths and heights.

The responsive toolbar and view in Chrome

fi g. 113

fi g. 114

231Media Queries

GOING MOBILE

Our ClydeBank Coffee Shop website is looking better on the desktop
but does not scale well at all on mobile devices. In this exercise, we’re going
to fix that. Making the website look good on every type of device would
take a while, so we’re going to focus on the most popular device: the modern
cell phone. Of course, sizes vary considerably, so we’ll focus on an average
size range that should work well on most screens. For the purposes of this
task, let’s assume our device has a minimum screen width of 375 pixels and a
maximum width of 725 pixels.

Using media queries added to the bottom of our style.css file, adjust the
various elements on the coffee shop website to look good both on mobile
and laptop/desktop screens. Solutions can vary slightly depending on the
approach, but we want the navigation, front page elements, and both header
and footer to look good on either device.

Try this on your own first, but if you get stuck, a solution can be found
in appendix V.

Since this is the last of our coffee shop site-building exercises
in the text, I wanted to give you the opportunity to go the extra
mile with me. I’ve expanded on this design with some of my own
special enhancements. Feel free to download the code and explore
my version of the ClydeBank Coffee Shop site. All site files can be
downloaded from our GitHub account. The main repository is called

“David’s Perfect Cup.” Access it directly here: www.github.com/
clydebankmedia/davids-perfect-cup.

www.github.com/clydebankmedia/davids-perfect-cup
www.github.com/clydebankmedia/davids-perfect-cup

232 HTML & CSS QUICKSTART GUIDE

Chapter Recap

 » Your users will display your site on a wide variety of devices, so
making your site responsive using media queries and relative sizing
is essential for a good user experience.

 » Media queries allow printed web pages and screen readers to ignore
certain parts of the page to focus on the appropriate content for
those devices.

233Bootstrap

| 14 |
Bootstrap

Chapter Overview
 » Bootstrap is a popular HTML and CSS framework.
 » Bootstrap is fully responsive by default.

For years, web designers have been struggling to keep up with continually
evolving standards and browser capabilities. As additions were made to CSS
standards, browsers used ugly hacks and incompatible methods of support to
account for these upgrades. When mobile devices became commonplace and
websites adapted to fit the needs of various screen sizes, CSS frameworks
began to fill the void with a standard, responsive interface to ease development
burdens.

In this chapter, we’ll cover Bootstrap, an HTML and CSS framework
that removes a lot of the time-consuming labor from designing responsive,
modern websites. As of this publication, it is one of the most popular CSS
frameworks in use. It was initially developed by designers at Twitter and
was open-sourced in 2011 on GitHub. Bootstrap provides classes and design
paradigms that free the developer from having to think too much about
responsive design and instead allows them to focus on their content. In fact,
with Bootstrap, it’s possible to build a website that works great on all devices
and screen sizes without writing a single media query.

Despite the popularity and usefulness of Bootstrap, we almost didn’t
include it in the book. It might seem strange to omit such a powerful tool
from this text, but the reason is purely instructive. I didn’t want my readers to
have to rely on a third-party library for all their web design needs. Libraries
and frameworks come and go, but HTML and CSS are here to stay. Teaching
you the fundamentals of HTML and CSS gives you timeless knowledge that
you can take to any framework, or use to create a website with no third-party
software at all.

Furthermore, knowing the nuts and bolts of HTML and CSS arms you
with skills that you could use to create your own library of code that you
use to build websites. By the time you’ve finished reading this book, and

234 HTML & CSS QUICKSTART GUIDE

with some experience, you could write a framework like Bootstrap yourself.
Your commitment to mastering these fundamentals—and not being overly
dependent on a specific framework or library—will secure your future as
a web designer. Your repertoire of personal skills and tools will never be
supplanted by the new framework that comes along.

For these reasons, we’ve waited to introduce this chapter until after you
were given a chance to learn and develop some solid fundamental HTML
and CSS skills. Nevertheless, don’t let these words of caution stop you from
using and enjoying excellent frameworks like Bootstrap. Even if you stick
to pure HTML and CSS code, you can still incorporate shortcuts and ideas
from other frameworks.

We’ll be using Bootstrap version 4 in this book, but the techniques
discussed here should apply, at least in large part, to future releases.

Installing Bootstrap
“Installing Bootstrap” is a bit of a misnomer, as there is nothing to install!
While you can download the CSS and JavaScript files that enable

Bootstrap for your website, several CDNs (content delivery networks) host
frameworks like Bootstrap for free. As of this writing, you can use these lines
of code from StackPath:

Place in Head Element
 <!-- Add Bootstrap stylesheet using Stackpath CDN -->

 <link rel="stylesheet" href="https://stackpath.

bootstrapcdn.com/bootstrap/4.5.0/css/bootstrap.min.css">

Place Before Closing Body Element
 <!-- Add jQuery, a JavaScript library used by Bootstrap -->

 <script src="https://code.jquery.com/jquery-3.5.1.slim.min.

js"></script>

 <!-- Add the Popper JavaScript library -->

 <script src="https://cdn.jsdelivr.net/npm/popper.js@1.16.0/

dist/umd/popper.min.js"></script>

 <!-- Add Bootstrap JavaScript code last so it can benefit

from the above script inclusions -->

 <script src="https://stackpath.bootstrapcdn.com/

bootstrap/4.5.0/js/bootstrap.min.js"></script>

14-01.html

14-02.html

235Bootstrap

If you want to download the CSS and JavaScript files, visit www.
getbootstrap.com/docs/4.5/getting-started/download and download
the ZIP file with compiled CSS and JS. If you choose this method of
installation, you’ll need to reference the CSS and JavaScript files from
your local site rather than using the URLs from a CDN like StackPath.
Once the files are in your css and js folders, you can include them via
link and script tags just like you would any other external asset.

If you use the CDN method of installation, your simple Bootstrap-
enabled web page will look something like this example:

<!doctype html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width,

initial-scale=1, shrink-to-fit=no">

 <title>Example Bootstrap Page</title>

 <link rel="stylesheet" href="https://stackpath.

bootstrapcdn.com/bootstrap/4.5.0/css/bootstrap.min.css">

 </head>

 <body>

 <main role="main">

 <!-- Web Page Content Goes Here -->

 </main>

 <script src="https://code.jquery.com/jquery-3.5.1.slim.

min.js"></script>

 <script src="https://cdn.jsdelivr.net/npm/popper.

js@1.16.0/dist/umd/popper.min.js"></script>

 <script src="https://stackpath.bootstrapcdn.com/

bootstrap/4.5.0/js/bootstrap.min.js"></script>

 </body>

</html>

The necessary CSS and JavaScript is loaded at the beginning and end of
the document, and the main element contains your website HTML code.

14-03.html

236 HTML & CSS QUICKSTART GUIDE

Layout Grid
Bootstrap uses a grid system that allows you to divide the page into rows

and columns. Let’s examine a simple demonstration and then dig into the
mechanics of this incredibly easy and fl exible page layout system.

Th e row/column layout functionality is simple to use and extremely useful.

<div class="container">

 <!-- Start a row -->

 <div class="row">

 <!-- Start a column -->

 <div class="col">

 <!-- Contents of column -->

 The fi rst column

 </div>

 <!-- Start a second column -->

 <div class="col">

 The second column

 </div>

 </div>

</div>

Web browser display of the container, row, and column layout

In this example, a two-column layout is presented encased in a container
and a horizontal row (fi gure 115). Th e columns will be automatically resized
and, if needed, stacked vertically to adjust for the size of the screen. If we
need to add a third column, it’s as easy as adding another div (fi gure 116).

<div class="container">

 <div class="row">

 <div class="col">

 The fi rst column

 </div>

 <div class="col">

 The second column

14-04.html

14-05.html

fi g. 115

237Bootstrap

 </div>

 <div class="col">

 The third column

 </div>

 </div>

</div>

Columns will stack vertically when shown on a smaller screen.

You can add additional rows by specifying another div with the row class.
Each row doesn’t have to have the same number of columns. Here’s an example
with two columns on the fi rst row and three columns on the second row
(fi gure 117).

 <!-- The text-center class is added to set text-align:

center; for all contents of the container div -->

 <div class="container text-center">

 <!-- This row has two columns -->

 <div class="row">

 <div class="col">

 The fi rst column on the fi rst row.

fi g. 116

14-06.html

238 HTML & CSS QUICKSTART GUIDE

 </div>

 <div class="col">

 The second column on the fi rst row.

 </div>

 </div>

 <!-- This row has three columns -->

 <div class="row">

 <div class="col">

 The fi rst column on the second row.

 </div>

 <div class="col">

 The second column on the second row.

 </div>

 <div class="col">

 The third column on the second row.

 </div>

 </div>

 </div>

Th e text-center class, a built-in CSS class of Bootstrap, was added to
the row/column container so that the text would be centered.

Two Bootstrap rows, the fi rst with two columns, the second with three

If you want to make one (or more) of the columns larger, you can specify
a number from one to twelve after the column (fi gure 118).

<div class="container text-left">

 <div class="row">

 <div class="col-3">

 The fi rst column.

 </div>

 <div class="col-9">

 The second column.

 </div>

 </div>

</div>

fi g. 117

14-07.html

239Bootstrap

In this case, we’ve used the text-left class, another predefi ned CSS class
in Bootstrap, to left-align the text so that you can more easily see the size
of each column. Th e col-3 column is much smaller than the col-9 column.
Th is technique is handy for creating side menus.

A Bootstrap row with two columns sized with numbers

I didn’t just pick three and nine out of thin air. Th e two numbers, added
together, are twelve—the number of units Bootstrap uses for the sizing of
columns in its layout grid. If I had used two and ten, the left-hand column
would be smaller, and the right-hand column would be larger. Specifying
six and six would have resulted in two columns of the same size, but with
two elements, the six could be omitted, because Bootstrap will size the
columns evenly.

If you use three columns and wish to size them diff erently, you could use
three, three, and six, for example, and you’d end up with a larger right-hand
column with two equally sized smaller columns on the left. You can use any
number of columns you wish (up to twelve) as long as the numbers after the
col-X class specifi cation add up to twelve. If you go over twelve, the CSS
classes that Bootstrap uses for layout will produce unexpected results.

It’s important to note that these twelve units don’t correspond to a specifi c
number of pixels. Instead, they are proportional sizes that Bootstrap uses to
adjust the columns to fi t within the available screen real estate of any given
device. Columns will be displayed horizontally in a row unless the screen
size is too small, in which case it shifts the columns to a vertical display. A
tablet or phone might show the columns horizontally when in landscape mode
(oriented for a wider display), then stack them vertically when changed to
portrait (oriented for a taller display).

Bootstrap’s breakpoints allow us to specify at what screen size column
classes are activated. Th e default breakpoint for extra-small screens for the
col class is 576 pixels, below which we receive a single-column layout. But we
can adjust this by using the various column breakpoints.

fi g. 118

240 HTML & CSS QUICKSTART GUIDE

<div class="container">

 <div class="row">

 <div class="col-sm-3">

 The first column

 </div>

 <div class="col-sm-9">

 The second column

 </div>

 </div>

</div>

In this example, we specify col-sm-3 and col-sm-9 as the column classes.
These will function identically to col-3 and col-9, respectively, except the
two-column layout will only activate once we reach a “small” screen width of
576 pixels or more. If we use col-md-3 and col-md-9, the two-column layout
activates at Bootstrap’s “medium” screen size of 720 pixels.

There are some cases when we would wish to change the columns specified
at different screen sizes. Perhaps one column of content has an image we
want to feature, and the other has some additional information about that
image. In this case we can specify multiple column classes.

<div class="container">

 <div class="row">

 <div class="col-sm-6 col-md-9 col-lg-10">

 Image

 </div>

 <div class="col-sm-6 col-md-3 col-lg-2">

 Image Data

 </div>

 </div>

</div>

In this example, the left column receives six columns starting at the
small screen size (576 pixels), nine at medium (768 pixels), and ten when at
large or above (992 pixels). This enables a flexible layout similar to what we
can achieve with custom media queries but without needing to create these
ourselves. Media queries are, of course, used in the background by Bootstrap
to enable this functionality.

If you don’t want to specify a size, you can simply use the col and col-X
(where X is a number from 1 to 12) classes, and Bootstrap will try to size things
automatically. In all cases, a gutter width of fifteen pixels will be applied to

14-08.html

14-09.html

241Bootstrap

the left and right sides of a column to provide padding. This ensures that
columns aren’t jammed beside one another. If you want to remove gutters,
simply add the no-gutters style to the column, row, or container in question.

MAX CONTAINER
WIDTH

CLASS
PREFIX OTHER

EXTRA SMALL
<576px

None (auto) .col-

GUTTER
WIDTH:

30 px
(15px on each side

of column)

NUMBER
OF

COLUMNS:
12

SMALL
≥576px

540px .col-sm-

MEDIUM
≥768px

720px .col-md-

LARGE
≥992px

960px .col-lg-

EXTRA LARGE
≥1200px

1140px .col-xl-

Bootstrap layout grid column classes

Color Styles
Bootstrap comes with a variety of color styles for text, buttons, borders,

and other components. These styles apply to both foreground and background
colors and are handy for adding a bit of color to user interface elements.
These color schemes are technically a “utility,” which we’ll discuss later in
this chapter, but since color schemes can be used to style nearly anything in
Bootstrap, I wanted to cover them here first.

The name of a color class is constructed from the name of the Bootstrap
component, like text, buttons, alerts, etc., and the name of the style, with a
separating dash. For example, if you wanted to use the primary color scheme
on a button, it would be called btn-primary. The success style text would
be called text-success (figure 120).

You aren’t limited to these colors with Bootstrap, but each color scheme
has been specifically designed to work with the components contained in
the framework. Just like anything with HTML, you can recolor one, all, or
certain parts of an element with CSS.

fig. 119

242 HTML & CSS QUICKSTART GUIDE

COLOR
SCHEME BACKGROUND FOREGROUND USE CASE

Primary Blue White

Brings attention to
primary elements.
Default buttons are
often styled with the
btn-primary class.

Secondary Gray White Often used to visually
deemphasize elements.

Success Green White

Denotes a successful
operation. Commonly
used with alerts via the
alert-success class.

Danger Red White

Indicates something
failed or is of
great importance.
Commonly used with
alerts via the alert-
danger class.

Warning Yellow Black Warns the user about a
potential issue.

Info Cyan White Informs the user.

Light Light Gray Dark Gray
Provides a pleasing,
softer palette for
general information.

Dark Dark Gray Near White
Often used to provide
a “dark” theme to an
element.

White White Black Provides a default
color scheme.

Bootstrap color schemes

Components
Bootstrap also offers components that are easy to use and come with full

device flexibility right out of the box. In this section, we will go over the most
frequently used components.

fig. 120

243Bootstrap

Keep in mind that nearly all components in Bootstrap can be themed
with the color styles discussed in the “Color Styles” section of this chapter.

Alerts
You can use the alert feature to display simple boxed messages on top of
your site. You’ve undoubtedly seen these kinds of messages alerting you
to a particular status message or important announcement.

 <div class="alert alert-warning" role="alert">

 This is a warning! Please pay attention to it.

 </div>

Th ere are a wide variety of colors and styles—too many to list here. One
commonly used alternative to the warning alert is the success alert:

 <div class="alert alert-success" role="alert">

 You’re learning about Bootstrap. Great job!

