
The Simplified Beginner’s Guide to
Python Programming Using Hands-On Projects

and Real-World Applications

PYTHON

Robert Oliver

This digital copy is distributed by ClydeBank Media
QuickStart Guides (www.quickstartguides.com)

for individual use only. Digital reproduction,
print reproduction, or distribution of this file

or its contents is strictly prohibited. Copyright
ClydeBank Media LLC, all rights reserved.

http://www.quickstartguides.com

iv PYTHON QUICKSTART GUIDE

Copyright © 2023
www.quickstartguides.com

All Rights Reserved

ISBN-13: 978-1-63610-035-7 (paperback)
ISBN-13: 978-1-63610-038-8 (spiral bound)

Copyright © 2023 by ClydeBank Media LLC

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying,
recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations
embodied in critical reviews and certain other noncommercial uses permitted by copyright law. For permission requests, write to the publisher,
addressed “Attention: Permissions Coordinator,” at the address below.

ClydeBank Media LLC is not associated with any organization, product, or service discussed in this book. Although the author and publisher have
made every effort to ensure that the information in this book was correct at press time, the author and publisher do not assume and hereby disclaim
any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from negligence,
accident, or any other cause.

All trademarks, service marks, trade names, trade dress, product names, and logos appearing in this publication are the property of their respective
owners, including in some instances ClydeBank Media LLC. Any rights not expressly granted herein are reserved.

Trademarks: All trademarks are the property of their respective owners. The trademarks that are used are without any consent, and the publication of
the trademark is without permission or backing by the trademark owner. All trademarks and brands within this book are for clarifying purposes only
and are owned by the owners themselves, not affiliated with this document. The QuickStart Guide chevron design mark is a registered trademark of
ClydeBank Media LLC.

Editors: Bryan Basamanowicz, Marilyn Burkley
Technical Reviewers: Derik Stiller, Robert Utterback, Michael Wheelock
Cover Illustration and Design: Katie Donnachie, Nicole Daberkow, Copyright © 2023 by ClydeBank Media LLC
Interior Design & Illustrations: Katie Donnachie, Brittney Duquette, Copyright © 2023 by ClydeBank Media LLC

First Edition - Last Updated: April 24, 2023

ISBN: 9781636100357 (paperback) | 9781636100371 (hardcover) | 9781636100395 (audiobook) | 9781636100364 (ebook) | 9781636100388 (spiral bound)

Publisher’s Cataloging-In-Publication Data
(Prepared by The Donohue Group, Inc.)

Names: Oliver, Robert, 1980- author.
Title: Python QuickStart guide : the simplified beginner’s guide to Python programming using hands-on projects and real-world applications /
Robert Oliver.
Other Titles: Python Quick Start guide
Description: [Albany, New York] : ClydeBank Technology, [2023] | Series: QuickStart Guide | Includes bibliographical references and index.
Identifiers: ISBN 9781636100357 (paperback) | ISBN 9781636100371 (hardcover) | ISBN 9781636100364 (ebook)
Subjects: LCSH: Python (Computer program language)
Classification: LCC QA76.73.P98 O45 2022 (print) | LCC QA76.73.P98 (ebook) | DDC 005.133--dc23

Library of Congress Control Number: 2022947452

Author ISNI: 0000 0005 0677 4266

For bulk sales inquiries, please visit www.go.quickstartguides.com/wholesale, email us at orders@clydebankmedia.com, or call 800-340-3069.
Special discounts are available on quantity purchases by corporations, associations, and others.

Really well written with lots of practical
information. These books have a very
concise way of presenting each topic
and everything inside is very actionable!

– ALAN F.

The book was a great resource, every
page is packed with information, but
[the book] never felt overly-wordy or
repetitive. Every chapter was fi lled with
very useful information.

– CURTIS W.

I appreciated how accessible and how
insightful the material was and look
forward to sharing the knowledge that
I’ve learned [from this book].

– SCOTT B.

After reading this book, I must say that
it has been one of the best decisions of
my life!

– ROHIT R.

This book is one-thousand percent
worth every single dollar!

– HUGO C.

The read itself was worth the cost of
the book, but the additional tools and
materials make this purchase a better
value than most books.

– JAMES D.

I fi nally understand this topic … this
book has really opened doors for me!

– MISTY A.

I dedicate this book to Marsha, my wife.
Only through her steadfast support was this possible.

viii PYTHON QUICKSTART GUIDE

Contents
INTRODUCTION ��� 1

It Was a Dark and Stormy Night ��1
What Is Python? ���2
What Is Programming? ��2
What We’ll Cover in This Book ��3
How to Use This Book ���3
Example Code ���4
What You’ll Need ���4
Operating System and Python Version Notes ��5
Getting Ready ��5
Visual Studio Code Walk-Through ��9

PART I – GETTING STARTED WITH PYTHON

| 1 | GETTING TO KNOW PYTHON ��19
Before Our First Line of Code ���19
Hello, World! ��20
Working with Variables ��23
Strings ��25
Numbers ��28
A Few Comments ��32
Newlines ��33
What’s in a Name? ���34
ClydeBank Coffee Shop: Our First Cup ��34

| 2 | UNDERSTANDING PYTHON DATA STRUCTURES ��37
Lists ��37
Tuples ���40
Sets ��41
Dictionaries ��42
Boolean Variables ��� 44
Combining Data Structures ���45
Picking the Right Data Structure ���47
ClydeBank Coffee Shop: Starting the Grind ���48

ixContents

| 3 | CONTROLLING PROGRAM FLOW ��53
Logical Comparisons ���53
Nested Comparisons ���57
Loops��59
Number-Guessing Game ���72
ClydeBank Coffee Shop Simulator: The Circle of Life ��73

| 4 | HANDLING ERRORS ���79
Exceptions ���79
Mopping Up the Mess with Finally ���84
ClydeBank Coffee Shop: Spilt Milk ���85

PART II – FUNCTIONS AND CLASSES

| 5 | CREATING REUSABLE TASKS WITH FUNCTIONS ��91
Our First Function ���91
Passing Values and Returning a Result ���93
Modifying Arguments ���96
Default Arguments ���97
Keyword Arguments ���99
Arbitrary Arguments ���101
Scope ���102
Generator Functions��103
ClydeBank Coffee Shop: Our First Major Refactor ��108

| 6 | CLASSES ��� 113
The Hello World Class ��� 114
Instance Variables �� 116
Scope in Classes �� 119
Object Lifecycle ���120
Properties and Private Variables ���124
Inches to Centimeters ���127
ClydeBank Coffee Shop: Our Second Refactor ��128

| 7 | INHERITANCE AND DESIGN PATTERNS �� 137
Parent and Child ��138
Expanding Child Classes ���139
Multilevel Inheritance ��140
Multiple Inheritance ��142
Introduction to Design Patterns ���144
A Fantasy World ��148

x PYTHON QUICKSTART GUIDE

| 8 | SAVING TIME WITH DATACLASSES �� 151
Automatic Instance Variables ��151
Dataclass Features ���154
Dataclasses Compatibility ���156

| 9 | REUSING CODE WITH MODULES AND PACKAGES ����������������������������������� 159
Namespaces ��159
Importing Modules ��161
Creating Your Own Module ��162
Standard Modules ���164
Packages ��164
ClydeBank Coffee Shop: Modularizing the Game ��167

PART III – PYTHON IN ACTION

| 10 | ADVANCED STRINGS �� 175
Standard String Operations ��175
Regular Expressions ��181
String Formatting ��193
Data Compression ���196
ClydeBank Coffee Shop: Inventory Woes ���198

| 11 | MATH IN PYTHON ��205
Integer Math ��� 205
Floating-Point Math �� 208
Percentages ���211
Statistical Math ��212
Date and Time ���213
Counting the Days ���216
ClydeBank Coffee Shop: A More Accurate Simulation ��217

| 12 | INPUT AND OUTPUT ���225
Disk I/O ��226
Standard I/O ��230
Serialization with Pickle ���232
ClydeBank Coffee Shop: Saving Your Game ��233

| 13 | THE INTERNET �� 243
Fetching a Web Page ��243
Saving a Web Page ��246
Sending an Email ���247

xiContents

| 14 | DEBUGGING PYTHON CODE ��� 251
Logging ��251
Debugging in Visual Studio Code ���257