 </div>

As you can see, they are both nicely styled and are sure to grab the user’s
attention (fi gure 121).

A warning alert and a success alert in Bootstrap

Th e warning alert has a yellow background, and the success alert has a
green background.

Badges
A badge is a small bit of text that usually sits to the top right of text or
an icon. Badges create a focal point for the user’s attention. Th e number
of unread messages in your phone’s text messaging app is an excellent
example of this concept.

14-10.html

14-11.html

fi g. 121

244 HTML & CSS QUICKSTART GUIDE

To use a badge, add the badge class in a span, like this:

 <h4>Inbox 4</h4>

I selected badge-danger because I wanted white text against a red
background, but you can use any of the Bootstrap color schemes. A badge
can be a number or text (fi gure 122).

A badge used within an H4 tag. In this example, the badge will render with white text
on a red background.

As you know, your email inbox is capable of having more or less
than four items in it. Badge labels can be dynamically updated when
JavaScript, or a backend language like PHP, makes changes. JavaScript
and backend languages can change anything on the page, including
the number in the badge.

Buttons
Buttons are usually created with the input element with the type attribute
set to “submit.” But in HTML5, you can use the button element to create
a button that can be used outside a form. Th is is especially handy when
invoking JavaScript functions (fi gure 123).

 A primary-styled Bootstrap button

 <button type="button" class="btn btn-primary">Click Me!</

button>

Th e button can also be used as a submit button for a form.

 <button type="submit" class="btn btn-primary">Submit</

button>

14-12.html

fi g. 122

fi g. 123

14-13.html
and

14-14.html

245Bootstrap

You can style links as buttons, producing an element that looks identical
to fi gure 123 but serves as a regular link that takes the user to another
page when clicked.

 Contact

If you want a smaller button, use the btn-sm class; larger buttons can be
created with the btn-lg class (fi gure 124).

 <button type="submit" class="btn btn-sm btn-

primary">Small Submit</button>

 <button type="submit" class="btn btn-lg btn-primary">Big

Submit</button>

A btn-sm and a btn-lg button

You can create an outline button—that is, a button with no background
color and only a border—with the btn-outline class (fi gure 125).

 <button type="submit" class="btn btn-outline-

primary">Submit</button>

A btn-outline button styled with the primary color scheme

14-15.html

14-16.html

fi g. 124

14-17.html

fi g. 125

246 HTML & CSS QUICKSTART GUIDE

Cards
A Bootstrap card is a fl exible container that can serve in a wide variety
of roles. In its simplest form, a card is merely a box around an element—
usually text and image (fi gure 126).

 <!-- Start the card and apply the text-center class to

center everything in this card -->

 <div class="card text-center">

 <!-- Start the card body -->

 <div class="card-body">

 <p>This is a very simple card.</p>

 </div>

 </div>

A simple example of the card component

In this example, the text-center class is added to the card div, ensuring
that any elements, including the paragraph element, are centered. Th is
isn’t required but creates a pleasing appearance.

A card can also serve as an interesting page element, like this card
featuring an ad for employment (fi gure 127).

 <div class="card">

 <!-- Add the employee image outside the card-body so

it isn’t affected by the padding and margins it adds. -->

 <img src="/images/next-employee.jpg" class="card-img-

top" alt="Our Next Employee">

 <!-- Start the card-body -->

 <div class="card-body">

 <h5 class="card-title">Our Next Employee</h5>

14-18.html

fi g. 126

14-19.html

247Bootstrap

 <p class="card-text">Do you have what it takes to

work at the ClydeBank Coffee Shop?</p>

 Apply Today!

 </div>

 </div>

A card featuring an image, title, text, and button

Th is elaborate example showcases the various elements that are often
contained in a card. Let’s examine each part in detail. Th e div styled by
the card-body class serves as the container for the content of the card.
In our example, the image next-employee.jpg is loaded outside the card
body. Th is way, the image is visually set apart from the rest of the content
within the card. Were we to enclose the image inside the card-body, it
would have more padding.

Th e card-title class is usually paired with an <h> tag and serves to
highlight the title of the card. Th e card-text class is typically applied to
a <p> tag. Call-to-action buttons (in this case, the “Apply Today!” button),
exist outside the card-text but are within the card-body.

fi g. 127

248 HTML & CSS QUICKSTART GUIDE

You aren’t limited to these classes. Cards can contain other elements or
even other Bootstrap components.

Carousel
You’ve undoubtedly seen slideshows of images decorating web pages
you’ve visited. Before Bootstrap, web designers frequently used third-
party JavaScript and CSS slideshow libraries or manually coded solutions
to fit their site. Fortunately, Bootstrap includes a slideshow carousel that
is simple to use and works great on all devices.

Let’s say we want to add a slideshow featuring various blends of coffee.
Here’s an example:

 <div id="featured-blends" class="carousel slide" data-

ride="carousel">

 <div class="carousel-inner">

 <!-- Since this div is given the active class, it

will be shown by default -->

 <div class="carousel-item active">

 <img src="/images/columbian.jpg" class="d-block

w-100" alt="Columbian Blend">

 </div>

 <div class="carousel-item">

 <img src="/images/arabica.jpg" class="d-block

w-100" alt="Arabica Blend">

 </div>

 <div class="carousel-item">

 <img src="/images/robusta.jpg" class="d-block

w-100" alt="Robusta Blend">

 </div>

 </div>

 </div>

Using this code, the browser will display a beautiful slideshow of
coffee blends. The first slide shown is given the active class. Carousel
components must have a unique id (in this case, featured-blends).

By default, the images will cycle every five seconds. You can change this
by adding the data-interval="X" attribute to the carousel div (changing
X to the number of seconds for the desired delay, multiplied by 1000,
since the value is specified in milliseconds).

14-20.html

249Bootstrap

If you want “previous” and “next” controls, it’s easy to add them via links
styled with the carousel-control-prev and carousel-control-next
classes.

<!-- In this example, set data-interval to 5000 (5 seconds,

or 5000 milliseconds) to specify the time between slide

changes -->

 <div id="featured-blends-controls" class="carousel slide"

data-ride="carousel" data-interval="5000">

 <div class="carousel-inner">

 <div class="carousel-item active">

 <img src="/images/columbian.jpg" class="d-block

w-100" alt="Columbian Blend">

 </div>

 <div class="carousel-item">

 <img src="/images/arabica.jpg" class="d-block

w-100" alt="Arabica Blend">

 </div>

 <div class="carousel-item">

 <img src="/images/robusta.jpg" class="d-block

w-100" alt="Robusta Blend">

 </div>

 </div>

 <!-- Within the carousel, show the controls. Bootstrap

positions these automatically by setting the location

relative to the containing div--the carousel container. -->

 <a class="carousel-control-prev" href="#featured-

blends-controls" role="button" data-slide="prev">

 <span class="carousel-control-prev-icon" aria-

hidden="true">

 Previous

 <a class="carousel-control-next" href="#featured-

blends-controls" role="button" data-slide="next">

 <span class="carousel-control-next-icon" aria-

hidden="true">

 Next

</div>

14-21.html

250 HTML & CSS QUICKSTART GUIDE

Collapse
Th e collapse component provides a simple way to show and hide other
elements. Th e JavaScript that makes this possible is contained within the
Bootstrap framework, leaving you to focus on the HTML. Collapsed
content is usually shown or hidden using a link or button element.

 <p>

 <a class="btn btn-primary" data-toggle="collapse"

href="#Robusta" role="button" aria-expanded="false" aria-

controls="Robusta">

 Robusta

 </p>

 <!-- This div is hidden by default but becomes visible

when the above link (styled as a button) is clicked -->

 <div class="collapse" id="Robusta">

 <div class="card card-body">

 Robusta has twice the caffeine content of Arabica

but a less-refi ned taste. It is usually used for instant

coffee.

 </div>

 </div>

Th e collapse component is applied to a button and is used to toggle the display of a card.

In our example, we have a link styled with the btn class (button) to
convert it into a button. Th e data-toggle attribute of the link is set
to collapse, and the href="#Robusta" attribute is set to the id of the

14-22.html

fi g. 128

251Bootstrap

card div containing our hidden content. When the page is loaded, the
content is initially hidden, but upon clicking the button link, the card is
displayed. Th is can be toggled by clicking the button again (fi gure 127).

Th e hidden content can be anything—it doesn’t have to be a card. Th is
technique is extremely useful for hiding not-often-needed information
and for providing interesting user interaction on the page.

Jumbotron
Th e jumbotron is a simple Bootstrap component that displays a large
notice to the user. It is similar to a card but contains options for an
attention-grabbing title and lead text that is hard to miss. Th e container
jumbotron class, when paired with a container, an h1 tag (usually
styled with the Bootstrap utility class display-4 for a larger size), and
a paragraph tag styled with lead, are all it takes to display a convincing
message on your page (fi gure 129).

<div class="jumbotron">

 <div class="container">

 <h1 class="display-4">The Jumbotron</h1>

 <p class="lead">Text here is sure to be noticed.</p>

 </div>

</div>

Th e jumbotron—a big sign your visitors won’t miss

Lists
You’re already familiar with the ul (unordered list) and ol (ordered
list) elements that we covered in chapter 5. Bootstrap’s list component
enhances these elements with a pleasing style and additional functionality.

Here’s a simple example of the list component in action (fi gure 130):

14-23.html

fi g. 129

252 HTML & CSS QUICKSTART GUIDE

<ul class="list-group">

 <li class="list-group-item">First Item

 <li class="list-group-item">Second Item

 <li class="list-group-item">Third Item

A basic list component example

In this case, the list is made more attractive than the one in fi gure 46 in
chapter 5. Now, let’s highlight one of the items (fi gure 130).

<ul class="list-group">

 <!-- This will be styled differently as it has the active

class -->

 <li class="list-group-item active">First Item

 <li class="list-group-item">Second Item

 <li class="list-group-item">Third Item

A list component example with an active item

Swapping the active class with the disabled class will fade the list
item per the selected Bootstrap color theme, so users know that item is
no longer available.

If you want a horizontal menu, add the list-group-horizontal class
(fi gure 132).

14-24.html

fi g. 130

14-25.html

fi g. 131

253Bootstrap

<ul class="list-group list-group-horizontal">

 <li class="list-group-item active">First Item

 <li class="list-group-item">Second Item

 <li class="list-group-item">Third Item

A list component example with an active item displayed horizontally

Modals
A modal dialog in computing is a window or box that asks the user a
question and cannot be dismissed without an answer. Bootstrap off ers
the modal component that allows you to construct a pop-up window that
asks a user a question or shows a critical alert.

Modal components are broken into two main parts—the trigger and the
modal itself. Th e trigger is usually a button or a button-styled link that,
when clicked, displays the modal interface (fi gure 133). You might see
HTML attributes here we haven’t covered yet, but we’ll explain them
after the code sample.

<!-- Button Trigger -->

<button type="button" class="btn btn-primary" data-

toggle="modal" data-target="#modal-example">Launch Modal

Demonstration</button>

<!-— Modal Dialog -->

<div class="modal fade" id="modal-example" tabindex="-1"

role="dialog" aria-labelledby="modal-example-label" aria-

hidden="true">

 <div class="modal-dialog">

 <div class="modal-content">

 <div class="modal-header">

 <h5 class="modal-title" id="modal-example-

label">This Page Contains Classifi ed Information</h5>

 </div>

14-26.html

fi g. 132

14-27.html

254 HTML & CSS QUICKSTART GUIDE

 <div class="modal-body">

 <p>You must have a super secret clearance to

access this page.</p>

 </div>

 <!-- Here the buttons are placed in the modal-

footer -->

 <div class="modal-footer">

 <!-- A button-styled link is used here since it

goes to another site. -->

 <a href="https://www.google.com/" class="btn btn-

secondary" >I Was Just Leaving

 <!-- This button dismisses the modal dialog -->

 <button type="button" class="btn btn-primary"

data-dismiss="modal">I Understand</button>

 </div>

 </div>

 </div>

</div>

Th e modal dialog box that appears when the button is clicked

Th e trigger portion of the modal is straightforward. Th e data-

toggle="modal" and data-target="#modal-example" attributes of the
button describe the action and target element id to activate when clicked.

Th e dialog itself contains several key parts: the containing class that is
given the modal class, and the modal-dialog class that contains the
modal-content, modal-header, modal-title, modal-body, and modal-
footer. Th e modal-header serves as a container for the modal-title,
often fi lled with heading text. Th e modal-body contains the descriptive
text (or other elements) in the modal, and the modal-footer contains

fi g. 133

255Bootstrap

the action elements—in this case, a link styled with the btn class that
sends the user to Google and a button with the data-dismiss="modal"
attribute. When you set data-dismiss to modal, Bootstrap knows that
this button, when clicked, should close the modal dialog box.

The tabindex attribute tells the browser the order in which to focus
(or highlight) the element when the user presses TAB on the keyboard.
Setting this to -1 prevents the element (in this case, our modal div) from
being reachable via the pressing of TAB. This is to stop our modal dialog
from accidentally being triggered before it’s requested.

In our example, the fade class is applied to the primary modal container
to instruct Bootstrap to fade the modal into view. Without this, the dialog
box instantly appears. In either case, the background behind the dialog
is overlaid with a semi-transparent div to partially obscure the contents.

Navigation
Navigation menus are a critical part of your website. Without them, your
visitors couldn’t navigate to other pages. While navigation has always
been important on the web, mobile devices have made responsive design
a requirement for browsing multipage websites on cell phones and tablets.

As with most challenges in responsive design, Bootstrap has a ready-
made solution using predefined classes and the semantic nav element. On
laptops and desktop computers, the menu will appear as a long horizontal
bar. On smaller screens, a hamburger menu, a button styled with a three-
line vertically stacked icon that opens a menu, is presented on the right-
hand side of the navigation bar (figure 136). When the visitor clicks the
hamburger, a menu appears with the navigation links (figure 137).

The best way to explain the multiple parts of a navigation bar is to show
an example. You’ll see that the nav component uses an assortment of
HTML elements to present navigation. We’ll dive into the sample first,
then show some screenshots, and finish with an explanation of the code.

Even though this example is related to the ClydeBank Coffee Shop
website, it will not work on the original website because that site
doesn’t have Bootstrap. You can add Bootstrap to the coffee shop
website if you wish and then use this navigation bar or any other
component from Bootstrap.