PART IV – ADVANCED PYTHON

| 15 | DEVELOPING WEBSITES ���265
web�py ��265
Flask ���269
Connecting to a Database ���272
Django ��275
JSON ��279

| 16 | INTERFACING WITH SQLITE ��� 281
The sTunes Database ���281
Installation ���281
Running SQLite ��283
A Brief Tour of sTunes ��284
More SQL: Beyond SELECT ���286
Querying Data with Python ���287
Modifying Data with Python ���288
Further Ideas ���289

| 17 | TEST-DRIVEN DEVELOPMENT �� 291
Getting Started with Unit Testing ���291
Assertions ��294
Test Driven Design ��296
Test Coverage ��297
ClydeBank Coffee Shop: Test-Driven Coffee Serving ��297

| 18 | MANAGING YOUR CODE WITH GIT ��� 301
Installing Git ��� 302
Forking and Cloning the ClydeBank Coffee Shop Game ���303
Committing Changes to Your Repository �� 304
Pushing to Remote ��� 306
Using Branches ��� 306
Viewing Changes ���307
Viewing Your Commit Log ���307
Pull Requests �� 308
Syncing with the Official Repository �� 308

xii PYTHON QUICKSTART GUIDE

| 19 | THE JUNK DRAWER�� 311
Getting Help Inside Python ��311
Sorting Lists and Dictionaries ���312
Environment Variables ���314
Using Command Line Arguments ���315
Lambda Expressions ��318
Threading ���320
Cryptographic Hashing ���322
Working with CSV Files ���325
Pip ��327
Compiled Modules ��328

| 20 | OPTIMIZING PYTHON �� 331
Profiling ��332
Apparent Speed Usually Matters More ��333
Don't Reinvent the Wheel ���334
Cache Results ��335
Use Multiple Assignment ��337
Exit As Soon As Possible ���339
Use Lazy Loading ���339
Use the Latest Python Version ��339
Optimizing the Coffee Shop Simulator ���339

| 21 | WHAT'S NEXT? ��� 341
Keeping Up with Python ���341
The Python Package Index ��342
Python News through Google ��� 344
Getting Help ��� 344
Python Is Open-Source Software��� 344
The ClydeBank Coffee Shop Simulator Game ��� 345

CONCLUSION �� 347
APPENDIX ��� 349
ABOUT THE AUTHOR ��355
ABOUT QUICKSTART GUIDES ��� 357
GLOSSARY ��� 359
REFERENCES ���365

BEFORE YOU START READING,
DOWNLOAD YOUR FREE DIGITAL ASSETS!

Use the camera app on your mobile phone to scan the QR code
or visit the link below and instantly access your digital assets.

go.quickstartguides.com/python

TWO WAYS TO ACCESS YOUR FREE DIGITAL ASSETS

or

String Formatting Codes Cheat Sheet

Regular Expression Cheat Sheet

Logging Formats Reference

List of Built-in Exceptions

1Introduction

Introduction
Welcome to Python.

My name is Robert Oliver and I’ll be your guide through the exciting,
engaging, and challenging endeavor of learning a programming language.

It Was a Dark and Stormy Night
While I now program quite a bit at night, my programming journey

started on a bright, sunny early June morning. As a young teenager, I sat
in front of my stepmother’s Tandy 1000 (an older computer, even in the
early 1990s) and enjoyed playing the myriad of video games that had been
installed on it. Even though I previously had some computer experience, I
was mystified by the possibilities.

It was summer break, and I had all the time in the world, so I started
reading the BASIC (Beginner’s All-purpose Symbolic Instruction Code)
language source code to some of these games. It was a struggle at first, as
I really didn’t know much about programming, but soon I started to see
patterns in the code and how everything fit together to make the video
games run.

Armed with several books, I taught myself DOS, BASIC, and even
dabbled in a little Pascal, another programming language, as I fully extracted
the computing goodness that old Tandy had to offer. Later, I got my own
computer, a Tandy 2500, an Intel 386 computer that ran MS-DOS 5 and
Windows 3.1. Armed with QBasic, I wrote my own video games and
programs. It was fun, but I quickly ran into problems.

Video games take a lot of computing power, and computers back then
didn’t exactly have that to spare. So, to extract the most performance from the
machine and power my games, I wrote critical parts of the games in assembly
language—a bare-metal language that computers natively understand—to
speed things along. Granted, I ran into numerous problems talking back and
forth between my BASIC and assembly programs, but I eventually worked
out a solution that made me reasonably happy.

I poked and prodded into every corner of that machine’s memory, and by
the time I had moved to Windows 98 (I largely skipped Windows 95), I could

2 PYTHON QUICKSTART GUIDE

tell you everything about that computer you could possibly want to know,
down to the basic hardware level. My immense love of systems programming
came from this era, and it hasn’t left me.

My dad bought me Visual Basic 6 and some great manuals in the Windows
98 years, and from this I really started to formalize my programming
knowledge, learning about classes, objects, and all the things I’d need to
know to program professionally. From there, I went into web programming,
but I continued to write scripts and programs—first with Perl, then with
Python from 2006 onward.

Despite having learned so much since then, nothing can replace the joy I
felt when I mastered the mystical world of computing by telling my computer
exactly what I wanted it to do. I want you to feel that same joy, too.

By the end of this book, you’ll have a good understanding of Python and
will have written a fair number of lines of code. In addition, we’ll be building
a coffee shop game that will be both fun to write and fun to play. You’ll not
only have experience coding in Python, but you’ll have a project to show for
it, and the knowledge to create your own programs.

What Is Python?
There are two ways to answer that question. First, here’s the technical

explanation with computer science terminology kept to a minimum.
Python is a multipurpose programming language. It is flexible enough to

allow several different programming approaches and comes with a large array
of functionality right out of the box. It enforces a strict code formatting style
that places a high emphasis on readability.

Now, what is Python in everyday terms? It’s an awesome programming
language that lets you do a wide variety of tasks—everything from system
utilities to business programs to games to website backends and even artificial
intelligence. Many Fortune 500 companies use Python, including household
names like Google, IBM, Intel, Netflix, and Spotify. And Python is very
popular in scientific circles. In fact, NASA uses Python heavily.

What Is Programming?
This might seem like an unusual question to ask in a programming

book, but it’s a question I’ve been asked more than once by people who are
considering getting into the field. If you aren’t a programmer, the definition
can seem a bit nebulous.

Programming is the act of defining instructions that tell a computer
how to solve a problem or perform some tasks. It differs from merely using

3Introduction

a computer in that running a program like a word processor, spreadsheet, or
video editor might create content (for instance, a balance sheet, a YouTube
video, or a book), but it doesn’t tell the computer how to solve a specific
problem. To continue with this analogy, using a word processing program
to write a book is not programming, but programming would describe the
creation of the word processor.

I have a friend who’s a very talented web designer who doesn’t really
consider himself a programmer. He’s made the argument that someone who
just copies and pastes code, modifying it to suit their purposes, is more of a
hacker than a programmer. Whenever he mentions this, I tell him it’s pure
hogwash. A programmer is anyone who writes programs, and writing a
program includes modifying an existing program to do what you want it to do.

In a rapidly changing field like computer science, feeling like an impostor
in a highly technical and competitive industry like this is a very real thing.
In fact, many programmers, myself included, sometimes feel inadequate for
the challenges we face. I remind my humble friend of that, and in doing so
bolster my own self-esteem a bit. Anyone who wants to become more than
a user of computers is already well on their way toward joining an elite and
dedicated group of people who are willing to sacrifice sleep, sunshine, and
physical activity for the sake of getting a computer to do what they tell it to do.

What We’ll Cover in This Book
First, we’ll learn the nuts and bolts of the Python programming language.

Once we have a firm foundation, we’ll look at more complex data structures
and logic. We’ll explore functions and object-oriented design, then dive
deep into aspects of Python you’ll use daily, like handling text, numbers,
input and output, website functionality, debugging, and even Git source
code management.

How to Use This Book
We’ll learn as we go, working through sample exercises and building the

ClydeBank Coffee Shop game with each chapter. This way, you won’t have
to learn everything up front before doing something useful. By the time you
finish your first chapter, you’ll have written a very simple program.

Rather than present you with a dry, boring reference book, I want to
keep things interesting by giving you practical knowledge that you can use
right away. I’d rather focus first on writing programs, then explore the theory
behind it. I find it much easier to understand example code after I’ve seen it run.

4 PYTHON QUICKSTART GUIDE

Example Code
Most of the examples and all the game code are available on GitHub

at https://github.com/clydebankmedia/python-quickstartguide. While the
code is provided as a handy digital reference, I recommend typing each
code example as we go, either in the Python interpreter or Visual Studio
Code, because doing so will strengthen your understanding of the concepts
we’re learning.

I’ll explain the differences between these two methods in chapter 1, but
for now, the important thing is that you start writing Python code as you read the
book. Simply reading the content will help, but it won’t give you the hands-on
experience involved in writing Python.

What You’ll Need
First, you’ll need a computer. A phone or tablet won’t work for this

exercise, unfortunately. However, if you have the e-book version of this title,
you’ll find it handy to have it beside your computer as you work through the
exercises. I’ve been known to use my iPad to reference material while I code.

As for the computer, it can be any modern Windows, macOS, or Linux
computer. For Windows, that would mean a computer running Windows
10 or 11. There isn’t anything stopping you from running an older version
of Windows, but using an out-of-date version means you could be missing
important security updates. Additionally, newer versions of Python might
not run on very old versions of Windows.

For macOS: I wrote these exercises on macOS Monterey, but any recent,
supported version of macOS should be fine. Fortunately, Python comes
preinstalled on macOS, so that part of the setup will be easy. However, if
your version of macOS is older, it may come with Python 2 rather than 3.
If updating to a modern version of macOS isn’t possible, consider installing
Homebrew (commonly called “brew”, available at https://brew.sh) and
running “brew install python” to install Python 3.

Any modern Linux distribution should be fine. Debian, Ubuntu, Linux
Mint, Pop!_OS, Fedora, Arch, and Manjaro all make it super easy to install
Python (and some even have it preinstalled).

A Google Chromebook® can technically run the Python interpreter in its
Linux terminal, but you won’t be able to run Visual Studio Code (the editor
we’ll be using in this book), so your experience will be severely hampered.
We don’t recommend that type of computer for use with this book.

5Introduction

Operating System and Python Version Notes
There have been many individual versions of Python released since version

0.9 in 1991, but two major branches, versions 2 and 3, have dominated the
Python landscape for nearly fifteen years.

Python 3 introduced a lot of new concepts into the language, but also
created some incompatibility issues with version 2. Since Python 2 had a
large ecosystem of modules, there was a split in the community between
versions 2 and 3, with developers (especially in the early days) having to
choose between version 2 compatibility and version 3 features.

In 2022, this isn’t really a concern. Python 3 was released in 2008, and
Python 2 has been unsupported (end of life) since 2020. Thus we’ll be focusing
entirely on version 3 in this book.

When I talk about the “ecosystem” of a project or version, I am
referring to not only the software itself but the documentation,
third-party modules and support, and community that is engaged
in that particular version.

Getting Ready

Installing Python
First, we need to install Python. The instructions for this vary a bit
depending on your operating system.

Windows
If you’re on Windows, you have two choices: install Python from the
Microsoft Store or go to https://python.org and click Downloads. If you
use the store version, please select version 3.10 or higher.

If you choose to download it from the website, it should automatically
detect that you’re on Windows and offer the download link. Once you’ve
downloaded the installer, run it, and accept the default options. Once
that’s done, Python should be installed.

macOS
If you’re on macOS, it’s already installed, so there’s no need to do
anything else.

6 PYTHON QUICKSTART GUIDE

Linux
If you’re on Linux, you probably already have Python installed. To check,
open a terminal / command shell and type:

python3 --version

If that doesn’t work, try:

python --version

If the python command works but python3 doesn’t, and the version
shown begins with a 2, then you need to specifi cally install Python 3.
One of these commands should do the trick:

sudo apt install python3

sudo yum install python3

sudo dnf install python3

sudo pacman -S python

If these don’t work, consult the documentation for your version of Linux
for instructions on installing Python 3.

To watch the Quick Clip, use the camera on your mobile phone
to scan the QR code or visit the link below.

www.quickclips.io/python-1or

I’ve put together a quick video
on installing Python on Windows,
macOS, and Linux.

7Introduction

Installing Visual Studio Code
There are many code editors on the market, many of them free/open-
source. Here is a list of commonly used code editors with Python support,
including their operating system support and license:

 » Visual Studio Code (Windows, macOS, Linux; free, mostly open
source)

 » Notepad++ (Windows only; free, open source)
 » Sublime (Windows, macOS, Linux; paid software with free trial)
 » PyCharm (Windows, macOS, Linux; paid software with free trial)
 » Vim (Windows, macOS, Linux; free, open source)
 » Emacs (Windows, macOS, Linux; free, open source)

In this book, we’ll be using Visual Studio Code because it’s well supported
on all operating systems and it’s free/open source. It’s an excellent code
editor and development environment. That said, if you’re fond of another
editor, please feel free to use it—just know that the instructions here will
center around Visual Studio Code.

The simplest way to install Visual Studio Code on Windows is to use the
Microsoft Store.

For macOS or Linux, go to https://code.visualstudio.com and download
it for your platform. On macOS, the disk image can be mounted by
double-clicking it. Then drag Visual Studio Code to your Applications
folder. Linux users will need to download either a .deb (Debian, Ubuntu,
Linux Mint, MX Linux) package or a .rpm (Fedora, openSUSE, Red
Hat Enterprise Linux) package and install it on their system.

We’ll configure it in the next section, after creating a place for our code.

Other than Visual Studio Code for this book’s exercises, I’m not
particularly recommending one editor over another. Code editor choice
is a question of personal preference and workflow, and everyone has
their own opinions on the subject. Nevertheless, if you’re looking for an
alternative to Visual Studio Code, here are a few thoughts I have on each:

Notepad++ is an excellent code editor but is only available for Windows.
If you only use Windows, this might be just fine, but its lack of multi-
platform support creates issues for my workflow.

8 PYTHON QUICKSTART GUIDE

I haven’t had much experience with Sublime, but I know several
colleagues who really like it. The price is reasonable and has some unique
features you might find appealing.

I quite like the JetBrains products, including PyCharm, but this is a paid
solution, so I didn’t want to focus on it in the book. Since I use other
JetBrains products like DataGrid and RubyMine, PyCharm fits in well.

Vim and Emacs are more advanced editors. I use Vim quite a bit in my
day-to-day programming and system administration work, and it has a
lot of advantages, but I wouldn’t necessarily recommend it or Emacs to
someone new to programming, as they both have a steep learning curve.

Creating a Folder for Your Code
I recommend making a folder in which to save all your Python code
files. Where this is on your disk is entirely up to you, but I’ll share my
approach, for inspiration.

Regardless of my operating system (macOS, Windows, Linux—I use
them all), I create a folder called Source in my home directory. On
macOS, you can access your home directory in Finder by clicking the
Go menu, then clicking Home. On Windows, press the Windows key
and R together, then type %USERPROFILE% in the box and click OK, or
navigate to C:\Users\You (where You is your username). On Linux, most
file managers open to this folder by default, but you can find it at /home/
you (where you is your username).

Once in the home folder, I create a folder inside of that for each project
I make. If you’re unsure how you want to proceed, just save it to a new
folder called PythonQSG in your Source folder. You can always move it
later if you like.

Even though the screenshots in this book are mostly taken from
macOS, this doesn’t mean Windows and Linux users will be left
out in the cold. As I said, I use all three platforms and love all of
them for their strengths and weaknesses alike. Since Python is
cross-platform, there are few instances where platform-specific
instructions are necessary. However, any time there is a difference
I’ll explain it on all three systems, so you’ll be able to enjoy Python
no matter what computer you have.

9Introduction

Visual Studio Code Walk-Through
Visual Studio Code is a powerful open-source editor that makes it easy

to manage programming projects both large and small. It supports many
different programming languages, but we’ll be focused on Python.

Technically, the core of Visual Studio Code is open-source and is
available at https://github.com/Microsoft/vscode; however, the
Visual Studio Code product we’ll use that’s accessible through
your Digital Assets contains proprietary Microsoft technology.
Nevertheless, the bulk of the editor is open-source.

When you first start Visual Studio Code, you should see a link on the
page to install support for Python. If so, click it and the necessary extensions
will be installed. If you don’t see a link, that’s fine—there’s a way to get to the
extensions from the left-hand pane (figure 1).

The Visual Studio Code welcome screen.
The Extensions icon is highlighted in this figure on the left-hand pane.

When you click the Extensions icon, a list of common extensions will
appear. Type “Python” in the search box and you’ll see the official Python
extension from Microsoft in the list. You’ll know it’s the official extension

fig. 1

10 PYTHON QUICKSTART GUIDE

because it says “IntelliSense (Pylance), Linting … ” etc., and has Microsoft
as the publisher with a blue check mark next to it. If it doesn’t have a green
Install button beside it, it’s already installed. If it does, go ahead and click the
button to install it (fi gure 2).

Searching for the Python extension in the extensions list of Visual Studio Code.
In this fi gure, the offi cial Python extension is shown with a check mark badge and the

publisher, Microsoft, beneath the listing.

While you’re here, you can install other extensions if you like. If you’re
new to programming in general, I don’t recommend you install anything else,
except perhaps a theme. A theme in Visual Studio Code changes the colors of
the editor to help with readability or simply to allow you to make adjustments
according to your own preferences. To see the available themes, click on the
funnel icon above the Extensions search box, click the Category menu, then
select Th emes.

Th is will show a list of themes available in Visual Studio Code. You have
a lot to choose from. If you aren’t sure which you like, click one that interests
you and it will generally display screenshots. Click Install next to the one you
want to install, and it will automatically switch to it once downloaded.

If you’re looking for suggestions, I would recommend the Dracula Offi cial
theme or One Dark Pro. If you prefer lighter themes, GitHub Th eme is quite
nice. Filtering by theme (as shown in fi gure 3), then typing the name of the
theme you’d like to install, will fi lter the available options to show only those
for the name you type.

Th e GitHub Th eme has several variations, so you’ll need to switch to it if
you want the light variety. To switch themes at any time, click the Code menu

fi g. 2

11Introduction

at the top (or click the File menu on Windows and Linux), click Preferences,
then Color Theme (figure 4).

Accessing the Themes category filter in the extension viewer.

The Color Theme menu item in the Code > Preferences menu.

Alternatively, you can use CTRL+K then CTRL+T on Windows
and Linux, or CMD+K then CMT+T on macOS. A selection box will be
displayed where you can change the theme (figure 5).

fig. 3

fig. 4

12 PYTHON QUICKSTART GUIDE

Th e color theme selector.

Now that we have Python support installed and our preferred color
theme selected, let’s open the folder we created for our Python code. Click on
the File menu and click Open Folder. Th en navigate to the folder you chose
and click the Open button. To browse the folder, click the Explorer icon (or
press CMD+E on macOS, CTRL+SHIFT+E on Windows and Linux) in
the left-hand pane (highlighted in fi gure 6).