256 HTML & CSS QUICKSTART GUIDE

<nav class="navbar navbar-expand-lg navbar-dark bg-dark">

 <!-- The navbar-brand class defines the title (or logo) of

the navigation bar -->

 ClydeBank Coffee Shop

 <!-- This button is transformed (when needed) into the

"hamburger" icon for mobile devices -->

 <button class="navbar-toggler" type="button" data-

toggle="collapse" data-target="#MainNavbar" aria-

controls="MainNavbar" aria-expanded="false" aria-

label="Toggle Navigation">

 </button>

 <div class="collapse navbar-collapse" id="MainNavbar">

 <ul class="navbar-nav mr-auto">

 <!-- Since this is styled "active", it will be

displayed with white text, indicating this is the page we

are on. -->

 <li class="nav-item active">

 Home <span

class="sr-only">(current)

 <li class="nav-item">

 About

 <!-- The dropdown class tells Bootstrap that this

menu item will trigger a dropdown menu. The dropdown menu

to expand has the id of navbarDropdown. -->

 <li class="nav-item dropdown">

 <a class="nav-link dropdown-toggle" href="#"

id="navbarDropdown" role="button" data-toggle="dropdown"

aria-haspopup="true" aria-expanded="false">

 Events

 <!-- This is the dropdown menu itself, described

by navbarDropDown. Bootstrap ties these two together so that

this div is expanded when the user clicks the appropriate

menu item. -->

 <div class="dropdown-menu" aria-

labelledby="navbarDropdown">

 Music

 Comedians

14-28.html

257Bootstrap

 <!-- Place a line between Comedians and

Exhibits. This is similar to an hr element -->

 <div class="dropdown-divider"></div>

 Exhibits

 </div>

 <li class="nav-item">

 <a class="nav-link" href="#" tabindex="-

1">Contact

 </div>

</nav>

Th e Bootstrap navigation bar in desktop/laptop mode

Th e Bootstrap navigation bar in desktop/laptop mode after the events menu is opened

Th e Bootstrap navigation bar in mobile mode

Th e Bootstrap navigation bar in mobile mode after the hamburger menu is clicked

fi g. 134

fi g. 135

fi g. 136

fi g. 137

258 HTML & CSS QUICKSTART GUIDE

The nav semantic element contains the navigation menu. In this example,
we have styled it with the navbar, navbar-expand-lg, navbar-dark, and
bg-dark classes. The navbar class tells Bootstrap to style the navigation
bar, while the other three classes define the size and color scheme. The
div styled with navbar-brand that contains the text “ClydeBank Coffee
Shop” tells Bootstrap to enlarge the font and make this text the left-most
and the featured item in the bar. Web designers usually place the name
of the company in this location.

The button styled with navbar-toggler becomes the hamburger menu
icon used to collapse and expand the menu in mobile mode. If the data-
target attribute matches the id of the navbar-collapse div, Bootstrap
will take care of the JavaScript necessary to facilitate the animation.

The menu itself is essentially an unordered list (ul) styled with the navbar-
nav class. This class transforms the list into a horizontally oriented list
that was hinted at in chapter 5. Each list item (li) styled with the nav-
item class is a menu item. The menu item given the active class is styled
with a more prominent font color.

A list item styled with the dropdown class creates a dropdown menu.
This functionality is extremely useful for creating nested menus for sites
with complex page structures. A link (<a>) styled with both nav-link
and dropdown-toggle becomes the menu item that visitors can click
to expand the menu, and a new div contained within this list, styled
with dropdown-menu, presents a submenu to the user. Links given the
dropdown-item class become new menu items. A divider is placed in the
example’s dropdown menu with a div using the dropdown-divider class.

Though the navigation component may seem complicated, it follows a
logical, nested structure and makes creating responsive menus a snap.

Pagination
In addition to site navigation bars, Bootstrap can restyle the nav element to
present a pagination menu to your users. This is useful if you have a website
with exceedingly long content that you wish to split over several pages
(figure 138).

259Bootstrap

<nav aria-label="Page Navigation">

 <ul class="pagination">

 <li class="page-item"><a class="page-link"

href="#">Prev

 <li class="page-item">1</

a>

 <li class="page-item">2</

a>

 <li class="page-item">3</

a>

 <li class="page-item"><a class="page-link"

href="#">Next

</nav>

Th e Bootstrap pagination component

In this example, the nav element contains an unordered list (ul) that is
styled with the pagination class. Th e list items (li) in the unordered list
have the page-item class, and links inside the list items have the page-
link class. Th ough the href attribute is set to #, you can change the links
to match other web pages or on-page page anchor target ids (discussed
in chapter 5).

Progress Bars
Progress bars are most often used in complex forms or reports. Bootstrap
makes it easy to create an attractive progress bar with two simple divs.

To demonstrate, we’ve assembled four bars of varying states of progress.

<div class="progress">

 <div class="progress-bar" role="progressbar" style="width:

25%;" aria-valuenow="25" aria-valuemin="0" aria-

valuemax="100">25%</div>

</div>

14-29.html

fi g. 138

14-30.html

260 HTML & CSS QUICKSTART GUIDE

<div class="progress">

 <div class="progress-bar" role="progressbar" style="width:

50%;" aria-valuenow="50" aria-valuemin="0" aria-

valuemax="100">50%</div>

</div>

<div class="progress">

 <div class="progress-bar" role="progressbar" style="width:

75%;" aria-valuenow="75" aria-valuemin="0" aria-

valuemax="100">75%</div>

</div>

<div class="progress">

 <div class="progress-bar" role="progressbar" style="width:

100%;" aria-valuenow="100" aria-valuemin="0" aria-

valuemax="100">100%</div>

</div>

Various scroll bar components

Tables
Remember our sales fi gures table example from chapter 10? Let’s let
Bootstrap make it more appealing by adding the table class to the table.

<table class="table">

 <tr>

 <th>Year</th>

 <th>Shirts</th>

 <th>Shoes</th>

 <th>Pants</th>

 </tr>

 <tr>

 <td>2017</td>

 <td>$420,392</td>

fi g. 139

14-31.html

261Bootstrap

 <td>$18,304</td>

 <td>$34,912</td>

 </tr>

 <tr>

 <td>2018</td>

 <td>$480,221</td>

 <td>$17,952</td>

 <td>$36,112</td>

 </tr>

 <tr>

 <td>2019</td>

 <td>$491,919</td>

 <td>$16,844</td>

 <td>$46,924</td>

 </tr>

 <tr>

 <td>2020</td>

 <td>$501,029</td>

 <td>$15,124</td>

 <td>$39,947</td>

 </tr>

</table>

Bootstrap decorated our tabular display with comfortably spaced rows,
a well-designed header, and an overall appealing style. As a bonus, the
table is now responsive—looking great on all devices (fi gure 140).

Th e sales fi gure table from chapter 10 styled with the table class

fi g. 140

262 HTML & CSS QUICKSTART GUIDE

Utilities
Bootstrap off ers “helper” CSS classes that expand functionality to both

Bootstrap and non-Bootstrap components on your web page. Th ese can be
very helpful in page layout and formatting.

As an added benefi t, these helper utilities save keystrokes. As we go over
these classes, try to recall how you would use manual CSS to accomplish the
same sort of style.

Borders
 To add a border to an element, use the border class.

 <div class="border"></div>

 <div class="border-top"></div>

 <div class="border-right"></div>

 <div class="border-bottom"></div>

 <div class="border-left"></div>

Th e border class will add a full border around the element. Th e top, right,
bottom, and left variations will add a border only on the applicable
portion of the element. By default, a faint-gray border is drawn, but you
can change the color by using one of Bootstrap’s color schemes.

 <div class="border border-primary"></div>

Th is div would be surrounded by Bootstrap “primary” blue borders.

You can give an element a rounded border by including the rounded class.
A subtle variation of this, the rounded-circle class, is most attractive
on images—especially portraits (fi gure 141).

An img element with the rounded-circle class

14-32.html

14-33.html

fi g. 141

263Bootstrap

 <img src="/images/john.jpg alt="Our CEO, John!"

class="rounded-circle"></div>

Clearfix
You may remember the clearfix technique from “Floating Elements” in
chapter 9. Bootstrap makes using clearfix a breeze.

 <div class=”clearfix"></div>

Float
Floating divs, as discussed in chapter 9, is simple with Bootstrap. Simply
apply the float-left, float-right, or float-none CSS class, and Bootstrap
will handle the rest.

 <div class="float-left">Float this to the right</div>

 <div class="float-right">Float this to the left</div>

 <div class="float-none">Don’t float this</div>

Sizing
Bootstrap offers a system of helpers for defining the width of a div. The
width of an element, when specified in a percentage, is relative to its
containing element. That containing element may be the body tag or a
div nested among other elements.

Using the width selector is easy, but Bootstrap makes it even simpler by
providing a shortcut class.

 <div class="w-25">This div will be set to width: 25%</div>

 <div class="w-50">This div will be set to width: 50%</div>

 <div class="w-75">This div will be set to width: 75%</div>

 <div class="w-100">This div will be set to width: 100%</div>

Height is also defined by simple helper classes.

 <div class="h-25">This div will be set to height: 25%</div>

 <div class="h-50">This div will be set to height: 50%</div>

 <div class="h-75">This div will be set to height: 75%</div>

 <div class="h-100">This div will be set to height: 100%</div>

14-34.html

14-35.html

14-36.html

14-37.html

14-38.html

264 HTML & CSS QUICKSTART GUIDE

You can set max-width and max-height with ease.

<div class="mh-25">This div will be set to max-height: 25%</div>

<div class="mw-50">This div will be set to max-width: 50%</div>

Overflow
In chapter 9, we discussed the overflow CSS selector, which allows you to
set an overflow policy for an element. Overflow occurs when the content
won’t fit inside its container. Bootstrap provides two handy CSS classes
that save some typing.

 <div class="overflow-auto"></div>

 <div class="overflow-hidden"></div>

Forms
HTML forms are a website’s gateway to its users. In chapter 11, we

explored the form, input, label, and related elements that enable web pages
to collect and process visitor data. You may recall a suggested exercise at the
end of that chapter to style the HTML form elements with CSS. If you did
this exercise, you might have noticed how challenging it can be to acquire
consistent, good-looking input elements.

Bootstrap has made styling forms easy and intuitive. When the additional
CSS rules are applied to form elements, they not only look great but are
extremely adaptive to mobile devices, making it easier for your users to
interact with your website.

Consider this simple and clean form (figure 142).

<form>

 <div class="form-group">

 <label for="name">Name</label>

 <input type="text" class="form-control" id="name">

 </div>

 <div class="form-group">

 <label for="email">Email</label>

 <input type="email" class="form-control" id="email">

 </div>

 <div class="form-group">

 <label for="message">Message</label>

 <textarea name="message" class="form-control"

id="message"></textarea>

14-39.html

14-40.html

14-41.html

265Bootstrap

 </div>

 <button type="submit" class="btn btn-primary">Submit</

button>

</form>

A simple Bootstrap contact form

In this example, the form code isn’t radically diff erent from a standard
HTML form, but there are two key exceptions: the form-group and form-
control classes.

Th e form-group class creates a logical structure for each form element
and its accompanying label. Th e form-control class applies a variety of
styles to the input element to ensure device compatibility and proper spacing
within the form-group.

With a bit of magic from Bootstrap’s layout grid and label-less input
boxes, we can put form elements on the same row to better utilize space for
complex forms and similar groups of data (fi gure 143).

<form>

 <div class="form-row">

 <div class="col">

 <input type="text" name="fi rst-name" class="form-control"

placeholder="First Name">

 </div>

 <div class="col">

 <input type="text" name="last-name" class="form-control"

placeholder="Last Name">

 </div>

 <div class="col">

 <button type="submit" class="btn btn-primary">Submit</

button>

fi g. 142

14-42.html

266 HTML & CSS QUICKSTART GUIDE

 </div>

 </div>

</form>

An inline Bootstrap form

If you want to add a bit of help text below an input fi eld, Bootstrap has
you covered (fi gure 144).

<form>

 <div class="form-group">

 <label for="name">Name</label>

 <input type="text" class="form-control" id="name">

 </div>

 <div class="form-group">

 <label for="email">Email</label>

 <input type="email" class="form-control" id="email"

aria-describedby="email-help">

 <!-- Display small text that provides additional

information to the user about this input element -->

 <small id="email-help" class="form-text text-muted">

 We will never share your email address with anyone!

 </small>

 </div>

 <div class="form-group">

 <label for="message">Message</label>

 <textarea name="message" class="form-control"

id="message"></textarea>

 </div>

 <button type="submit" class="btn btn-primary">Submit</

button>

</form>

Th e email help is contained within a <small></small> element and is
given the id email-help. You’ll notice the email input is decorated with the
aria-describedby="email-help" attribute. Th is is done to tell accessibility
software like screen readers that the input element has instructions to be

fi g. 143

14-43.html

267Bootstrap

read to the user via the element with the matching id—in our case, the small
element with text.

A contact form with help text below the email fi eld

Typography
Bootstrap includes a defi nition for a set of fonts carefully selected to look

great on every device. Since every device has a serif and a sans-serif default
font option, Bootstrap overrides this with fonts like Segoe UI on Windows,
Noto Sans on Linux, Roboto on Android, and Apple System on iOS and
macOS. It also creates a more pleasing set of sizes for headings and overrides
the default pure black text color for specifi c elements for a smoother, print-
like appearance.

Headings
As mentioned in the introduction, Bootstrap redefi nes heading elements
with a better scale of font sizes and an ever-so-slightly lightened black
color that looks great on modern screens (fi gure 145).

Bootstrap headings. It’s diffi cult to tell in the image, but the text isn’t exactly black—
it’s a slightly softened version of black.

fi g. 144

fi g. 145

268 HTML & CSS QUICKSTART GUIDE

Color
In addition to overall color styles, Bootstrap provides helpful CSS classes
for text colors.

<!-- This paragraph has blue text on a white background -->

<p class="text-primary">.text-primary</p>

<!-- This paragraph has gray text on a white background -->

<p class="text-secondary">.text-secondary</p>

<!-- This paragraph has green text on a white background -->

<p class="text-success">.text-success</p>

<!-- This paragraph has red text on a white background -->

<p class="text-danger">.text-danger</p>

<!-- This paragraph has yellow text on a white background -->

<p class="text-warning">.text-warning</p>

<!-- This paragraph has light blue text on a white

background -->

<p class="text-info">.text-info</p>

<!-- This paragraph has light text on a dark background -->

<p class="text-light bg-dark">.text-light</p>

<!-- These paragraphs have dark text on a white background -->

<p class="text-dark">.text-dark</p>

<p class="text-body">.text-body</p>

<!-- This paragraph has gray text on a white background -->

<p class="text-muted">.text-muted</p>

<!-- This paragraph has white text on a dark background -->

<p class="text-white bg-dark">.text-white</p>

<!-- This paragraph has gray text on a white background -->

<p class="text-black-50">.text-black-50</p>

<!-- This paragraph has gray text on a dark background -->

<p class="text-white-50 bg-dark">.text-white-50</p>

14-44.html

269Bootstrap

Weight, Style, and Decoration
 Bootstrap has a simple shortcut for bolding text.

 <p class="font-weight-bold">Bold text.</p>

You can remove the underline for a particular link with text-decoration-
none.

 <a href="https://www.clydebankmedia.com/" class="text-

decoration-none">This link to CBM is not underlined

Th e <code></code> and <pre></pre> elements are redefi ned to provide
a more attractive presentation of code on a web page.

 <code>This is a sample of code.</code>

 <pre>This is a sample of preformatted text.</pre>

Th e code text is displayed in light red, and the pre text is shown in a dark
gray font (fi gure 146).

Bootstrap’s enhanced code and pre elements.

Alignment
Bootstrap has built-in classes for easy text and object alignment. Th ese
can be applied to most elements, and if you include the class in a div, all
elements contained within that div will default to that alignment.

 <p class="text-left">This text will be left-aligned.</p>

 <p class="text-center">This text will be center-aligned.</p>

 <p class="text-right">This text will be right-aligned.</p>

Wrapping
If text is too long to fi t in an element, it will wrap. You can prevent this
with these helpful Bootstrap utility classes.