Th e Explorer icon is in the box.

fi g. 5

fi g. 6

13Introduction

When you create new Python code files in the folder you selected for your
code, they will show in the Explorer pane of Visual Studio Code.

That’s all you need to know about Visual Studio Code for now. We’ll pick
up the actual coding workflow in chapter 1.

Code that should appear on a single line but must be broken due
to page constraints is indicated using arrows. A straight arrow (↦)
at the end of a line and and a curved arrow (↪) at the beginning of
the next line indicate that those lines should be combined to make
one continuous line.

Chapter by Chapter

 » Part I: Getting Started with Python

 » In part I, we’ll learn the basics of Python, from a tour of the
Python interpreter (the core of the language) to understanding
variables and working with conditionals and loops. We’ll also cover
how to handle errors.

 » In chapter 1, we’ll get our feet wet with Python, learning about the
interpreter and how to run a program in Visual Studio Code, and
we’ll talk about strings and numbers.

 » In chapter 2, Python data structures are covered, including lists,
tuples, sets, and dictionaries. We also explore working with
multiple sets of data.

 » In chapter 3, program flow is discussed, including if statements
and their variants, as well as loops.

 » In chapter 4, we’ll learn how to handle errors (called exceptions in
Python) in our program.

 » Part II: Functions and Classes

 » In part II, we explore functions and classes and introduce the
object-oriented programming paradigm, which will empower you
to solve complex problems with simple yet logically organized code.

14 PYTHON QUICKSTART GUIDE

We’ll also cover inheritance, modules, and packages.

 » In chapter 5, we explore the world of functions and learn how to
pass arguments to them. Functions let us avoid repeating ourselves
and modularize our code.

 » In chapter 6, object-oriented programming and classes are
introduced. Classes are structures that contain both data and code,
letting us organize our application’s functionality.

 » In chapter 7, we dive deep into inheritance and common design
patterns.

 » In chapter 8, a survey of dataclasses shows how to save time by
helping us prototype our classes.

 » In chapter 9, we modularize and reuse our code files and logic with
modules and packages.

 » Part III: Python in Action

 » In part III, we’ll delve into advanced Python functionality, like
math, statistics, input/output, and interacting with the internet.
We’ll also tour several popular website frameworks and learn about
debugging techniques.

 » In chapter 10, advanced strings, input validation, and compression
are covered. We also delve into the immensely powerful world of
regular expressions.

 » In chapter 11, we explore the wealth of Python’s math and statistics
functionality.

 » In chapter 12, input and output functionality is covered, and we
discuss how to serialize our classes.

 » In chapter 13, we’ll interact with the internet, send email, and fetch
web pages.

 » In chapter 14, we learn how to debug our Python applications.

15Introduction

 » Part IV: Advanced Python

 » In part IV, we’ll finish our journey by learning about interfacing
with databases, test-driven development, managing source
code with Git, and optimization. And we cover a cornucopia of
additional functionality you’ll use in your everyday Python work.

 » In chapter 15, the focus turns to web development frameworks like
web.py, Flask, and Django.

 » In chapter 16, the SQLite database system is explored with a
practical example database.

 » In chapter 17, test-driven development is covered.

 » In chapter 18, the basics of the Git source code management system
are discussed.

 » In chapter 19, we pull out the junk drawer and go over several
smaller topics that didn’t quite deserve an entire chapter but are
important for Python developers.

 » In chapter 20, profiling and optimizing Python code are discussed,
both for absolute performance and apparent speed.

 » In chapter 21, I suggest some next steps in your Python journey.

I’m excited to teach you Python. Let’s get started!

PART I
GETTING STARTED WITH PYTHON

19Getting to Know Python

| 1 |
Getting to Know Python

Chapter Overview
 » The Python interpreter runs Python code
 » Python programs are text files ending in .py
 » Variables store data, including strings and numbers

The Python interpreter is the heart of the Python programming language.
True to its name, it interprets and runs the commands we give it, either
interactively or, most commonly, from a file. Just as a text file generally ends in
.txt and an image file in .jpg, a Python program is essentially nothing more
than a text file with a .py extension that contains instructions for the Python
interpreter. In the simplest of terms, writing a Python program is like writing
a text file with special commands that the Python interpreter understands.

Before Our First Line of Code
Programming is an art and not an exact science. Many beginning

programmers feel intimidated about making a mistake or not making the
right choices. That’s perfectly natural. If you’re concerned about starting what
you fear is a daunting task, let me say right now that you will make mistakes
and things will go wrong.

Perhaps that doesn’t sound very reassuring, but take comfort in the fact
that this happens to every programmer all the time. I have been frustrated
for days over something not working right, only to discover that one simple
letter had broken my code and the fix for it took less than half a second.
Programming can be frustrating, but it can also be wildly rewarding. As you
learn more about Python and write programs, you will feel more comfortable
with the language.

So get comfortable, take a deep breath, and let’s dive in!

20 PYTHON QUICKSTART GUIDE

Hello, World!
The very first thing most programmers learn to write is the classic “Hello,

World!” program. This was popularized in the 1978 book The C Programming
Language by Brian Kernighan and Dennis Ritchie. The first example in the
book was a simple program that wrote “Hello, World!” to the screen and
exited. Carrying on with this fine tradition, let’s write our first program.

Since Python programs can be entered interactively in the interpreter or
in a text file ending in .py, we’re going to use both methods so you can get
a feel for each. In most of the examples in this book, we’ll be using Python
files, but entering commands in the interpreter can be an excellent way to test
small snippets of code and get immediate results.

If you haven’t set up Python or Visual Studio Code, please refer to
the introduction.

In the Interpreter
Let’s launch Python. If you’re on Windows and used the Microsoft Store
to install Python, you can find it in the Start menu. Just search for Python
and then run the program. If you used the website installer, double-click
the Python icon on the desktop. In either case, you can type python3 on
the command prompt in Windows (accessible via the Start menu) and
that will load Python.

On macOS and Linux, launch a terminal (on macOS, press CMD
and SPACE and type terminal and on Linux, find Terminal in your
application menu). In the terminal window, type python3 at the prompt.
You’re now running Python. You’ll see something like what’s shown in
figure 7:

The Python interpreter prompt.

The interpreter is awaiting your input directly after the >>> mark. This is
called the prompt. To get Python to tell us hello, type the following and
hit ENTER:

fig. 7

21Getting to Know Python

print("Hello, World!")

When you do so, you’ll be pleasantly greeted, as in figure 8.

In the previous code, there is no space between print and the
opening parenthesis. In fact, in this command, there is only one
space—between the comma and the capital W in World.

The Python interpreter after running the “Hello World!” print statement

As a Python Program File
Let’s do the exact same thing, but this time put it in a text file. This
method has many advantages, but the primary reason for using it is that
it’s impractical to input all our Python commands in the interpreter each
time we want to run a program we wrote.

Start Visual Studio Code and click the File menu, then choose New Text
File. A new tab inside the editor will appear with text like the following:

Select a language to get started. Start typing to dismiss, or don’t show this
again.

Select Python from the list.

You might find it odd that Visual Studio Code is asking you to choose
a language, but this editor is used for many different programming
languages. You can even edit plain text in it if you like.

The introductory text will appear, and you’ll see an empty tab waiting for
your input. Type the following line:

print("Hello, World!")

fig. 8

22 PYTHON QUICKSTART GUIDE

Th en click the File menu and click Save. You’ll be prompted for a location.
Choose the code folder you created in the introduction (see “Creating a
Folder for Your Code”). I recommend naming this fi le hello.py.

Once you’ve saved the fi le, click the Run menu, and click Start Debugging.
Alternatively, you can press the F5 key on your keyboard. You may be
prompted again to select which kind of fi le it is, and if so, select Python.
When you do this, Visual Studio Code runs the python3 interpreter on
the hello.py fi le. After that, a Terminal tab will open in the lower third
of the Visual Studio Code screen and display the output (fi gure 9). It
should show “Hello, World!”

Th e Visual Studio Code display after running your Python program.
Note the “Hello World!” output in the bottom pane of the window.

If you run into any errors, recheck the text fi le you created to ensure
that it contains only the line above. The word print must be all
lowercase, with no spaces before or after, but it’s fi ne to press
ENTER after the entire command to create a new line, if you like.

Congratulations, you just wrote your fi rst program!

What Happened
In Python, print is a function. We’ll expand on functions in chapter 5,
but for now, consider a function as a predefi ned set of commands. Th e
print function handles the work of taking the text we supply between
the parentheses and quotation marks and displaying it on the screen.
Th at might seem a simple task, but there’s a lot going on behind the
scenes to make it happen.

fi g. 9

23Getting to Know Python

We can change “Hello World!” to any text we like. In fact, to demonstrate
this point, let’s have it display our names.

print("Hello, Robert!")

Unless your name is Robert (and bonus points if so), change it to your
name, save the modification to your file by clicking the File menu and
clicking Save (or pressing CTRL+S on Windows and Linux and CMD+S
on macOS) and then choosing Start Debugging (F5) from the Run menu.
Your greeting will now be a lot more personal.