14-45.html

14-46.html

14-47.html

fi g. 146

14-48.html

270 HTML & CSS QUICKSTART GUIDE

 <p class="text-wrap">This text will be wrapped.</p>

 <p class="text-nowrap">This text will NOT be wrapped.</p>

Additional Learning
Bootstrap can make your forms look beautiful and help you create

attractive and responsive tables. It provides a plethora of additional helpful
tools to use in your website’s design. Covering every detail of Bootstrap’s
functionality would require a book of its own, so if you’re interested in quickly
creating responsive websites, I encourage you to check out the Bootstrap
website and documentation at www.getbootstrap.com.

Moving Forward
In part III, we’ve covered advanced HTML and CSS. Armed with this

knowledge, you can create semantically designed pages and contact forms,
and you can transform and animate with CSS. With media queries, you can
ensure your site looks impressive on all devices. With just a few lines of code,
Bootstrap lays the foundation for a beautiful site and makes responsive web
design simple. In part IV, we’ll detail how to set up a project to arrange all
these pieces into a living, breathing website.

You’ve come a long way. Keep up the great work. See you in part IV!

Chapter Recap

 » Bootstrap provides a CSS framework on which to build responsive
websites featuring cross-browser and cross-device compatibility
with clean code.

 » Bootstrap can provide many enhancements to your website out of
the box, including normalized fonts, heading sizes, and colors, and
various CSS utility classes.

 » Bootstrap saves keystrokes and eliminates some redundant code,
allowing you to focus on your layout.

14-49.html

PART IV
THE WORK ENVIRONMENT

273Workflow

| 15 |
Workflow

Chapter Overview
 » Clean, organized project structure is vital.
 » Use scaffolding and wireframing to plan projects.
 » Content management systems help to customize existing code.

In the previous chapters, we have covered the nuts and bolts of HTML and
CSS. At this point, you should be able to construct a web page from scratch and
add text, images, and visual styling, and adjust it to look good on all devices.

In part IV, we’ll explore the workflow and tools of a web developer.
Workflow is simply the steps and procedures you take to design a website—
from the first HTML file and line of code to the ongoing maintenance of the
site throughout its lifetime. A good workflow, paired with your new HTML
and CSS skills, is the last piece of the puzzle, allowing you to unlock your
full potential as a web designer.

Project Setup and Management
There is no perfect way to set up a structure for a website. Every site

will have different requirements, and every web designer has their preferred
style of organization. In this section, my goal is not to force you to follow a
particular method. Instead, I want to help you establish your own comfortable
and productive workflow by providing examples and recommendations with
instructions on how to adjust them to suit your needs.

Folder Structure
HTML has no specific requirements for file and folder placement. In
fact, in the early days of web design, I saw websites with all HTML,
CSS, image, and other related files in the same folder! This layout would
be unthinkable today, especially on a complex website. Managing more
than just a few pages and images would quickly become a chore.

274 HTML & CSS QUICKSTART GUIDE

Over the years, folder and file name conventions have evolved. Following
these conventions is helpful but not required. Here is a list of standard
file and folder names used in modern web design.

 » HTML Files: Pages usually reside in the main folder of the site. It
is possible to store pages in subfolders, but keep in mind that doing
so makes using relative paths for CSS, JavaScript, and images a
more tedious process.

 » Images: A folder called images usually stores the graphic elements
for the website.

 » Audio/Video: If present, this content is usually contained in the
media folder. Sometimes the media folder also contains images.

 » CSS Files: If a site uses just one style sheet, it is often named style.css
and located in a folder called css. On small sites, you may see the
style.css file placed in the home folder.

 » JavaScript Files: These usually sit in a folder called js or
javascript.

 » Favorite Icon (Favicon): A favicon.ico file is a special kind of image
file shown as an icon on the tab or bookmark of your website. It
isn’t required, but it’s a good idea to use one. It must be in the main
folder of the site.

 » PDF, Text, and Downloads: Files intended to be downloaded, like
PDFs, text files, executables, ZIP files, and the like, are generally
found in a folder called assets or downloads.

Scaffolding
It’s helpful to have gathered all the text, images, and layout details you’ll

need before you start to design a website. If all the data is there, you can
arrange it without having to break your workflow to obtain more information
from your client or team. Unfortunately, this rarely happens. You’ll often
receive an overall idea of what is needed on the website but few pieces of
content. Text and images will trickle in as you progress through the project,
and pages may be added just before the site is complete.

275Workflow

When you design a website, get in the habit of paying attention to future
expansion—it will save you hours of work in the long run. The goal isn’t to try
to think so far ahead you are paralyzed in the present, but rather to consider
possible upgrades and additions to your design so that you don’t have to
rework the entire site just to add a page. In programming terminology, this
attribute is referred to as scalability; a site that “scales” well handles additions
without significant problems.

Construction crews use framing to support additional building materials
when a house is under construction. The framers may not know what color
the homeowner will paint the walls, but that data isn’t needed at that stage of
building. In web design, scaffolding (also known as “wireframing”) provides
placeholder content, so the overall layout of the site can be constructed
without finalizing details.

Recall the empty anchor links on the ClydeBank Coffee Shop website.
The original designer wasn’t sure what the page names would be, so they
used # as a placeholder link. When a visitor clicked the link, they would be
directed to the top of the current page, but this was preferable to triggering a
404 Not Found error or being taken to a page not yet finished.

Lorem Ipsum text is an excellent way to provide scaffolded text content,
enabling you and the client to envision the page layout with full text. Sample
images can fill in empty areas, and empty divs with their height and width set
to match the eventual size can provide spacing for future content.

In some cases, a client may provide a sketch of a website on paper.
Translating this into a web design layout can be challenging, but remember
that most pages use a similar structure. Pages usually contain a header, often
with an embedded navigation element; the main content area, sometimes
with a div floating left or right for a sidebar; a content div; some kind of
separation after the div break; and then a footer with links, copyright, and
contact information.

Testing and Debugging
Testing can be just as challenging and time-consuming as designing the

website. We’ll get into some specific techniques you can use to test and debug,
but the most important thing to remember about producing a problem-free
website is to test early and often. By testing as you go, you avoid having
to make massive “all or nothing” changes. A series of small tweaks and
improvements with feedback from colleagues or your client along the way
generally works best. You don’t want to put a lot of work into something that
might not be what the client wants, so it’s better to know sooner rather than
later, when it’s still possible to make changes without undoing a lot of work.

276 HTML & CSS QUICKSTART GUIDE

Browser Development Tools
We’ve been working with local HTML files throughout this book, so
testing has not been a cumbersome task. Making a change in your editor
and then refreshing the web page in your browser has been sufficient.
The process is similar when working with a remotely hosted website via
file transfer protocol (FTP), with the added step of uploading the saved
file to the server and testing it on the live site. But this testing workflow
has significant drawbacks.

The biggest problem with live testing is that you are making changes to a
website in real time. Visitors will be able to see these changes and possibly
inaccurate, incomplete, or broken HTML content. This isn’t a big deal
for a personal or hobby page, but it is highly undesirable for a company
site. This issue can mostly be eliminated with the use of a staging site (a
private site for testing or showing work to others), but this can incur extra
cost with your web hosting company and still requires uploading the
changed file to your web server via FTP. If it takes one hundred changes
to make a complex element render correctly in the browser, you will be
wasting a lot of time re-uploading your work.

This is where browser-based testing and debugging comes into the
workflow. Rather than using your code editor to change the file, re-
upload, refresh, and hope for the best, you can use the live development
tools in modern web browsers, including Mozilla Firefox and Google
Chrome (and derivates like Microsoft Edge, Brave, and Chromium). You
can access this toolbox via the F12 key on the keyboard or by right-
clicking on an element and clicking Inspect in Chrome or Inspect Element
in Firefox.

Figure 147 shows the Chrome inspector, but other browser development
tools are similar and follow the same basic layout. The left pane shows
the website, and the right pane displays the source code and property
inspectors. The inspector frame is further divided into multiple
sections—the most important two being the source code (left) and the
CSS properties (right).

If you double-click on the source code, you can edit it directly in the
browser. If you click on the empty CSS rule that looks like this…

277Workfl ow

 element.style {

 }

…you can add CSS rules to the highlighted element. Th e results of your
edits are displayed in real time, and no changes are made to the fi les, so
you don’t have to worry about messing up a live website. Th is development
environment isn’t suitable for adding enormous amounts of content and
HTML code, but it can speed up a lot of small, incremental changes
with instant feedback.

Th e Chrome inspector/development tools for debugging the ClydeBank Media home page

Th e JavaScript console, usually found within the development tools
in a tab titled Console, shows any warning or error messages from the
JavaScript code executed on the page and provides a command line
for manually entering JavaScript code. Th is is incredibly useful for
debugging JavaScript.

You can use the Network tab to see a waterfall display of the various page
assets (CSS fi les, images, etc.) that are loaded on the site, as well as their
attributes and the time it took to load them. If you have a slow-loading
website, this view can show you which fi les are taking the longest to load,
providing a handy report for website speed optimization (fi gure 148).

fi g. 147

278 HTML & CSS QUICKSTART GUIDE

Th e Chrome inspector/development tools with the Network tab selected

Going Live
Until now, you have been designing your website on your hard drive.

Th is is eff ective but provides no way for others to see your work. If you are
in the middle of a design and need to showcase your work to a client or
other interested party, you can compress the fi les and send the resulting ZIP
archive to them via email, but this isn’t very effi cient. Large sites can exceed
the storage limit on most email accounts.

A shared web hosting provider might be a good choice for showcasing and
ultimately deploying your work. Once you purchase the account, you’ll need
to upload your fi les via an FTP client. Instructions vary with diff erent FTP
software packages, but we’ve covered the basics in appendix II, “FTP.”

Development, Staging, Production
On simple sites, using FTP is probably enough, but complex sites may
need a source code control system like Git (see chapter 16) or a method
of fi rst uploading changes to a staging server for approval before making
it live.

Using multiple websites, usually named dev.yourwebsite.com, new.
yourwebsite.com, or staging.yourwebsite.com, provides an excellent

fi g. 148

279Workflow

way to test changes before going live. If you are working as part of a larger
team, consult your system administrator for instructions on uploading to
a development or staging server.

In some organizations, designers and developers make changes only
to dev and staging sites, while senior engineers deploy fully tested
code to the live production site.

Customizing Existing Code
If no CMS software like WordPress is used, files for the website will

likely be in plain HTML format. You may also find HTML code in PHP
files with the .php extension.

A freelance web designer who picks up a job will often be able to jump
right into the work after the client provides them with FTP access. We’ll
cover FTP in appendix II.

WordPress
WordPress allows you to add and edit pages and posts via the
administration dashboard. Posts (which include blog posts) are dated
content that can be accessed under Posts. Pages, located under the Pages
menu, contains content like the home page, about pages, contact pages,
and perhaps other static, non-blog text. Custom themes and plugins may
change this behavior.

Construction of posts and pages and the adjusting of options and themes
in WordPress is done in the administration panel. This is almost always
located at yoursite.com/wp-admin (replace yoursite.com with your
domain name). Only those with an administrator account have full access
to the administrative backend, so if you aren’t the site owner, you’ll need
to obtain a user account with this permission.

WordPress is straightforward to use, and most nontechnical people can
create compelling-looking content within its administration panel. For
composing, a WYSIWYG (What You See Is What You Get) editor
allows the user to type just as they would in a program like Microsoft
Word. Through JavaScript, this is converted to HTML code. However,
these kinds of HTML editors generally include a way to edit or add raw
HTML code. Look for a < > symbol in WYSIWYG editors for this
functionality.

280 HTML & CSS QUICKSTART GUIDE

If you want to edit the theme—that is, the header, footer, sidebar,
and other page content, including CSS—first check out the theme
customization options found under Appearance >> Customize. A graphical
interface will guide you through making changes to the theme. For more
complex changes that aren’t supported by the theme’s customize function,
you can click Appearance >> Theme Editor to access a file manager that
gives you the ability to edit style.css and other template files directly.

You can also edit the style sheet and theme files with FTP. Navigate
to the wp-content/themes/theme-name folder (replace “theme-name”
with the name of the theme). For complex edits to a theme, using FTP is
easier because it allows you to use your favorite HTML editor.

Other CMS Systems
There are a lot of content management systems (CMSs) and website
builders currently in use (Squarespace and Wix are among the most
popular). Though we won’t cover each of them extensively here, knowing
some common terminology and workflow methods will help you adapt to
any of these systems. Knowing HTML and CSS gives you a tremendous
advantage when using these CMS platforms, as you’ll be able to customize
nearly every aspect of the site.

In most cases, other than choosing and customizing a theme, there will be
three primary modes of input: adding pages or posts with a WYSIWYG
editor, adding widgets (small blocks of functionality like an inline
social media feed), and adding HTML code snippets. Instructions and
capabilities vary considerably, so we’ll focus on inserting raw HTML.

When inserting HTML into a content management system, you’ll
almost always want to omit the content in the head tag and any other
page content that you don’t intend to add. For example, if you want to
add a bulleted list, only add the element and its containing
 elements.

Some content management systems (and some themes within these
CMSs) will allow you to modify the CSS. If you cannot add or modify
the CSS, you will need to use inline styles.

281Workflow

Chapter Recap

 » A well-structured, consistent website design workflow is essential to
efficient site creation and maintenance.

 » Scaffolding and wireframing content helps to reserve space for other
elements while facilitating site construction and editing.

 » Frequent testing on a variety of devices, paired with a strategy
to stage your updates for others to check before going live, helps
reduce mistakes.

 » Content management systems, like WordPress, allow for easy
creation of content and can often be customized with raw HTML
code.

283Git

| 16 |
Git

Chapter Overview
 » Git is a distributed version control system.
 » Git maintains version history and allows coders to collaborate.
 » GitHub provides free hosted git repositories.

Now that you’ve learned the basic workflow of website management, it’s time
to add another layer of knowledge to your website maintenance skills. Version
control systems, like Git, allow you to not only produce versions of your work
but easily collaborate with other designers and developers.

Git is an advanced topic, and some designers may not ever use this
technology. Nevertheless, since Git is becoming quite popular, you’ll have a
leg up on future expansion should you decide to use this system.

What Is Git?
Git is a distributed version control system written by Linus Torvalds, the

creator of the Linux kernel. “Version control system” sounds overly complex,
so let’s unpack the definition.

A version control system is a method of storing versions of your files.
A version is simply an update to a previous version. Each time you add or
edit content from a page, you’re essentially creating a new version. A version
control system keeps track of these changes by tracking the delta, or difference,
between a file before and after you edit it.

Version control systems are usually centralized on a hosted server so
users can check in and check out the content they’re developing. In many
centralized version control systems, the server maintains a series of locks,
ensuring that two developers don’t inadvertently work on the same file
and make incompatible changes. This is a good arrangement but presents
problems if developers need to work offline or if differences arise between
individual developers’ working copies.

284 HTML & CSS QUICKSTART GUIDE

The distributed nature of Git is what separates it from most version
control systems. With decentralization technology, Git hosts the repository
of version-controlled files on each developer’s machine, not in any particular
centralized location. Rather than relying on file locking, Git encourages the
use of “branches” to separate individual developer efforts on specific features
from the main branch and other developers’ branches. When it’s time to
merge these branches, Git uses advanced algorithms to help reconcile and
merge differences in files. When Git can’t automatically merge the changes,
it marks the conflicting files with a readable syntax, guiding developers to fix
the issue manually.