Working with Variables
Displaying text like “Hello, World!” is certainly fun but not particularly

useful. To do real work in our programs, we’ll need to collect information,
process it, and then produce some output. A practical example of this might
be accepting a name, email address, and comment on a website, validating it,
storing it, and then telling the user their request was submitted successfully.

For now, we’ll focus on the first part of that chain of events—collecting
information. But before we ask the user for input, we need a place to put
that information. Fortunately, Python gives us a very powerful tool for the
job: variables.

You probably first heard of variables in algebra class. Don’t worry,
though—this is the last time we’ll use the A-word in this book. You don’t
need to know any kind of higher math to use them, but if you did learn about
variables in math, you’ll likely recall that they are places where a number is
stored. This holds true for Python, except we can store much more than a
number—we can also store text and lists.

Let’s look at a quick example that will illustrate collecting input into a
variable. Create a new file in Visual Studio Code (CTRL+N or CMD+N,
depending on your operating system—or via the File menu). Select the
Python language, then enter the following text:

name = input("What is your name? ")

In this example, the space after the question mark is deliberate.

Save the file as hello2.py and run the program (F5, or click the Run
menu then Start Debugging). When you do, the program will run as usual
and print “What is your name?” in the Terminal tab at the bottom of Visual
Studio Code. However, the program will not finish as it did before.

24 PYTHON QUICKSTART GUIDE

Th e input function works similarly to the print function in that it prints
text (in this case, “What is your name?”). However, it also waits for you to
type something and press ENTER. Whatever you type is then stored in the
variable specifi ed at the beginning of the line. In this case, the variable is
called name.

In Visual Studio Code, click on the bottom Terminal tab and then type
your name and press ENTER. Once you do, the program will end. We stored
whatever you typed in the variable name, but since that’s all we did, it wasn’t
used before the program ended. Let’s change that.

Right after the fi rst line, let’s add a print function.

name = input("What is your name? ")

print("Hello, " + name)

Add this to your fi le and save it (CTRL+S, CMD+S, or click the File
menu and click Save). Now let’s run it again. Once it starts, click the
Terminal tab in the bottom pane of Visual Studio Code and enter your
name when prompted.

Th e Visual Studio Code display after running hello2.py.
Note the “Hello, Robert” output in the bottom pane of the window.

Several things happened here, as we can see in fi gure 10, so let’s step
through them one by one. First, the input statement collected your input (the
text you typed after the prompt) and then stored that text in a variable called

fi g. 10

25Getting to Know Python

name. Then, on the next line, the print function displayed the text “Hello, ”
and added the text in the variable name.

That last part might seem a bit odd. How do you add text? When I say
add, I don’t mean mathematically, though we use the plus symbol in Python
to combine, or concatenate, variables with text. “Concatenate” is a technical
way of saying that we’re linking multiple pieces of text together in a series.
And, in this case, we’re concatenating “Hello, ” with the text inside of the
name variable.

When we put text in a variable, that variable is then known as a string. A
string is still a variable, but when we say “string,” we know that the variable
has text stored in it. That might seem an unnecessary distinction, but it’s
important because variables can be more than just text—they can be numbers
and other types of data as well.

Variable names, and in fact nearly all other things in Python, are
case-sensitive. The variable name cannot be referenced using
Name or any other variation—it must be entirely lowercase in this
instance. And, by convention, variable names are lowercase.

Strings
There are a few other types of variables in Python, but for now, let’s focus

on strings and how they interact with code. You already know how to use a
string to gather input from the user, but you can also assign a value to a string
in your code. Start a new file in Visual Studio Code and type the following:

word1 = "Hello"

word2 = "World!"

print(word1 + word2)

In this code, the variable word1 is assigned the text “Hello”. The variable
word2 is assigned the text “World!” The third line uses print to display the
values within the parentheses—in this case, the strings word1 and word2.
Save the file as hello3.py and, before you run it, try to predict the result.

When you run the code, you’ll get this output:

HelloWorld!

That’s a bit off. When you pass a string to print, it will display exactly
what is in the string—nothing more, nothing less. We have at least three

26 PYTHON QUICKSTART GUIDE

different ways to fix this. I want to show each to you so you’ll see how flexible
Python programming can be.

Adding a Space to the String
Perhaps the simplest solution is to add a space to the end of word1.

word1 = "Hello "

word2 = "World!"

print(word1 + word2)

This certainly does the job:

Hello World!

Adding a Space to Print
The second option is to add a space inline within the print function.
Doing something inline means that we perform an operation within
another line of code. In the example below, we’ve added a space (specified
by " ") inline (in the print line) between word1 and word2.

word1 = "Hello"

word2 = "World!"

print(word1 + " " + word2)

This works as well:

Hello World!

The inline string operation is circled in figure 11.

Using a Third Variable
Let’s try something different. Instead of appending the space to the
word1 variable or adding a space inline with the print function, we’ll
assign a third string and pass it to print.

fig. 11

27Getting to Know Python

word1 = "Hello"

word2 = "World!"

space = " "

print(word1 + space + word2)

This works but is a bit more cumbersome.

Hello World!

So which approach is best? The unfortunate truth is that there is no
simple answer. In a small program like this, it largely comes down to
personal choice. All other things being equal, I prefer to use the simplest
approach, and this generally means the fewest lines of code.

But that isn’t always the best method. If you are going to have to insert
spaces between strings often in your program, having a predefined string
named space with the contents of exactly one space in it, and then using
it whenever you need it, makes sense. Remember what we said at the
beginning of the chapter: programming is an art and not an exact science.

Slicing
Now that we’ve combined strings together, let’s break them apart again.
Python lets us slice strings—that is, take a portion of a string for use in
another string.

greeting = "Well, hello there!"

hello = greeting[6:11]

print(hello)

When we run this, we see:

hello

In this example, we define the string greeting that contains Well,
hello there! Then we create a new string called hello that is made up
of the characters starting after character position 6 and going up to and
including position 11. The numbers in the brackets, 6 and 11, define the
range of characters to use. Then, on the third line, we display the new
string hello.

28 PYTHON QUICKSTART GUIDE

If we won’t need the hello string again and only mean to display it, we
can reduce this code to two lines by making hello inline in the print
function.

greeting = "Well, hello there!"

print(greeting[6:11])

If we omit the second number after the colon, we can have it finish the
rest of the string (starting after position 6).

greeting = "Well, hello there!"

print(greeting[6:])

This code displays:

hello there!

And if we omit the first number and change the 11 to a 4, we see the
beginning of the string up to (and including) position 4.

greeting = "Well, hello there!"

print(greeting[:4])

This modification displays:

Well

String slicing can be very useful for extracting certain parts of strings
and storing them in other strings, or for doing something with the
result inline.

Numbers
Now let’s focus on numbers. Numbers in Python are largely divided into

two groups: integers and floating-point numbers (or floats, for short). An
integer is a whole number, be it negative or positive. A floating-point number
is a number that has a decimal. When we define a number in Python, we
don’t put quotes around it like we do with strings (unless we want it to be a
string with numbers).

Let’s look at some examples of integers in Python.

29Getting to Know Python

apples = 4

pears = 8

attendees = 3042

zip _ code = 12345

In this random assortment of variables, we assign the value 4 to the
variable named apples, 8 to pears, 3042 to attendees, and 12345 to
the variable zip _ code. Note that the zip _ code variable name has an
underscore; this is a common way to give a variable a name that consists
of multiple words, because you can’t use spaces in your variable names. The
underscore provides a visual reference that it’s two separate words yet doesn’t
confuse the interpreter with a stray word in your line of code.

Now let’s look at some floating-point numbers:

price = 4.95

gpa = 3.74

pi = 3.14159

These are still number variables, but since they contain a decimal,
Python treats them as floating-point numbers. It may seem strange that
there’s a distinction, because even whole numbers can be represented as
decimals (e.g., 4.00), but computers treat integers and floating-point numbers
differently at the hardware level, and this difference is passed up through the
Python interpreter.

In general, integers are simpler to work with and are a bit faster,
though on today’s computers the difference is barely noticeable
unless you’re doing an extremely large number of calculations.
In the early days of computing, processors didn’t even work with
floating-point numbers natively. Floating-point units became
common on processors starting in the early 1990s and today are
standard issue in every computer.

Let’s create a new file in Visual Studio Code and enter the following:

price = input("What is the price of a cup of coffee? ")

cups = input("How many cups do you want? ")

total = price * cups

print("Your total is $" + total + " for " + cups + " cups.")
01-01.py

30 PYTHON QUICKSTART GUIDE

Before we proceed further, I should mention that the star (asterisk)
symbol on the line where we calculate the total is Python’s way of multiplying
two numbers.

Save the file as cups.py and run it. Just for testing purposes, enter the
floating-point 3.99 for the coffee and 3 for the number of cups (we have a lot
to do today). Don’t forget to press ENTER after you enter both values. If
you’ve entered everything correctly, it won’t work! The code probably seems
correct, but there’s a flaw. Visual Studio Code points out our error, but its
meaning is not entirely clear (figure 12).

Something went wrong! A TypeError has occurred.

Visual Studio Code highlights the exact line in which the problem
occurred and raises a TypeError, which is a particular kind of error that
occurs when we try to do something with a variable that isn’t supported for
that kind of variable.

That likely doesn’t clear anything up at this point because, from the user’s
perspective, they entered a number. Why can’t they multiply 3.99 (price) by
3 (cups)?

A string is a text variable, so that’s why it can’t be used (directly) in math.

The problem lies in the fact that the input function fills the variables
with strings and not numbers. When a function fills, or provides a value, it
is said to return that value, meaning it does its work and, upon return to our
code, fills the variable on the left side of the equals sign with whatever input
it collected. So the price and cups variables contain the strings 3.99 and 3,
respectively, as if they were text and not numbers.

fig. 12

31Getting to Know Python

Python can add strings with the plus sign, but when it does, it won’t
perform math—instead, it will combine the two strings. Nevertheless,
Python can’t multiply strings, so it generates an error. To fix this, we need to
convert the variables we collect into numbers.

Converting Strings to Numbers
Assuming a string contains the text of a number (for example, the string
is “3”), Python can convert that into an actual number, one on which we
can perform math operations. To do this, use the built-in function int,
like this:

total = price * int(cups)

Now the string cups will be converted into an integer. Go ahead and
make that change to your file and save, but we’re not quite done. We need
to convert the string price into a number, but not just any number. Since
price has decimals (in this case, 3.99), we’ll need to convert it to a float
instead. Let’s use the float function in Python to do just that.

total = float(price) * int(cups)

This will convert the price string to a float and the cups string to an int
(integer), and since both are numbers, they can be multiplied with the *
symbol. Now our calculation of the total is fixed, but there’s one more
step before our program will work correctly.

Converting Numbers to Strings
On the last line, we print the value of the variables total and cups. The
cups variable will display correctly with print because print expects
strings and cups is a string. But total is a number (specifically a float,
because a float was used as one of the values in the multiplication). We’ll
need to convert that to a string to feed it to the print function. In Python,
we do that with the str function.

print("Your total is $" + str(total) + " for " + cups + " cups.")

Save your file and run the program. If you supply 3.99 as the price and 3
as the cups, you’ll get the correct answer.

32 PYTHON QUICKSTART GUIDE

What is the price of a cup of coffee? 3.99

How many cups do you want? 3

Your total is $11.97 for 3 cups.

When we convert variables from one type to another, we are casting. In
the previous example, we are casting the cups variable as an integer, the
price variable as a float, and the total as a string.

One additional note about casting variables into other types. We can store
the result of our cast operation in another variable. In the example we’ve
been using, we’re casting inline, meaning we are using the int, float, and
str functions to convert those values instantly so they can be supplied to
the print function or so we can perform math with those values.

But if we did this . . .

number _ of _ cups = int(cups)

actual _ price = float(price)

… the cups variable would still be a string with the number “3” and
the number _ of _ cups would become exactly the value of 3. Also, the
actual _ price variable would become the number 3.99, while leaving
the original price variable intact as a string. We can print actual _

price and use price in a calculation.

total = actual _ price * number _ of _ cups

While this is a perfectly acceptable way to handle this issue, it uses more
lines and is more complex, so I opted to perform the casting inline.
However, if you were going to use the numbers frequently over many
calculations, casting them once and storing the result in another variable
like number _ of _ cups would be not only easier but faster for the
Python interpreter because it doesn’t have to convert it repeatedly. Since
our example was a simple one-time calculation, the inline approach is best.

A Few Comments
Our code samples so far have been short, but we’re about to create a larger

file. It would be nice to be able to include some text before certain parts of our
code to remind ourselves (and others who will see or edit the file) what we’re

33Getting to Know Python

doing. Comments are not run or processed by the interpreter in Python. As
far as Python is concerned, they might as well not be there.

To create a comment, simply insert a hash symbol (#), and anything else
you type after that on the same line will be ignored.

This code prints Hello, World!

print("Hello, World!")

Comments are incredibly helpful, and I highly encourage you to use
them as often as necessary. Even experienced programmers forget the reason
for writing certain parts of a program. I’ve done it countless times. The best
way to prevent this is to document your code with comments.

Newlines
There’s one last thing we need to discuss before we’re ready to start our

game. You might think the heading of this section is a typo—but it isn’t. A
newline is a special code that instructs the print function to stop displaying
text on the current line and move to the next line. print automatically inserts
one of these when it finishes displaying the string(s) we provide.

If we want to move down to the next line in the middle of our string, we
simply insert a backslash and the letter n (styled as \n) in our string. Go ahead
and start a new file in Visual Studio Code. Save the file as scratch.py, as this
will be our scratch pad for trying new ideas.

print("Hello,\nWorld")

When you run the code, you’ll see this output:

Hello,

World

You’ll note that it isn’t necessary to insert a space after the comma, because
the newline character simply moves the remaining text to the next line. We
could insert a space before it if we wanted to, but it wouldn’t show. We can
also insert newlines (represented by two \n) before and after the greeting.

print("Hello, World!\n\nHello, World!")

This will give the following result:

34 PYTHON QUICKSTART GUIDE

Hello, World!

Hello, World!

What’s in a Name?
I have a simple exercise for you. Let’s say we want to collect a person’s

name and then return to them the first letter of their name. What code could
you write to do this?

Try this on your own. I have confidence you’ll be able to do it. If you get
stuck, consult the appendix. You can use your scratch.py file or create a new
one if you like. (Hint: String slicing is your friend in this exercise).

ClydeBank Coffee Shop: Our First Cup
We have now gathered enough beans of wisdom to pour our first cup in

the ClydeBank Coffee Shop game. Since this is our first step in writing our
game, we’ll keep things simple and use what we’ve learned so far to set up the
game’s parameters.

Let’s create a new file and save it as coffee.py. A blank Python code file,
just like a blank screen on a word processor, can be a bit intimidating. That’s
all right, though—we’ll start small and build from there. Also, code isn’t
etched in stone. By the time we’re finished, we’ll have changed things around
quite a bit, and that’s perfectly fine.

I’ll list the code first and then explain it line by line.

ClydeBank Coffee Shop Simulator 4000

Copyright (C) 2023 ClydeBank Media, All Rights Reserved.

print("ClydeBank Coffee Shop Simulator 4000, Version 1.00")

print("Copyright (C) 2023 ClydeBank Media, All Rights Reserved.\n")

print("Let’s collect some information before we start the game.\n")

Get name and shop name

name = input("What is your name? ")

shop _ name = input("What do you want to name your coffee shop? ")

print("\nThanks, " + name + ". Let’s set some initial pricing.\n")

Get initial price of a cup of coffee

cup _ price = input("What do you want to charge per cup of coffee? ")

CCS-01.py

35Getting to Know Python

Display what we have

print("\nGreat. Here’s what we’ve collected so far.\n")

print("Your name is " + name + " and you’re opening " + shop _ name + "!")

print("Your fi rst cup of coffee will sell for $" + cup _ price + ".\n")

First, we display the name of the game. Why 4000 in the title? Remember
when everything had 2000 in the title right around the start of the new
millennium? If you don’t, then I just aged in that last sentence. Using 3000
seemed a bit silly, but 4000 seemed just right. You don’t have to name it that,
though. It’s your game, and you can name it whatever you like. But I think
it’d be awesome if you included 4000 after it.

After that, we ask for the player’s name via the input function and store
the result in the name variable. We do the same for the name of the coff ee
shop, storing it in the shop _ name variable. We then print a notice with their
name to customize it. We technically don’t have to do that, but it’s a nice
personal touch.

Next, we ask how much they want to charge per cup. In this line, the input
will return a string if the player inputs a decimal value. After that, we display
the cup _ price variable to confi rm with the user what they entered. We’ll
need to convert this to a fl oat to make use of cup _ price in a mathematical
way, but we’ll worry about that later.

To watch the Quick Clip, use the camera on your mobile phone
to scan the QR code or visit the link below.

www.quickclips.io/python-2or

Th ere’s a lot that can go wrong with this code, but most of it revolves
around the user not inputting the values we expect. Don’t worry about that

Want to look over my shoulder as I
code the fi rst bit of our ClydeBank
Coffee Shop Simulator 4000 game?

36 PYTHON QUICKSTART GUIDE

for now, though—we’ll get to error handling in chapter 4. And, admittedly,
this is a small start to a coffee shop simulator video game. However, it’s a
start. Your first program in Python. I encourage you to take a moment and be
proud of your accomplishment. You’ve earned it!

Chapter Recap

 » The Python interpreter runs our Python code.

 » Variables are places to store data. Strings are a type of variable that
stores text, and integers store whole numbers. Floats store numbers
with decimals.

 » We can convert between strings, integers, and floats.

37Understanding Python Data Structures

| 2 |
Understanding Python Data Structures

Chapter Overview
 » Data in Python can be organized into data structures
 » Data structures include lists, tuples, sets, and dictionaries
 » You can combine and nest data structures to represent complex data

The variables we used in chapter 1 are containers for storing strings and
numbers. They work well for simple pieces of data, but often we need to
assemble and manage data in a more organized manner. Fortunately, Python
gives us far more powerful ways to arrange our data. At the end of this
chapter, we’re going to apply our new knowledge by storing data for our coffee
shop simulator game.