Beyond these advantages, learning Git offers you a leg up on other
web designers. Not only will you be able to work seamlessly with other
programmers, you will also stand out in the eyes of prospective employers.
They love to see these advanced technologies on a web designer’s résumé.

Isn’t Git overkill for a simple website? Possibly. If your website
becomes a huge success and many people begin working on its
code, you’ll be glad you used it. But using Git from the beginning of
a project provides benefits even if you never work with anyone else—
mainly the ability to retain older versions of your files and revert to
them if disaster strikes. On the other hand, it is fairly easy to import a
site into a Git repository after it’s been built, so this isn’t a concern that
should keep you up at night.

Downloading and Installing Git
You’ll need to install Git on your machine. There are two primary

methods of interfacing with Git—via command line and using a graphical
user interface (GUI). The GUI approach is easier for new users, but the
command line tools are more powerful.

 » GUI for Windows and macOS –GitHub Desktop:
www.desktop.github.com

 » GUI for Linux – GitKraken: www.gitkraken.com
 » Command Line for Windows, macOS, and Linux: www.git-scm.com

The instructions in this chapter will cover both the GUI and the command
line. The GUI instructions will be somewhat too generic to account for the
variation in software layouts and user interfaces. But no matter which you
choose, the steps and workflow will be the same.

285Git

Accessing the Command Line
Th e command-line interface, or CLI for short, is a direct interface to

the system that allows you to type commands instead of using a mouse
or selecting icons and menu items. Many developers fi nd the entering of
commands preferable to a graphical user interface in certain situations. For
more advanced development-related tasks, the CLI is often the only viable
way to accomplish your goal.

While it’s possible to use Git via a GUI, it’s diffi cult to explain the steps
involved, as each user interface is diff erent. Skills learned in one GUI-based
Git client may not translate well to another, and thus the command-line
interface is the most stable and robust approach to using Git.

Th e command line may seem intimidating, but it’s safer in some ways
than using the GUI. A wrong click or inadvertent drag won’t move fi les
all over your drive. We will explore the process of starting a Git repository,
adding fi les to it, updating, and pushing to a remote provider like GitHub.
To get started, you’ll need to install the Git command-line software.

Once Git is installed, you can launch a command-line (sometimes
referred to as terminal) window and begin entering commands. On
Windows, search for Command Prompt in the start menu or press WIN+R
and type “cmd”, then press ENTER to run the command prompt (fi gure
149). On Mac, run the terminal application. Linux terminal applications
vary, but every distribution has one installed. On Ubuntu, for example, you
can press CTRL+ALT+T to bring up a terminal, but your application list
will undoubtedly show a terminal program.

Th e Command Prompt window on Windows

fi g. 149

286 HTML & CSS QUICKSTART GUIDE

Starting a Website with Git
If you are just starting a new website on your hard drive, create the folder

for your site in your home directory and call it New-Website (or some other
meaningful name). Next, add some initial files (even if it’s just an index.html),
then “initialize” a Git repository in that folder.

Before you can create a Git repository, you must change to the directory
of your website. To do this, run the change directory (cd) command:

Windows
 cd %homepath%\New-Website

macOS and Linux
 cd ~/New-Website

In the Windows example, %homepath% is substituted for your home
directory, usually something like C:\Users\YourName. On macOS and Linux,
the ~ is replaced with your home directory by the command prompt. If you
use another folder name besides New-Website, be sure to change this.

Now it’s time to start the repository. Once you’ve entered the folder of
your website via the cd command, run:

 git init

 git add .

 git commit -a -m "Initial commit."

In the git add command, we specify a period after the add to tell Git to
add any files in the current directory. You can replace the dot with a specific
file name if you only want to add one file. The -a option is to tell Git to stage all
changes, and the -m option, followed by text in quotes, is to append a message
to the commit. This message isn’t shown on the site and doesn’t modify the
code, but instead provides a note to yourself or to others about the changes you
made to this specific version. Since this is our first time committing a version of
our site to the repository, our note states “Initial commit.”

In a Git GUI, add the folder as a project, then initialize a Git repository.
You’ll also want to add any existing files you’ve created, then do an initial
commit. You will be prompted for a message when committing.

Your commit was only to your local Git repository. If you want to add a
remote repository and sync to it, such as with GitHub, you’ll need to sign up
for a GitHub account, create the repository on the website, then follow the
instructions provided to add, commit, and sync. The GitHub Desktop GUI has
integration with GitHub, so interfacing it with your GitHub account is easy.

16-01
and

16-02

16-03

287Git

Importing an Existing Website into Git
Importing an existing site is similar to starting a new one, except the

add command will import all the existing files. The steps under “Starting a
Website with Git” apply, but be sure to include your current HTML, CSS,
and JavaScript files.

Also, keep in mind that version history will not be available until you
make a commit. Git cannot track changes unless it has been added to a folder,
so any changes made before adding Git are without history.

The Git Workflow
In the previous steps, we performed several operations: initializing (init),

adding (add), and committing. In the init step, we added Git support to
the folder. This is done only once for a repository. With the add command,
we add files into Git to be tracked, then we commit the changes with the
commit command.

The only step missing is the “push” (sometimes referred to as “sync” in
GUI tools) command. Pushing allows you to sync your commits with another
repository in another location. If you have added the repository to GitHub,
you will push to GitHub.

We’ll get into the nuances of pushing a repository later. For now, let’s
review the basic workflow. In figure 150, we create a new file called new.html
and observe its life cycle within the Git paradigm.

fig. 150

288 HTML & CSS QUICKSTART GUIDE

This workflow is repeated over and over, except the creation process is
omitted if the file already exists. You can also skip the add part if you use the
-a option on git commit, because it will include all changed files previously
added (GUI programs will offer “include unstaged changes” or a similar
option). With each commit, be sure to include a useful and meaningful
message so you’ll be able to refer to that change in the future, then push to
GitHub if desired.

Git Branches
By default, your project has one branch, the master branch. For simple,

single-developer projects, this may be all you need, but complex projects
benefit significantly from multiple branches. Think of branches like diverging
highways. You’re still moving forward but in slightly different paths.

Branching your development allows you to work on new changes
that might break your existing work, without disrupting your current site.
Branches, when given meaningful names like “new_navigation_menu,” are
easily spotted in an online tool like GitHub and let you deviate from the
existing code without affecting others.

To create a new branch, run…

 git checkout -b new _ branch

…(where new _ branch is the name). GUI programs have buttons enabling
the creation of new branches within your repository.

To switch branches, simply run:

 git checkout master

In this case, you return to the master branch. Note the omission of the -b
option, since the branch already exists.

When you’re ready to merge your shiny new changes from new _ branch

into master, you have two options. The easiest is to use GitHub to create a
pull request between branches and then merge them using GitHub’s online
interface. This pull request allows you (or another coder) to review the
changes before merging them into the master branch. This adds a layer of
oversight that helps reduce mistakes in live websites. GUI tools have similar
functionality, or you can use the command line.

16-04

16-05

289Git

 git checkout master

 git merge new _ branch

If you want to delete the new _ branch branch after merging, you can run:

 git branch -d new _ branch

A final note about branches: if your separate branch will be used for a
long time, it’s advisable to periodically pull changes from the master into the
new branch so that you don’t end up with a branch that is horrifically out of
date. If you work in a large team, a merge can be disastrous if your code hasn’t
kept up with what’s going on in the master and other branches.

Git Production Auto-Sync
In some web hosting control panels, you can configure an auto-pull from

the master branch of a hosted repository on a provider like GitHub. This
will automatically pull the contents of master from GitHub whenever you
commit to master, providing a one-touch solution for deploying code to
your website.

If you don’t have this capability in your control panel, you can use your
control panel to create a scheduled task (often called a “cron job”) that runs
the following code:

 cd ~/public _ html

 git pull origin master

In the previous example, replace public _ html with the path that
contains your website files (if necessary) and origin master with the name
of the remote Git repository and remote branch to pull. If you use GitHub,
origin master will be the correct values.

Web hosts have a variety of control panels, and covering them all would
be far beyond the scope of this book. However, the basic instructions,
perhaps with the help of your web hosting technical support team to fill in
any provider-specific values, should get you up and running.

GitHub and GitLab
Providers like GitHub and GitLab provide a centralized location to sync

your Git repositories for easy collaboration with other developers.

16-06
and

16-07

290 HTML & CSS QUICKSTART GUIDE

You may have read that sentence and wondered why you would want a
centralized location when Git touts itself as being a decentralized technology.
Decentralization is indeed a powerful design feature of Git, but having a
central repository with issue tracking, a wiki, and comment features
amounts to a powerful suite of tools that will aid and enhance your team’s
collaborative efforts.

As you know by now, the ClydeBank Coffee Shop website and the source
code for this entire book is stored on GitHub. You don’t need an account
to download or browse the code, but a free account is required for access to
advanced features on GitHub, like forking and issue tracking.

Chapter Recap

 » The version history and branch components of Git are powerful
features for both stand-alone developers and those working on a team.

 » GitHub is a popular provider of hosted Git repositories, but there are
other providers. Most let you create and host repositories for free.

291What’s Next?

| 17 |
What’s Next?

Chapter Overview
 » PHP, Python, and other backend languages process data.
 » Web design is a dynamic field that constantly changes.

The web is full of emergent technologies, and no book can hope to cover
everything about even the most current tools and frameworks. Now that you’ve
learned about HTML and CSS and common workflows, it’s time to discuss
a few specific technologies that are in use now and can empower you with
resources and techniques to integrate new technologies as they are developed.

It’s important to note that most of the topics covered in this chapter are
related to HTML and CSS but are vast subjects, and thorough coverage of
them is beyond the scope of this book.

WordPress
WordPress is a very popular and extremely powerful content management

system. We’ve discussed it several times throughout the book, and in chapter
15 we covered the basics of how to add posts and pages and edit the template.
Exploring the concepts and techniques of WordPress-centric web design is
beyond the scope of this book, but you will likely use or at least encounter
WordPress in your web design career, so it’s essential to have a good familiarity
with its functionality.

While most users can add pages and posts using the simple editor in
the administration panel, web designers will be able to edit the HTML and
CSS used in the pages’ theme. WordPress themes have become expansive
in their capabilities and customizations, but I’ve found that even in the most
configurable themes, a few lines of CSS are still needed to achieve the look
and feel I’m trying to achieve.

292 HTML & CSS QUICKSTART GUIDE

JavaScript and jQuery
JavaScript is a flexible and powerful programming language that your

browser fully understands and can use to automate, process, and extend the
functionality of HTML and CSS.

We’ve discussed where JavaScript lives in your overall website structure
(usually in .js files in a js folder, or sometimes in an assets folder) and some
of its capabilities. Like the other technologies in this chapter, we could easily
fill several books covering JavaScript.

jQuery is a JavaScript framework that helps developers write clear,
concise JavaScript code that works well on all major browsers. Before modern
JavaScript frameworks, developers had to adjust for the variations in the
implementation of JavaScript in each browser.

CSS
 #sale { color: red; }

HTML
 <p id="sale">SALE STARTS TODAY</p>

JavaScript
 // Show the sale paragraph

 $("sale").show();

 // Or hide it!

 $("sale").hide();

 // Change it to blue text

 $("sale").css("color", "blue");

This JavaScript code showcases a small sliver of functionality from jQuery.
In each line, the paragraph with the id of sale is addressed as an object.
An object is a programming term for an instance of a collection of related
program variables and functions. Those functions related to that object (that
is, show, hide, and css), allow you to show, hide, and change CSS elements
of that paragraph.

Each of these lines of code can be bound to a particular event on the page.
For example, jQuery can monitor when a user clicks a button.

HTML
 <input id="toggle" type="button" name="toggle"

value="Toggle Sale">

17-01.css
and

17-02.html

17-03.js

17-04.html

293What’s Next?

JavaScript
 $("#toggle").click(function() {

 $("#sale").toggle();

 });

In this example, when the user clicks the “Toggle Sale” button, the “toggle”
function on the “sale” object is called, triggering the element to display if it is
currently hidden and hide if it is presently shown.

Backend Languages Like PHP and Python
We’ve hinted at the power of backend languages like PHP and Python.

Let’s explore them in more detail.

PHP
For a long time, PHP was an extremely popular backend programming
language. It still is, especially since it powers popular CMS software like
WordPress. PHP lets WordPress process user input and retrieve content
from a MySQL database.

PHP has a relatively straightforward syntax that can be easily mixed with
HTML code, making it a popular choice for web designers. PHP code
is contained within <?php and ?> marks in a .php file, but HTML code
can be used outside of those delimiters.

Form input fields can be accessed and used easily:

 Your name is <?php echo $ _ REQUEST['name']; ?>.

If a contact form has a name input box and the action is set to a file
with this code with a .php extension, the text “Your name is David” will
appear (provided you enter “David” in the input box called “name.”

Coding a form in this way requires PHP on the web server, but many web
servers, especially Linux-based web servers, already have this installed.

Python
Python is a modern, object-oriented programming language. An object-
oriented language uses special structures called classes (not to be confused
with HTML/CSS classes). When we discussed jQuery, we referenced

17-05.js

17-06.php

294 HTML & CSS QUICKSTART GUIDE

the sale paragraph as an object. In programming languages like Python
and JavaScript, classes act like templates for objects, allowing developers
to organize variables and functionality logically.

Python has a cleaner syntax and a wide assortment of modules that can
be integrated into the language to extend its functionality. It also requires
proper indentation in code, enforcing readable source.

Unlike PHP, Python requires a bit more than just a .py file in order to
run on a web server. Special configuration is needed to either spawn the
Python script when the visitor accesses the code or run the program and
have it listen for requests from the web server. A web host specializing in
Python will be able to configure this for you.

David’s Perfect Cup
You have dramatically improved the ClydeBank Coffee Shop website

over the course of this book.
As I may have mentioned a few chapters back, the hard work and

dedication you have undoubtedly shown by learning HTML and CSS has
motivated me to take a crack at redesigning the ClydeBank Coffee Shop
website. I threw in some extra little bells and whistles that you can explore
on your own time. I’ve put all of my web design files in a repository called

“David’s Perfect Cup.” You can find it on our GitHub site here: www.github.
com/clydebankmedia/davids-perfect-cup.

As a final exercise, why not brew your own perfect coffee shop website?
You can use mine as a guide or let your creativity run wild and do something
completely unique. The choice is yours.

We want to see your work. Please share your HTML and CSS creations
with us on social media using the hashtag #CBM-HTML.

www.github.com/clydebankmedia/davids-perfect-cup
www.github.com/clydebankmedia/davids-perfect-cup

295What’s Next?

Chapter Recap

 » Backend languages like PHP and Python help process data,
interface with a database, and display dynamic content.

 » Web design, like most topics in information technology, is an
exciting field that encourages never-ending learning.

297

Conclusion
Throughout this book, you’ve been introduced to HTML, CSS, and several
related technologies, and you’ve used your growing body of knowledge to edit
the ClydeBank Coffee Shop website. You’ve learned how to stage your work,
create an effective workflow, and collaborate with teams using source code
management systems like Git. You’ve learned the languages (HTML and
CSS) that define the underlying technology for nearly all the display systems
in use today. You now hold a tremendous advantage—one you can leverage
in your personal and professional life.

So the answer to the question “What’s next?” largely depends on you.
Will you take this information and build a website for a personal hobby? For
your company? For your child’s sports team? Perhaps you’ll launch the web’s
next successful startup.