Lists
Lists in Python are data structures that can contain other variables. Think

of a list as a basket, except there isn’t a limit to the number of items you can
store (other than the available amount of memory on your computer). Let’s
look at a few examples.

grocery _ list = ["eggs", "milk", "cheese", "pasta"]

planets = ["Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn",

"Uranus", "Neptune"]

odd _ numbers = [1, 3, 5, 7, 9]

When using numbers, don’t put quotes around them—unless you
want them to be a string with a number inside it.

In the previous examples, grocery _ list, planets, and odd _ numbers

act like variables, except they contain individual strings and numbers.

38 PYTHON QUICKSTART GUIDE

You might wonder why you can’t just store the grocery list, or any list, in
a big string, like this:

grocery _ list _ string = "eggs, milk, cheese, pasta"

You can, of course. There’s nothing stopping you, and this is a viable
strategy in some cases. But lists have many powerful tricks up their sleeves—
the most useful of which is the ability to instantly reference one of the
elements of that list.

grocery _ list = ["eggs", "milk", "cheese", "pasta"]

print("The first item on the list is " + grocery _ list[0])

print("The second item on the list is " + grocery _ list[1])

I encourage you to run this code in the interpreter or via your scratch.py
file. If you do, you’ll see this:

The first item on the list is eggs

The second item on the list is milk

Using the name of the list followed by square brackets enclosing a
numerical position lets us fetch any item we want off the list. That number in
brackets is called the index because it points to the item on the list we want
to access. Pretty neat, huh?

You may have noticed that I used position numbers 0 and 1 instead of
1 and 2. In programming, we start counting from 0 due to the way the
interpreter internally references a list of values. When we create a list, the
interpreter assigns a memory address (a position in memory) for it so that
it can be accessed later in your code. If you supply an index position, like
1 in grocery _ list[1], it adds this number to the memory address to get
the location in memory that contains the specific item we want.

So let’s pretend the address of the list is 8000. That’s a completely
made-up memory address, but it’s simple enough for our example. Item
number 0 is simply the first item in the list, which is at 8000. The second
item (referenced by grocery _ list[1]) is derived by taking the index
number (1) and then calculating the position based on that with the
math operation 8000 + (index × length), yielding 8008 in our simplified

02-01.py

39Understanding Python Data Structures

example. The interpreter looks at this location in memory and gets the
specific item we wanted.

The grocery list in memory. The vertical column headings are the
absolute position in memory, and the numbers in the horizontal top row

denote the length of the string.

I stress that this example is contrived. Normally, a lot of complicated
memory management is going on behind the scenes, as each item on the
list can be a different size and the interpreter tries to be as efficient as
possible. Also, the interpreter reserves space for additional items. Given
that the list items are of varying lengths (the number of letters in each
word), realistically 8000 would be the first entry, and perhaps 8032 would
be the second, in case the first item on the list is changed to a longer
string. Don’t worry too much about the actual numbers; the concept is
the important part of this detour.

I spent a bit of time with this little detour on starting your indexes with
0 instead of 1 because it is a common mistake for beginner programmers.
Also, indexes with zero let you perform interesting and useful math on
the index position.

Lists can have different kinds of data. For example, it’s perfectly
permissible to mix strings and numbers.

random _ assortment = ["egg", "tree", 3, "green", 94, "pluto", 3.14]

fig. 13

40 PYTHON QUICKSTART GUIDE

In this case, we have strings, integers, and floats.

Tuples
Tuples act much like lists except they can’t be changed, thus they are

immutable. In programming terminology, an immutable variable or data type
is read-only, whereas mutable data is editable. At first, you may wonder why
you’d want a list that couldn’t be changed. But if your program is going to be
using a predefined set of data, a tuple is not only safer, it’s faster.

By safer, I mean that if you accidentally try to modify a tuple, an error
will be generated. Also, since the Python interpreter can create the tuple in
memory without having to make space for potential future edits, it won’t
have to be reshuffled and rearranged in memory as much as a regular list,
thus allowing your code to access the contents of the tuple much faster.
Additionally, tuples use less memory.

In our code so far, we haven’t needed to use a tuple, but our planet example
is an excellent use case for tuples. To make a tuple, instead of enclosing the
list of elements in square brackets, use parentheses.

planets = ("Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn",

"Uranus", "Neptune")

The list of planets in our solar system isn’t going to change unless
astronomers decide Pluto really is a planet. Nevertheless, this list won’t
change during the execution of a program, so it’s safe to put it under lock
and key.

There’s one more benefit to making a list of values read-only: security.
Having a value defined at the start of program execution and not available
for editing within the code means that malicious commands injected into the
interpreter cannot modify values relied upon by security or authentication
functionality.

For the most part, we use tuples just like we do lists. Accessing an element
of the tuple is simple:

planets = ("Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn",

"Uranus", "Neptune")

print(planets[3])

If we enter this code into our scratch file, or in the interpreter directly, we
will find out what is the true third rock from the sun.

02-02.py

41Understanding Python Data Structures

Mars

In programming terms, Earth is the second planet, and Mercury is planet
zero! If you’re confused by this statement, recall from the “Detour” in the
Lists section of this chapter that indexes in Python start with 0, not 1.

Sets
A set is very similar to a list except that it contains only unique values. If

we add a duplicate value to our set, it will be ignored.
This can be very useful if we want to deduplicate our data. Data

deduplication means that we store only unique data, not redundant
information. This results in less memory and disk space consumed, as well as
improved performance of our code in some situations.

Let’s consider an example where this might be beneficial. In this code,
we’ll create a set with customer names. We collected the data from a variety
of sources and simply copied and pasted the names into the set. Since this will
be a master customer list, we don’t want to store duplicates.

A set is surrounded not by square brackets as in lists or parentheses as in
tuples, but by braces (otherwise called curly brackets).

customers = {"James Smith", "Andrea Richards", "Sam Sharp", "Brenda

Longmire", "Veronica March", "Sylvia Smith", "James Smith", "Vanessa

Bush", "Steve Hammersmith", "Brenda Longmire", "Sylvia Smith", "Steve

Hammersmith", "Walt Hawkins"}

If we enter this code in our scratch file and then print it, like this …

print(customers)

… we’ll see that the actual data stored in customers has been deduplicated
for us.

{'Sam Sharp', 'Brenda Longmire', 'Veronica March', 'Sylvia Smith',

'Walt Hawkins', 'Steve Hammersmith', 'Andrea Richards', 'James Smith',

'Vanessa Bush'}

Your results may not look exactly like the previous example, because
sets are unordered—that is, Python doesn’t guarantee to present items in a
particular order when you access them from an existing set. Regardless, you
won’t find any duplicate entries in a set.

02-03.py

42 PYTHON QUICKSTART GUIDE

By the way, the code listing for creating this customer list was kind of
messy. Data wrapped to the next line, and that can be a bit distracting to read
and more cumbersome to edit. Fortunately, Python gives us an elegant way
to solve this problem:

customers = {

 "James Smith",

 "Andrea Richards",

 "Sam Sharp",

 "Brenda Longmire",

 "Veronica March",

 "Sylvia Smith",

 "James Smith",

 "Vanessa Bush",

 "Steve Hammersmith",

 "Brenda Longmire",

 "Sylvia Smith",

 "Steve Hammersmith",

 "Walt Hawkins"

}

Not only is this easier on the eyes but it allows us to quickly add or edit
elements. Just remember to add a comma after each line (except for the last)
and to indent each item by pressing the TAB key.

You can format lists and tuples this way, too; just replace the braces (curly
brackets) with square brackets for lists and parentheses for tuples.

Since sets can contain only unique values, this data structure may
not be ideal for actual lists of customers. It was used here simply for
illustrative purposes. When choosing which data structure to use, the
fact that sets contain unique values is an important consideration.

Dictionaries
Dictionaries are indexed lists of values. Like sets, they are surrounded

by braces and don’t allow duplicates, and they are mutable (that is, editable).
Each piece of data in a dictionary is referenced by a string or number. The
easiest way to explain dictionaries is to show a few simple examples.

43Understanding Python Data Structures

customer1 = {

 "name": "James Smith",

 "age": 24,

 "phone": "555-555-1941",

 "email": "james@xyzinternet.net"

}

customer2 = {

 "name": "Andrea Richards",

 "age": 33,

 "phone": "555-555-4928",

 "email": "andrea@coffeeloversunite.us"

}

There’s a lot going on here, so let’s step through each line one by one.
In this example, there are two separate dictionary variables—one titled
customer1 and the other titled customer2. In each dictionary, there are four
values, each referenced by a key. This is called a key-value pair, often styled
as key:value pair. A key:value pair is simply a way to reference a piece of data
that has a key, or index, attached to it.

The keys are name, age, phone, and email, and the values for customer1
are "James Smith", 24, 555-555-1941, and james@xyzinternet.net. To access
one of these values by its key, we would use the name of the dictionary
followed by the key name in brackets.

print(customer1["name"])

As mentioned at the beginning of this section, keys are unique, so you
cannot have more than one name, age, phone, or email key in a dictionary in
this example. If you assign another key with the same name in a dictionary,
like this:

customer3 = {

 "name": "Robert"

 "name": "John"

}

Python simply replaces the first value with the second, so …

print(customer3)

02-04.py

44 PYTHON QUICKSTART GUIDE

… shows this:

{'name': 'John'}

Using the print function on a list, set, tuple, or dictionary displays the
entire contents of that data structure. I’ve prepared a chart to remind you
which characters to use for which data structure (figure 14).