Learning never stops. This is especially true with HTML and CSS. Web
design is truly an art that takes a few hours to learn and a lifetime to master,
and part of that mastery is keeping up with changes and advancements in
the field.

Congratulations on your achievement. We cannot wait to see what is
next for you!

REMEMBER TO DOWNLOAD
YOUR FREE DIGITAL ASSETS!

Use the camera app on your mobile phone to take a picture of the
QR code or visit the link below and instantly access your digital assets.

www.clydebankmedia.com/htmlcss-assets

TWO WAYS TO ACCESS YOUR FREE DIGITAL ASSETS

or

HTML Starter Template

Online Resource Library

All Source Code from Examples

299Appendix I: Web Hosting

Appendix I
Web Hosting

At some point, you will need to find a server to host your site. There is a wide
range of places, from free to full-fledged dedicated hosting companies. The
pricing typically depends on features. If you are doing simple HTML hosting,
then you won’t need many resources, but it is worth doing some research to
determine which hosts and plans will best suit your needs (figure 151).

A sample comparative feature list for a website hosting service

When choosing a web host, you will likely want to consider the
following features:

fig. 151

300 HTML & CSS QUICKSTART GUIDE

 » Storage: How much space is provided? Most HTML and CSS files
are not large (they are just text files, after all), but if you have a site
with many multimedia features or photos, you may need a lot of
storage space.

 » Bandwidth: Bandwidth refers to the amount of data that can be
transferred from the servers hosting your site to the users requesting
information from it. Typically, bandwidth is measured in one-
billion-byte increments, called gigabytes (often abbreviated GB or
GiB). Prices for bandwidth are given in tiers. Creating a website
that receives a lot of traffic can end up being costly—especially if
users are downloading large files beyond the simple graphics found
on a basic web page (figure 152).

Source: https://tools.pingdom.com/

fig. 152

301Appendix I: Web Hosting

 » Uptime: Will your website be available when people try to reach it?
Web servers are far from infallible, and unforeseen circumstances
like power outages, hardware failures, and denial-of-service
(DoS) attacks are common problems with hosting. Even routine
maintenance can take a server down for a small portion of each
month. Web hosts usually calculate uptime as a percentage. A
site with 99 percent uptime sounds like a great deal until you
realize how much downtime that percentage is each month.
Would a website that goes off-line fourteen minutes of every day
be acceptable? What if the site had excellent daily uptime but
went down for three days one year during a crucial time for your
business? Both of those scenarios are possible within the limits of a
99 percent uptime guarantee (figure 153).

UPTIME
GUARANTEE

DAILY
MAX

WEEKLY
MAX

MONTHLY
MAX YEARLY MAX

99% 14m 24.0s 1h 40m 48.0s 7h 18m 17.5s 3d 15h 39m 29.5s

99.5% 7m 12.0s 50m 24.0s 3h 39m 17.5s 1d 19h 49m 44.8s

99.9% 1m 26.4s 10m 4.8s 43m 49.7s 8h 45m 57.0s

 » Security: If your website deals with the personal information of
your customers, you will naturally be interested in security to keep
that information safe. Website hosting companies offer a variety
of safety and security features, which can include HTTPS, SSL
certificates, content delivery networks (CDNs), firewalls, and attack
protection.

 » Tech Support: Good support is essential, especially for complex
sites. You will need to be able to contact someone if something goes
wrong or to find out if they have a solution that will meet a need.

 » Backup: Does the host provide backup services that will preserve
your website in the event of a server crash or other unanticipated
incident?

fig. 153

302 HTML & CSS QUICKSTART GUIDE

Some hosting companies offer services beyond providing a platform for
HTML, CSS, and image files. You may need dynamically loading content
from a database, or you may wish to connect your website to an email server
and allow visitors to send email from a contact form.

 » Database Support: Can you create and use MySQL, PostgreSQL,
or Microsoft SQL databases? WordPress requires one MySQL
database. Some shared web hosting companies limit database size—
something to keep in mind if you plan on building a large site with
WordPress or a similar CMS.

 » SSH / Shell Access: Can you do any command-line work on
the server? This is helpful for Git and some PHP tools, such as
Composer.

303Appendix II: FTP

Appendix II
FTP

FTP, or file transfer protocol, is a method of sending and receiving files from
remote servers. Once you understand the general workflow of FTP, it will
seem much like copying files on your computer. However, understanding
FTP involves defining a few terms and wading through an alphabet soup of
acronyms so you’ll recognize related terms.

It is important to note that FTP is an internet protocol (just like HTTP
or HTTPS) and thus is not defined or controlled by a particular program.
Various FTP programs exist, but they all provide a way for you to send and
receive files to and from another computer.

Almost every web hosting company provides FTP access (see appendix I
for details on web hosting). Nowadays, FTP is increasingly referred to by its
more secure variant, SFTP, which stands for secure file transfer protocol. It
encrypts the connection with SSL so that authentication information and file
contents are kept from prying eyes and would-be attackers.

Sometimes SFTP is also called SCP, but this is a misnomer. SCP stands
for Secure Copy, a protocol built upon SSH (Secure Shell), which is a method
allowing users to access the command line of a server via a secure, encrypted
tunnel. SCP lets the user transfer files in much the same way as with SFTP,
so web hosting companies and software programs often reference SCP and
SFTP in similar scenarios.

Now that the terms are out of the way, we’ll need to discuss software.
Almost every modern operating system includes a command-line client
named ftp, but using it for anything but the most basic tasks is tedious at
best. FTP uses commands like GET (retrieving files), PUT (sending files),
and LIST (listing files), and, though typing is possible, you’ll want an FTP
program to present file listings and download/upload commands in an easy-
to-use interface.

Common FTP Software Titles
As of this publication, some popular FTP clients include the following:

304 HTML & CSS QUICKSTART GUIDE

 » FileZilla (Windows, macOS, and Linux)
 » WinSCP (Windows)
 » Transmit (macOS)
 » ExpanDrive (Windows, macOS, and Linux)

FileZilla, WinSCP, and Transmit present, by default, a two-pane
explorer. Files on the left-hand side are local to your computer, and files on
the right-hand side are on the server. Dragging and dropping files from the
local pane to the remote pane initiates a file transfer. In both windows, you
can click on icons to navigate to folders, create new files and folders, and edit
and delete data.

Programs like ExpanDrive represent the remote FTP server as a drive
letter, allowing you to navigate, copy, edit, and delete files and folders as
though they were on your local system. This can be very useful, but keep in
mind that working directly on the server offers no easy backup route. For this
reason, web designers may wish to either keep a local copy of their files or use
a software package that features both local and remote panes to display files
on their computer and files on the remote server.

Connecting to an FTP Server
All FTP clients will prompt you for information required to connect you

to a remote FTP server. Necessary details include the following:

 » Server hostname or IP address
 » Username
 » Password
 » Remote path for files

Your web hosting company will provide the server hostname for FTP.
This is sometimes named ftp.YourWebsite.com, but it may also be the name
of the server. Or they may provide an IP address. Either will work. Unless
you created a username and password in your web hosting control panel, your
provider assigns these details.

The remote path isn’t required, but knowing where your files are going
will save you a lot of time digging through your web hosting account. On
cPanel-based shared hosting servers, the remote directory is public _ html.
On Plesk, it’s httpdocs. Dedicated or virtual private Linux servers may use
/var/www/html. If in doubt, check with your provider.

305Appendix II: FTP

Some Final Notes on FTP
FTP provides an excellent way to back up an existing website. Simply

connect to your FTP server and download all your files. Many FTP clients
provide a “Download All” or “Synchronize” function to allow you to
download everything from the remote server in one click.

FTP can be incompatible with Git, and using FTP to place files will
likely break your Git workflow. If you’re using Git to push your website files
to your web server, you will only want to use FTP to back up your site, not
to upload files.

307Appendix III: Sizing Units

Appendix III
Sizing Units

As discussed in chapter 7, CSS provides a great deal of flexibility in how we
assign size, padding, margins, and positions to our elements. Several different
units of measurement are available to determine the size of anything on a
web page—font size, margins, spacing, padding, proportions of elements,
and more. Units of measurement can be used independently or in conjunction
with one another.

Pixels
Pixels, or px, are finite points in an image. They are the smallest element

of an image and thus define the exact size of the target element.

An HTML coder wants to display an image at a specific size. He uses
pixels to quantify his desired sizing specifications:

 img {

 width: 400px;

 height: 600px;

 }

Percent
Percent, designated by the % character, can be used to create flexible items,

which will expand or shrink to fit the size of a container.
For instance, if we want to have an image that resizes automatically, we

can set the width to be 100%. Setting the height to auto will ensure that the
image remains correctly proportioned.

 img {

 width: 100%;

 height: auto;

 }

A-01.css

A-02.css

308 HTML & CSS QUICKSTART GUIDE

vw and vh
Since users view web pages on devices of varying size—laptop computers,

tablets, smartphones—we often use “responsive design” sizing units, which
will tailor their effects in response to the size of the viewport, or viewing area.

The viewport width (vw) and viewport height (vh) units are used to
specify how an element will appear in relation to the device (the viewport).
The easiest way to understand these units is to think of them as similar to
“percent,” but instead of being relative to a defined element, they are relative
to the screen or viewport itself.

1 vw is equal to 1/100, or 1%, of the viewport’s width. Similarly, 1 vh
equals 1/100 of the viewport’s height.

em/rem
As described in chapter 8, em is a type of relative formatting that specifies

a font size in relation to the current font-size setting. The measurement is
simply a multiple of the current size. For example, 1.5 em is equal to 1.5
times the current font size.

The rem unit is similar, but instead of being relative to the current font
size, rem relates to the root (HTML) element, meaning that any setting of
rem will be in relationship to the top level and not the current element.

309Appendix IV: Open Graph / Metadata

Appendix IV
Open Graph / Metadata

The Open Graph protocol was created by Facebook to allow web designers to
easily add their websites to Facebook’s social graph, a model of the relationships
between people, pages, businesses, and other entities on the web. Though
initially started by Facebook, other providers, including Twitter, WordPress,
Pinterest, Google, and others, use either the Open Graph protocol or subtle
variations thereof.

Open Graph data provides hints to social media platforms of metadata
that the system can use to better display and index your page. Absent this,
most systems guess as to page title, description, and feature image. Presenting
this data allows pages that link and reference your content to display to
visitors the information you want them to see. These meta tags are added to
the <head></head> element of your web page.

 <meta property="og:title" content="ClydeBank Media">

 <meta property="og:type" content="website">

 <meta property="og:url" content="https://www.

clydebankmedia.com/">

 <meta property="og:image" content="https://www.

clydebankmedia.com/wp-content/uploads/2020/06/3D _ books _

display _ 2 _ 1000.png">

 <meta property="og:description" content="The official home

of ClydeBank Media, publisher of best-selling books and

digital courses. We make learning easy.">

Let’s examine some of these specific properties in detail.

 » og:title: The name, or title, of your content. In this case, we
simply list the name of the page. If you’re referring to a media file,
you can provide the name of the content.

 » og:type: The type of content. In this example, we are referring to a
website, but there are several other “object types” recognized by the
protocol. For an extensive listing visit ogp.me.

A-03.html

310 HTML & CSS QUICKSTART GUIDE

 » og:url: The full URL of the content.

 » og:image: The image you’d like the platform to use to represent
your content. For a website linked in Facebook, this image would
be used as the image of the post.

 » og:description: A short description of the content.

The og:title, og:type, og:image, and og:url are required, but
og:description is recommended. If you are referencing a page or article
that isn’t the main URL or isn’t referring to a media file, the og:site _ name
property allows you to give a name to the site that may differ from the title
of that specific page.

311Appendix V: Coffee Shop Solutions

Appendix V
Coffee Shop Solutions

Downloading the Website from GitHub

To download the ClydeBank Coff ee Shop website code, navigate in your
browser to github.com/clydebankmedia/clydebank-coff ee-shop.

Click on the green “↓ Code” button, then click “Download ZIP” to
receive a ZIP fi le. Extract the ZIP fi le (usually by right-clicking the fi le in
your fi le manager and clicking “Extract”) (fi gure 154).

 Th e GitHub code download dialog

Introduction: Adding an “About” Page
After you’ve extracted the website fi les from the ZIP fi le, open up

the folder/directory. Copy (CTRL+C on a PC; CMD+C on a Mac) the
template.html fi le, then paste the fi le (CTRL+V; CMD+V) back into the
same directory. Select the newly created fi le (it might be named template
2.html or similar) and rename it to about.html. You’re done.

fi g. 154

312 HTML & CSS QUICKSTART GUIDE

Chapter 4: Adding a Description and Title
In chapter 4, we were tasked with adding a meta description tag in the

header. Here’s the completed code for your reference:

 <head>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width,

initial-scale=1, shrink-to-fit=no">

 <title>ClydeBank Coffee Shop</title>

 <link rel="stylesheet" type="text/css" href="css/style.

css">

 <meta name="description" value="ClydeBank Coffee Shop

features premium coffee at an affordable price.">

 </head>

Be sure to always save your changes in the code editor.

You can open your browser and view the source (usually Ctrl+u) to verify
that the changes were made. The title tag will show in the name of the tab
in your browser.

Chapter 5: About Page
In chapter 5 in the section called “ClydeBank Coffee Shop: About Page”

we added content and changed the title of the About page.
Here’s the completed code for your reference:

about.html: Main Content Portion
 <main>

 <div class="container">

 <p> ClydeBank Coffee Shop welcomes you to our website. If

you’re in the area, we kindly ask you to stop by and have a

cup with us.</p>

 </div>

 </main>

about.html: Title
 <head>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width,

A-04.html

A-05.html

A-06.html

313Appendix V: Coffee Shop Solutions

initial-scale=1, shrink-to-fit=no">

 <title>About ClydeBank S</title>

 <link rel="stylesheet" type="text/css" href="css/style.

css">

 </head>

Chapter 5: Navigation
In the “ClydeBank Coffee Shop: Navigation” section, we fixed issues

with the navigation. Here’s the completed code for your reference:

index.html
<div class="container">

 <li class="active">Home

 About

 Event

 Contact

</div>

contact.html
<div class="container">

 Home

 About

 Event

 <li class="active">Contact

</div>

event.html
<div class="container">

 Home

 About

 <li class="active">Event

 Contact

</div>

A-07.html

A-08.html

A-09.html

314 HTML & CSS QUICKSTART GUIDE

about.html
<div class="container">

 Home

 <li class="active">About

 Event

 Contact

</div>

Chapter 8: Look and Feel
In chapter 8, we removed the gray background and replaced it with a

more coffee-friendly color scheme. We did this by editing the style.css in the
CSS folder.

Here is the previous code, and the code that replaces it. Please note that
these items are not in the right order, but rather placed throughout the file.

 header {

 background: #363F48;

 padding: 10px;

 }

 nav { background: #262d33; }

 nav li a {

 color: #AFB2B6;

 display: inline-block;

 padding: 10px 10px;

 }

 footer {

 background: #333;

 color: #fff;

 padding: 10px;

 height: 100px;

 }

The code should be changed to:

A-10.html

A-11.css

315Appendix V: Coffee Shop Solutions

 header {

 background: sienna;

 padding: 10px;

 }

 nav { background: saddlebrown; }

 nav li a {

 color: white;

 display: inline-block;

 padding: 10px 10px;

 }

 footer {

 background: saddlebrown;

 color: #fff;

 padding: 10px;

 height: 100px;

 }

Chapter 9: Advertisement
In chapter 9, we added an advertisement for free delivery on orders of $15

or more.

CSS
 #top-announcement {

 position: relative;

 top: 0;

 right: 0;

 left: 0;

 background-color: yellow;

 text-align: center;

 padding-top: 3px;

 padding-bottom: 3px;

 color: black;

 }

HTML
 <div id="top-announcement">THIS MONTH ONLY: FREE delivery

on orders $15 or more!</div>

A-12.css

A-13.css

A-14.html

316 HTML & CSS QUICKSTART GUIDE

If you use the word “ad” in the id of this element, an ad-blocker may
hide the div.

Chapter 11: Contact Form
In chapter 11, we added a contact form to the site. Here is the code to add

to the contact.html page.

 <h1>Contact Us</h1>

 <form action="contact.html" method="POST">

 <label for="name">Name</label>

 <input type="text" name="name" required>

 <label for="email">Email</label>

 <input type="email" name="email" required>

 <label for="message">Message</label>

 <textarea name="message" rows="5" cols="60"

maxlength="2000" required></textarea>

 <input type="submit" name="submit" value="Send

Message">

 </form>

Chapter 12: Sprites
In chapter 12, we switched from separate image files to sprites. Included

are the CSS modifications necessary to enable the sprite classes and changes
to the HTML files necessary for their inclusion.

CSS
 /* Sprites */

 .sprite-palette {

 display: block;

 width: 40px;

 height: 40px;

 padding: 0;

 border: none;

 background: url('../images/sprite.png') 0 0;

 }

A-15.html

A-16.css

317Appendix V: Coffee Shop Solutions

 .sprite-guitar {

 display: block;

 width: 40px;

 height: 40px;

 padding: 0;

 border: none;

 background: url('../images/sprite.png') -40px 0;

 }

 .sprite-mask {

 display: block;

 width: 40px;

 height: 40px;

 padding: 0;

 border: none;

 background: url('../images/sprite.png') -80px 0;

 }

 .sprite-controller {

 display: block;

 width: 40px;

 height: 40px;

 padding: 0;

 border: none;

 background: url('../images/sprite.png') -120px 0;

 }

 .sprite-mic {

 display: block;

 width: 40px;

 height: 40px;

 padding: 0;

 border: none;

 background: url('../images/sprite.png') -160px 0;

 }

 .sprite-quill {

 display: block;

 width: 40px;

 height: 40px;

318 HTML & CSS QUICKSTART GUIDE

 padding: 0;

 border: none;

 background: url('../images/sprite.png') -200px 0;

 }

 .sprite-cup {

 display: block;

 width: 40px;

 height: 40px;

 padding: 0;

 border: none;

 background: url('../images/sprite.png') -240px 0;

 }

 .sprite-utensils {

 display: block;

 width: 40px;

 height: 40px;

 padding: 0;

 border: none;

 background: url('../images/sprite.png') -280px 0;

 }

 .sprite-milk {

 display: block;

 width: 40px;

 height: 40px;

 padding: 0;

 border: none;

 background: url('../images/sprite.png') -320px 0;

 }

HTML
Use these span elements in place of img elements to display the

appropriate icon.

 A-17.html

319Appendix V: Coffee Shop Solutions

Chapter 12: Gradients
In chapter 12, we added a gradient to the header. The color choice is

up to you, but a gradient from sienna to chocolate is shown below in
Snippet_A-19.css.

The header background was originally defined with the following code:
 header {

 background: sienna;

 padding: 10px;

 }

The CSS rule is now changed to:
 header {

 background-image: linear-gradient(sienna, chocolate);

 padding: 10px;

 }

Chapter 12: Keyframe Animation
In chapter 12 we added an animation to display a panoramic image. This

sets the background position to “left” at the start and “right” at the end. We
don’t need any math, which makes it easier to swap images in the future.
We have specified a longer duration so the image does not move frantically,
and we’ve set the iterations to infinite so it will continue to move. Normally,
I’d advise against a constantly moving animation, but this one is subtle and
less distracting than most. To account for the changes in direction, we apply
the ease-in-out animation-timing function, which has a smooth start and
finish with a slightly faster speed during the middle of the animation.

CSS
 #coffeehouse {

 background-image: url("https://otherfiles-cbm.s3-us-

A-18.css

A-19.css

A-20.css

320 HTML & CSS QUICKSTART GUIDE

west-2.amazonaws.com/CoffeeShopImage.jpg");

 background-size: cover;

 width: 100%;

 height: 250px;

 animation-name: background-pan;

 animation-duration: 10s;

 animation-timing-function: ease-in-out;

 animation-iteration-count: infinite;

 animation-direction: alternate;

 }

 @keyframes background-pan {

 from { background-position: left; }

 to { background-position: right; }

 }

HTML
The main element already exists, so we’ll just add id=“coffeehouse” to it.

 <main id="coffeehouse">

Chapter 13: Going Mobile
In chapter 13, we explored media queries and ended the chapter with

an exercise to make the ClydeBank Coffee Shop website look good on both
laptop/desktop screens and phones, with a minimum and maximum screen
width of 375 and 750 pixels, respectively.

This solution will be a bit unique in that there isn’t necessarily one way
to accomplish this task. Making a website look good is an entirely subjective
task, so ultimately you will be the judge of your code on this exercise.

CSS
 @media only screen

 and (min-device-width: 375px)

 and (max-device-width: 750px) {

 /* Reduce padding in main element */

 main { padding: 5px; }

 /* Fix nav bar */

A-21.html

A-22.css

321Appendix V: Coffee Shop Solutions

 nav { height: 35px; }

 nav ul { padding-top: 7px; }

 nav li { display: inline; }

 nav li a { color: white; }

 /* Add extra spacing between menu items */

 .menu-item {

 padding-top: 10px;

 padding-bottom: 10px;

 }

 .title-item h2 { font-size: 1em; }

 /* Fix add on item */

 .menu-item.additional-items h2 {

 padding-top: 10px;

 padding-bottom: 10px;

 width: 100%;

 float: none;

 }

 /* Reduce footer header size and add some padding */

 footer h2 {

 font-size: 1.4em;

 padding-top: 3px;

 padding-bottom: 3px;

 }

 /* Reduce size of footer text to avoid awkward

wrapping */

 footer li { font-size: 0.85em; }

 /* Add padding to bottom of footer */

 footer { padding-bottom: 5px; }

 }

323About the Author

About
the Author

DAVID DUROCHER

David DuRocher teaches web design and is
a technical account manager at Adobe. A
childhood love of video games helped fuel
his passion to learn more about computers
and programming languages. He attended
the Rochester Institute of Technology and
was later offered a teaching position at
CUNY City College of Technology.

He enjoys teaching and developing web design curriculum, drawing great
joy from seeing his students thrive with their newfound skills in HTML
and CSS. His enthusiasm for education and a desire to share his knowledge
led him to author this book.

When David isn’t working or teaching, he enjoys exploring the outdoor
beauty of New England and renovating his historic Victorian house. David
lives with his wife in Northwest Connecticut.

325About ClydeBank Media

About
ClydeBank
Media
We create simplified educational tools that allow our customers to successfully
learn new skills in order to navigate this constantly changing world.

The success of ClydeBank Media’s value-driven approach starts with
beginner-friendly high-quality information. We work with subject matter
experts who are leaders in their fields. These experts are supported by our
team of professional researchers, writers, and educators.

Our team at ClydeBank Media works with these industry leaders to break
down their wealth of knowledge, their wisdom, and their years of experience
into small and concise building blocks. We piece together these building
blocks to create a clearly defined learning path that a beginner can follow for
successful mastery.

At ClydeBank Media, we see a new world of possibility. Simplified learning
doesn’t have to be bound by four walls; instead, it’s driven by you.

327Glossary

Glossary
Attribute
An additional option for an
HTML element that modifies its
behavior or appearance.

Breakpoint
The point at which CSS rules
respond to the width of a device,
“breaking” content from (usually)
a horizontal to a vertical layout.

Code Editor
A text editor with specific
features oriented toward
developers. Code editing
software typically includes
syntax highlighting, automatic
indentation, and multiple-file
management.

Content Delivery Network
(CDN)
A service that hosts CSS,
JavaScript, images, and
sometimes HTML code on
a network of geographically
dispersed servers for increased
speed and reliability. Using a
CDN frees the web server from
having to serve all web page
assets and leaves more processing
power for serving HTML and
dynamic pages.

Content Management System
(CMS)
Software that allows web
designers and content creators
to easily add, edit, and organize
a website with little to no
knowledge of HTML, CSS, or
related technologies. WordPress,
Joomla, and Drupal are
examples.

Cross-Site Scripting
The act of including or injecting
code (usually JavaScript) from
another page.

CSS (Cascading Style Sheets)
A coding system used to apply
visual styles to HTML elements.

Deploying
The process of uploading website
files to a web server.

Development Website (or
Development Server)
A website used to develop
new content or features.
Development sites are generally
not open to the public.

Element
A part of HTML code that
instructs the browser to
display content or adjust the
functionality of a web page.
Elements usually contain a start
and end tag and can contain
other elements.

Framework
In web design, a collection of
CSS and JavaScript libraries that
provide structure and utility to a
website. Bootstrap is an example
of a web design framework.

Hamburger Menu
A three-line vertically stacked
icon that typically opens a menu
for website navigation on a
mobile device.

FTP (File Transfer Protocol)
A network protocol that
facilitates file uploads and
downloads to and from another
computer. When referenced in
the field of web design, FTP
refers to the technology used to
upload website HTML, CSS,
and related files to a web server.
FTP software uses this protocol
to perform this transfer.

328 HTML & CSS QUICKSTART GUIDE

Full Stack Web Developer
A web designer who also codes
JavaScript and works with backend
languages like PHP and Python.

HTML (HyperText Markup
Language)
A markup language that defines
the appearance, behavior, and
content of a web page.

Landscape Mode
A display orientation used with
devices that are wider than they
are tall. This mode is often used
for movies, videos, and wide-
screen photos.

Link (or Hyperlink)
An HTML element that, when
clicked, takes the user to another
URL.

Markup Language
A defined set of codes, symbols,
and idioms that apply style or
behavior to content.

Open-Source
Software that has its complete
source code available for anyone
to browse, use, alter, and
distribute.

Portrait Mode
A display orientation used with
devices that are taller than they
are wide.

Production Website (or Live
Website/Server)
A website that is currently online
and available for public use, in
contrast with development and
staging websites.

Rendering Engine
The portion of a web browser
that converts HTML and CSS
code into a usable web page.

Responsive Design
A type of web design using
media queries and related
methods to adjust to various
screen sizes and devices.

Shared Web Hosting
The process of hosting multiple
websites from a single server.
Shared web hosting dramatically
lowers the cost of website hosting
but can be limiting for sites with
a lot of traffic.

Social Graph
A web-like network detailing
links and connections between
people, places, businesses,
groups, and other organizations.

Source Code Management
(SCM)
Software and systems that enable
web designers and developers
to manage updates and versions
of source code. SCM systems
usually facilitate collaboration
between developers.

Staging Website (or Staging
Server)
A website generally not open to
the public that allows the web
designer(s) to test out new code
without breaking the production
website. Once approved and
tested, staging content is
deployed to production.

Tag
A piece of HTML code that
signifies the start or end of an
HTML element. The term is
sometimes used to describe an
entire HTML element, especially
if the element has no end tag.

URL (Universal Resource
Locator)
An address of a website or other
resource. May also be referred to
as “uniform resource locator.”

Web Designer (or Web
Developer)
A person who writes HTML and
CSS code for web pages. Some
web designers also fulfill the role
of graphic designer by creating or
modifying photos or illustrations.

Web Browser
Software that allows a user to
browse and interact with web
pages.

Web Server
A computer that serves HTML
web pages, CSS files, and other
content to users via the internet.

329References

References
DirtyMarkup. n.d. 10BestDesign. Accessed February 24, 2020. https://www.10bestdesign.com/dirtymarkup/.

HTML: Living Standard. n.d. Accessed February 21, 2020. https://html.spec.whatwg.org.

Interactive Accessibility. n.d. Accessibility Statistics. Accessed February 14, 2020. https://www.interactiveaccessibility.com/
accessibility-statistics.

Lemelson-MIT. n.d. “Linus Torvalds: Linux Operating System, Computing and Telecommunications.” Accessed
December 10, 2020. https://lemelson.mit.edu/resources/linus-torvalds.

Lippay, Laura. 2016. “What You Should Know About Accessibility + SEO, Part I: An Intro.” Moz. March 30. https://
moz.com/blog/accessibility-seo-1.

Otto, Mark. 2012. “Bootstrap in A List Apart No. 342.” Markdotto.com. January 17. http://markdotto.com/2012/01/17/
bootstrap-in-a-list-apart-342/.

Software Freedom Conservancy. n.d. A Short History of Git. Accessed June 10, 2020. https://git-scm.com/book/en/v2/
Getting-Started-A-Short-History-of-Git.

United States Census Bureau. 2012. “Nearly 1 in 5 People Have a Disability in the U.S.” News Release No. CB12-134.
July 25. https://www.census.gov/newsroom/releases/archives/miscellaneous/cb12-134.html.

W3C. n.d. Facts about W3C. Accessed February 21, 2020. https://www.w3.org/Consortium/facts.

W3Techs. 2020. W3Techs. Accessed February 14, 2020. https://w3techs.com/technologies/details/cm-wordpress/all/all.

Wayner, Peter. 2011. “13 features that make each Web browser unique.” InfoWorld. May 2. https://www.infoworld.com/
article/2624020/13-features-that-make-each-web-browser-unique.html.

Weber, Jason. 2016. “Get More Out of Your Battery with Microsoft Edge.” Windows Experience Blog, Microsoft. June 20.
https://blogs.windows.com/windowsexperience/2016/06/20/more-battery-with-edge/.

Wikipedia. 2020. Programming Languages Used in Most Popular Websites. January 14. https://en.wikipedia.org/wiki/
Programming_languages_used_in_most_popular_websites.

https://www.interactiveaccessibility.com/accessibility-statistics
https://www.interactiveaccessibility.com/accessibility-statistics
https://en.wikipedia.org/wiki/Programming_languages_used_in_most_popular_websites
https://en.wikipedia.org/wiki/Programming_languages_used_in_most_popular_websites

331Index

Index
A
Abbreviations, 164
Absolute link, 85, 100
Absolute path, 87
Absolute position, 145–146, 152
Accessibility software, 92, 266
Accessibility standards, 32
Action attribute, 180–181
Adobe Flash Player, 42, 169, 218
Adobe Photoshop, 13
Alerts, Bootstrap, 243
Alignment, Bootstrap, 269
Alternate text, 88
Amazon.com, 29
Anchor element, 83, 86, 109–110, 275
Animation, keyframe, 218–220, 222
Applying styles to elements, 52–58
Array, 196–197
Article element, 93, 110
Aside element, 93
Attributes, 65–66
Audience, online, 30–32
Audio element, 40, 169–170, 274
Auto-sync, Git, 289
Autofocus and autocomplete, 188
AWStats, 59

B
Backend language, 27–29, 179, 196, 199–200, 244, 293–294
Backup services, in web hosting, 301
Badges, Bootstrap, 243–244
Bandwidth, 9, 88, 172–173, 218, 300
Base 16 colors, 134
Blink rendering engine, 58
Block display property, 154
Blockquote element, 164–166
Blur effect, 135–136
Body element, 40, 52, 70, 103, 130–131
Bold text, 113, 132, 269
Bootstrap, 233–270
Border-box property, 127
Borders, 117, 119, 121, 123–124, 128, 262–263
Bots, 31
Box model, 117–128
Box sizing property, 126–127
Brackets, curly, 52, 54, 105
Branches, Git, 288–289
Brave web browser, 276
Breakpoints, 228–229, 239–240

Browser, 11–12, 38–39, 46, 58–60
Browser development tools, 276–278
Buttons, Bootstrap, 244–245

C
C++ backend language, 28–29
Calculated values, 220–221
Camel case, 65, 217
Can I Use, 60
Cards, Bootstrap, 246–248
Carousel, Bootstrap, 248–249
Census Bureau, US, 32
CERN, European Council for Nuclear Research, 35
Change directory (cd) command, 286
Child element, 47–48, 68, 70–71, 145–146
Chromium web browser, 276
Cite element, 164–166
Class selector, 52–57, 106–107, 109
Clear property, 148–152
Clearfix, 150–151, 263
Code editor, 10–11, 16, 82, 276
Code element, 166–167
CodeIgniter, 29
Collapse component, Bootstrap, 250–251
Color, 134–135, 186, 203–207

Bootstrap, 241–242, 268
Cols attribute, 191
Colspan attribute, 174–177
Command line, 284–285, 302–303
Comments in code, 66–67, 73, 77
Complementary languages, 27–29
Content management system, 29–30, 280–281
Content, box model, 117–121
Copyright, 87, 137
Copyright symbol, 167–169
Crawling, 31
Creative Commons, 76, 87
Cross-site scripting, 177
.css files, 14, 101–104, 115
CSS folder, 9, 50–51, 274
CSS overview and background, 45–46
Custom web fonts, 136–138
Customizing existing code, 279–280

D
Database support, web hosting and, 302
David’s Perfect Cup, 294
Debugging, 275–278
Declaration, 24–25, 67, 69

332 HTML & CSS QUICKSTART GUIDE

Deployment of website, 278–279
DirtyMarkup, 71
Disabled input box, 187
Display property, 152–155
Div element, 42
Divs and spans, 89–91, 100
Django, 29
Doctype declaration, 67–69
Document format for HTML, 67–70
Download attribute, 86
Drupal, 29

E
Edge web browser, 11–12, 39, 58–59, 276
Edit, save, refresh, and repeat workflow, 82–83
Element selector, 52–53, 55, 105, 109
Element, HTML, 22–23, 33, 42, 63–66, 69, 73
Em unit of measure, 131–132, 308
Emacs, 11
Embedding YouTube video, 171
Emojis, 168–169
Employment roles, 5–7
Entity code, 167–169
Error messages, 83–84, 153, 275, 277
ExpanDrive, 304
Explorer pane, 16–17
External CSS, 50–52

F
Facebook, 29, 309–310
Favicon, 274
Fieldset, 189–190
File explorer, 15–18
File extension, 10, 37, 104, 196
File transfer protocol (FTP), 276, 278, 280, 303–305
FileZilla, 304
Firefox web browser, 12, 39, 58–59, 165, 230, 276
Fixed position, 144–145
Flex-direction and flex-wrap, 158–159
Flexbox, 157–160
Float, Bootstrap, 263
Floating elements, 146–152
Folder structure, 9–10, 273–274
Font Squirrel Webfont Generator, 137
Font-family property, 130, 137
Font-size property, 130–132
Font-weight property, 132
Fonts, 129–133, 136–138
Footer element, 92–93
Form-control class, Bootstrap, 264–266
Form-group class, Bootstrap, 264–266
Formatting, 76–77, 91, 117, 129–141
Forms, 179–180, 264–267
Frameworks for backend languages, 29
Frontend languages, 28
FTP server, connecting to, 304

G
Gecko rendering engine, 58
gedit, 10
GET request, 181–182, 196–197
GIF files, 13
GIMP (GNU Image Manipulation Program), 13
Git, 283–290, 305
GitHub, 7–8, 16, 233, 283–290, 311
GitKraken, 284
GitLab, 289–290
Gmail, 36
Google, 229, 309
Google Analytics, 59
Google Chrome web browser, 12, 38–39, 165, 230

development tools, 276–278
rendering engines, 58–59

Google Fonts, 136–138
Gradients, 203–208, 215–217
Graphical user interface (GUI), 284–288

H
Hamburger menu, 228, 255–258
Head element, 69–70, 102–104, 234, 309
Header element, 92–93
Headings, 78–81, 267
Hexadecimal code, 134–135
Hierarchical structure, 52, 55, 68, 80, 104, 112–113
History of CSS, 46
History of HTML, 35–36, 46
Horizontal rule tag, 89
Href attribute, 83–84, 86, 102, 259
HTML

changes in HTML5, 41–42, 69
current uses, 36
future development, 42–43
relationship with CSS, 25–27
structure, 21–23, 39–40

HTML entity code, 167–169
Hyperlink, 36–37, 83–86
Hypertext, 37, 83–85
Hypertext protocol secure (HTTPS), 85, 195, 301
Hypertext transfer protocol (HTTP), 38

I
Id attribute, 86, 97, 183–184
Id selector, 52, 55–57, 107–109
Iframes, 36, 177–178
Image editing software, 13
Image sets, 172–173
Images

adding, 86–88
file types, 13
sizing, 13, 88, 118–121, 172–173

Images folder, 9, 87, 274
“Important” declaration, 112–113
Indentation, 71, 294
Index file, 9

333Index

Indexing, search engines, 31
Inheritance, 47
Inline CSS, 48–49, 57, 60, 103–104, 153–155
Inline display property, 153–154
Inline-block display property, 154–155
Input element, 183–189, 193–197, 244
Input types, 185–186
Installing Bootstrap, 234–235
Internal CSS, 49–50
Internet Explorer web browser, 12, 39, 58–59

J
JavaScript, 292–293

“none” display property, 153
audio controls and, 170
debugging, 277
functions of, 28, 33
HTML5 and, 42
iframes vs., 177
Visual Studio Code and, 16

Joomla, 29
JPEG files, 13
jQuery, 292–293
Jumbotron, 251

K
Keyframe animation, 218–220

L
Labels, 189
Languages, foreign, 66, 70
Laravel, 29
Layout grid, Bootstrap, 236–241
Legend, 189–190
Letter-spacing property, 133
Line-height property, 132–133
Linear gradient, 203–206
Links, 83–86
Linux, 10, 12, 196

Bootstrap and, 267
FTP and, 304
Git and, 283–286

Lists, 81–82, 155–157, 251–253, 258
Living standard

CSS as, 60
HTML as, 43

Lorem Ipsum text, 54, 275
Lowercase code, 65
Lunascape web browser, 58

M
“Main” element, 94, 222, 235
Manual line break tag, 89
Margins, 117, 119, 125–126, 128
Market share, web browsers, 12
Markup, 37
Markup language, 3, 35

Matomo, 59
Maxlength attribute, 191, 194
Media attribute, 172–173, 226
Media queries, 225–232, 240
Meta description, 72–73
Metadata, 40, 69, 309–310
Method attribute, 181–182
Microsoft Paint, 13
Mobile friendly guidelines, Google, 229
Modals, Bootstrap, 253–255
Motion effects, 211–215

N
Name attribute, 183–184
Named colors, 134
Namespacing, 211
Navigation bar, 155–157
Navigation, Bootstrap, 255–258
Negative margins, 126
Nested elements, 70–71, 110
Network tab, 277
“None” display property, 153
Nonprofit organizations, 6–7
Notepad, as text editor, 10–11, 17
nth-child selector, 175

O
Object, jQuery, 292–293
On Your Own exercises, ClydeBank Coffee Shop

accessing coffee shop website, 13–15
adding description and fixing title, 72–73
advertisement, 152
color scheme, 140–141
contact form, 201
editing About page, 97
editing coffee shop menu, 82–83
going mobile, 231
gradients, 222
keyframe animation, 222
navigation, 98–99
solutions, 311–321
sprites, 210–211

Online accessibility standards, 32
Open Graph protocol, 309–310
Open-source software, 10, 13, 30, 233
Opera web browser, 12, 39, 58
Overflow property, 150, 157, 264
Overlay/modal without JavaScript, 215–217

P
Padding, 117, 119, 121–123, 128
Page structure of HTML, 40
Pagination, Bootstrap, 258–259
Paint++, 13
Paint, Microsoft, 13
Paint.net, 13
Paragraphs, 77–78, 89–91

334 HTML & CSS QUICKSTART GUIDE

Parent element, 47–48, 70–71, 145–146
Pattern attribute, 188, 194–195
Percent, sizing and, 307
Photoshop, Adobe, 13
PHP, 28, 293

Bootstrap badges and, 244
forms and, 179–181
processing form input, 196–199, 202
Visual Studio Code with, 16

Picture element, 172–173
Pinterest, 309
Pixels, 88, 120, 130–131, 307
Placeholder attribute, 187, 189
Placeholder link, 275
Placement of CSS, 101–104
PNG files, 13
Positioning, 143–152, 157–159, 225–226
POST request, 181–182, 195–197, 200
Pre element, 166–167, 269
Processing form input with PHP, 196–199
Programming language, 3
Progress bars, Bootstrap, 259–260
Project setup and management, 273–274
Properties, in CSS, 24–25
Pseudo-classes, 109–111, 115, 211
Pseudo-elements, 111–112, 115, 127, 187
Python, 16, 28, 29, 179, 200, 293–294

R
Radial gradient, 206–208
Ranking, search engines and, 31
Readonly attribute, 186–187
RealPlayer, 169
Regular expressions, 194–195
Relative link, 83, 85, 100
Relative path, 87
Relative position, 143–144, 152, 220
Rem unit of measure, 131–132, 308
Rendering engines, 58–60
“Required” attribute, 188, 193–194
Resize property, 191–192
Responsive design, 60, 127, 225, 229, 308
Responsive toolbar, 230
RGB colors, 135
Rotation transform, 213–214
Rows attribute, 191
Ruby programming language, 16, 28, 200

S
Safari web browser, 12, 39, 58
Samsung Internet Browser, 12, 39
Scaffolding, 274–275, 281
Scalability, 275
Scale transform, 214
Screen readers, 32, 92, 189, 226–227, 266
Screen size, 239–240. See also Responsive design

keyframe animation and, 222

media queries and, 225–231
Search engine optimization (SEO), 30–33, 81, 88, 229
Section element, 94
Secure Copy (SCP), 303
Secure file transfer protocol (SFTP), 303
Security, in web hosting, 301
Select element, 192
Selectors, 24–25, 47–48, 52–57, 105–109, 115
Semantic elements, 91–95, 100
Semicolon, 53, 167–168, 197
Shadow effect, 135–136
Simulating screen sizes, 229–230
SiteBuilder, 27
Sizing

Bootstrap, 263–264
images, 13, 88, 118–121, 172–173
page elements, 59–60
relative, 225–226
units of measurement, 307–308

Skew transform, 214–215
Slideshows, 248–249
Social graph, 309
Social media, 309–310
Source code management, 8
Spans and divs, 89–91, 100
Special characters, 87, 167–169, 182
Spider, 30–32
Sprites, 208–211, 223
Squarespace, 4, 280
src attribute, 83–84, 86, 172, 186
srcset attribute, 172
SSH (Secure Shell), 302–303
Staging site, 276, 278–279
Standard generalized markup language (SGML), 36
Static position, 143
Status codes, 84
Step attribute, 188
Storage, web hosting and, 300
Structure of CSS, 21, 23–25, 47–52
Structure of HTML, 21–23, 39–40
Style and decoration in Bootstrap, 269
Style sheet, 46, 48, 50–51, 101–102
Style tags, 102–104
Styles, applying to elements, 52–58
Sublime Text, 11
“Submit” input element, 188–189
Subscript and superscript, 163–164
Symfony, 29

T
Tables, 173–177, 260–261
Tags, 23, 64–65
Tap target, 229
Target attribute, 85, 183
Testing and debugging, 275–278
Text editor, 10–11, 17
Text shadow, 135–136

335Index

Text-to-speech software, 32
Textarea, 191–192
TextEdit, 10
Torvalds, Linus, 283
Transforms, 213–215
Transitions, 211–213
Transmit, FTP client, 304
Transport layer security (TLS), 85
Trident rendering engine, 58
Twitter, 233, 309
Two-dot shortcut, 87, 211
Type attribute, 184–186
Typography, Bootstrap, 267–270

U
Units of measure, 131, 210, 307–308
Universal resource locator (URL), 85
Updates to HTML, 40–41
Uptime, web hosting and, 301
Using Our GitHub Repository (video), 7
Utilities, Bootstrap, 262–264

V
Validation, HTML, 193–196, 202
Value attribute, 192
Value, in CSS, 24–25
Version control system, 283–284
Video element, 170–171
Video, Using Our GitHub Repository

7
Viewport meta tag, 229
Viewport width and height (vw and vh), 308
Vim, 11
Vision impairment, 32, 80, 88
Visual Studio Code, 11, 15–17, 17, 57, 58, 91

W
Web analytics tools, 59, 228
Web browser. See Browser
Web designer, 234, 279, 284
Web hosting, 38, 278, 299–302
Web Hypertext Application Technology Working Group
(WHATWG), 43
Web server, 37–38
WebKit rendering engine, 58
WinSCP, 304
Wireframing, 275, 281
Wix, 4, 27, 280
WordPress, 3–4, 291

as content management system, 29–30
customizing existing code, 279–280
Open Graph and, 309
PHP and, 293

Workspace, setting up, 9–13
World Wide Web Consortium (W3C), 40–41, 43, 66
Wrap attribute, 191
Wrapping, Bootstrap, 269–270

WYSIWYG editor, 279–280

Y
Yahoo.com, 29
YouTube, 29, 171

Use the camera app on your mobile phone to scan the QR code
or visit the link below to record your testimonial and get your free book.

www.clydebankmedia.com/free-qsg

TWO WAYS TO LEAVE A VIDEO TESTIMONIAL

or

Leave us a quick video testimonial on our website and
we will give you a FREE QuickStart Guide of your choice!

RECORD
TESTIMONIAL

SUBMIT TO
OUR WEBSITE

GET A
FREE BOOK

SAVE 10% ON YOUR NEXT

USE CODE: QSG10

Use the camera app on your mobile phone to scan the QR code or visit the link below the cover to shop.
Get 10% off your entire order when you use code ‘QSG10’ at checkout at www.clydebankmedia.com

https://quickstartguides.shop/sql

https://quickstartguides.shop/investing

https://quickstartguides.shop/business

https://quickstartguides.shop/accounting

One Tree Planted is a 501(c)(3) nonprofi t organization focused on global
reforestation, with millions of trees planted every year. ClydeBank Media is

proud to support One Tree Planted as a reforestation partner.

Every dollar donated plants one tree and every tree makes a difference!

Learn more at www.clydebankmedia.com/charitable-giving or make a contribution at onetreeplanted.org

PROUDLY SUPPORT ONE TREE PLANTED