PYTHON DATA STRUCTURE

STRUCTURE FORMAT EXAMPLE

List ["item1", "item2"] planets = ["Venus", "Earth", "Mars"]

Tuple ("item1","item2") flavors = ("grape", "cherry", "lemon")

Set {"item1", "item2"} grades = {"A", "B", "C", "D", "F"}

Dictionary {"key": "value"} names = {"name": "Robert", "age": 42}

Boolean Variables
There are many times when we need to express whether something is

true or false. We could use an integer and set 0 as false and 1 as true or use a
string with “True” as a value of true and “False” as a value of false. To be more
efficient, we could say “T” is true and “F” is false. But there’s no need to do
any of that because Python has a built-in solution—a Boolean.

Booleans can have only two values—True or False. I capitalize the first
letters because those are the actual values. Python treats these two words
with capital letters as special values.

walking = False

running = True

In this example, the value of walking is False, and the value of running
is True. We could set these variables to either True or False; it just so happens
that those are the values I initially set in this example.

fig. 14

45Understanding Python Data Structures

The utility of Booleans will become even more apparent when we talk
about comparisons in chapter 3. Regardless, I wanted to mention this type
of data so you’ll know how to handle these on/off, true/false kinds of values
in your code.

Combining Data Structures
Now that you know the basic Python data structures, let’s explore how to

combine them to form innovative and convenient ways to store data.

Multidimensional Lists
Lists don’t have to be simply a flat listing of values. We can have lists of
lists, or what are commonly called multidimensional lists. Let’s consider
an example.

Daily high and low temperature (in Fahrenheit)

temps = [

 [66, 34],

 [57, 25],

 [49, 45]

]

In this structure, we’re storing three days’ worth of high and low
temperatures. Essentially, it’s a list of three lists. We can easily access
the data, no matter where it’s stored in the structure, by specifying, in
brackets, the position (index) in the first (outer) group, and then in a
second set of brackets the position in the inner group.

Before I explain this with an example, recall that in Python, the first
element in an array is position 0, not 1.

Here’s an example:

Day 1 temps

print(temps[0])

Day 2 temps

print(temps[1])

Day 3 temps

02-05.py

46 PYTHON QUICKSTART GUIDE

print(temps[2])

Day 1 high

print(temps[0][0])

Day 1 low

print(temps[0][1])

Running this code produces the following:

[66, 34]

[57, 25]

[49, 45]

66

34

The first three print functions simply display the contents of lists 1, 2,
and 3 in the multidimensional list. The last two print functions use a
second set of brackets to specify the first and second elements in the
first list.

If we wanted to access the low temperature for day three, what notation
would we use? If you said temps[2][1] (the second element in the third
list, counting from zero), then you would be correct.

You aren’t limited to two dimensions either. You can continue nesting
lists as much as you like.

Weekly (then daily) high and low temperature (in Fahrenheit)

temps = [

 [

 [66, 34],

 [57, 25],

 [49, 45],

 [45, 19],

 [33, 7],

 [32, 14],

 [49, 37]

],

 [

02-06.py

47Understanding Python Data Structures

 [52, 39],

 [61, 51],

 [64, 51],

 [67, 57],

 [69, 42],

 [32, 14],

 [49, 37]

]

]

In this example, we have two weeks of high and low temperatures stored
in the temps list. To access the third day in the second week’s low, we’d
use this:

print(temps[1][2][1])

Remembering that the counting starts at zero in indexes, this finds us the
second (index 1) element of the third (index 2) list in the second (index
1) week of data.

Lists of Sets, Tuples, and Dictionaries
We’ve already seen how lists can be multidimensional—essentially
containing lists of lists. However, this property isn’t restricted to lists.
Lists can contain sets, tuples, and dictionaries, and those data structures
can often contain other structures as needed.

There is a caveat, though. Each data structure, no matter in which
position it sits in a Russian doll-esque collection of other data structures,
retains its properties. For example, sets contain only unique values, tuples
are immutable (read-only), and dictionaries are still key:value stores. If
you stick to those rules and use the data structure type that best suits your
needs, you won’t run into any problems.

Picking the Right Data Structure
Remember when I said programming is an art and not an exact science?

This is one of those situations. In some cases, the choice of which data
structure you should use is clear. I’ll list some basic guidelines to follow, but
note that there are few absolute rules. It is fair to say that a working program
runs circles around one that doesn’t, but if programming is indeed an art, we
can’t be complete pragmatists.

48 PYTHON QUICKSTART GUIDE

In high-performance, business-critical applications, these choices can be
pivotal. That said, I don’t want to scare you into second-guessing yourself as
you code. That perpetual self-doubt should come much later in your Python
career (just kidding). In all seriousness, though, I want you to consider the
idea that there are multiple ways to solve problems in programming. I believe
that having this kind of flexibility in your thinking makes you a better
programmer.

 » Lists are going to be your go-to solution for storing collections of
data. If in doubt, this is the safest bet.

 » Sets are faster than lists in some cases, but running many
calculations on the data contained in a set can be slower overall.
We’ll address performance tuning in chapter 20.

 » If your data won’t change and you’re performing many calculations
on that data in situations where performance is critical, tuples are a
great solution.

 » If your data is complex or you think you’ll add additional parts to a
structure, a dictionary is often a good choice.

ClydeBank Coffee Shop: Starting the Grind
We need to get our new coffee shop off the ground. We’re already storing

some variables, like our player’s name and the name of the player’s coffee
shop, but we need to go a step further. In chapter 3, we’ll build the main
game loop—that is, the repeating code that walks the player through each
day of their operations. But before we do that, we need a place to store data
about each day’s pricing, advertising budget, sales, and even weather.

We could store these in individual variables, but that would get problematic
when we needed to store the results of each day’s progress. So let’s construct
a data structure to collect this information. Since we don’t have the loop yet,
all we can really do is create an empty list and a day counter, but in comments
we can model the data we anticipate storing. I often use comments to plan
out what I’m going to do. Comments also have the side benefit of providing
insight for future developers on a project. In the following code, I added the
day variable (we start at 1), and the empty sales list.

The list is a list of dictionaries, and it’s formatted in a way that allows us
to avoid cramming everything on one line. There are two good reasons for
this. First, formatting dictionaries in this manner makes them more readable.

49Understanding Python Data Structures

The second reason is entirely practical, if not a bit self-serving. Pages don’t
have infinite width and we simply can’t print the sample dictionary structure
all in one line—unless we make the font impossibly small and unreadable.
But we’re not just trying to save paper here. If your lines are too wide, they’ll
run off the edge of the screen. This isn’t technically an issue, but from an
aesthetic and usability perspective it’s quite problematic.

In the sales list of dictionaries, I’m logging the day, the end-of-day
coffee inventory (abbreviated coffee _ inv), the advertising budget, the
temperature, and the number of cups sold. But since this is just sample data
to illustrate the point, we still must create an empty sales list to have a place
to store our sales data. Additionally, the new code comes before the welcome
message, by tradition. Generally, global variables (that is, variables that are
used throughout the program) are stored near the top of the code.

ClydeBank Coffee Shop Simulator 4000

Copyright 2022 (C) ClydeBank Media, All Rights Reserved.

Current day number

day = 1

Sales list of dictionaries

sales = [

{

"day": 1,

"coffee _ inv": 100,

"advertising": "10",

"temp": 68,

"cups _ sold": 16

},

{

"day": 2,

"coffee _ inv": 84,

"advertising": "15",

"temp": 72,

"cups _ sold": 20

},

{

"day": 3,

"coffee _ inv": 64,

"advertising": "5",

"temp": 78,

"cups _ sold": 10

CCS-02.py

50 PYTHON QUICKSTART GUIDE

},

]

Create an empty sales list

sales = []

Print welcome message

print("ClydeBank Coffee Shop Simulator 4000, Version 1.00")

print("Copyright (C) 2022 ClydeBank Media, All Rights Reserved.\n")

print("Let's collect some information before we start the game.\n")

Get name and shop name

name = input("What is your name? ")

shop _ name = input("What do you want to name your coffee shop? ")

print("\nThanks, " + name + ". Let's set some initial pricing.\n")

Get initial price of a cup of coffee

cup _ price = input("What do you want to charge per cup of coffee? ")

Display what we have

print("\nGreat. Here's what we've collected so far.\n")

print("Your name is " + name + " and you're opening " + shop _ name + "!")

print("Your first cup of coffee will sell for $" + str(cup _ price) + ".\n")

If you run our game, you’ll see that it does the same thing it did in chapter
1, because most of what we added was comments. It may seem like we haven’t
done much, but that couldn’t be further from the truth. The thinking ahead
and planning we do in a project is just as important as the lines of code we
write. We’ve got a plan to store our data, and that’s a huge step forward.

In the next chapter, we’ll learn how to direct the flow of our code and
loop through days of gameplay in our coffee shop simulator.

51Understanding Python Data Structures

Chapter Recap

 » Data structures allow the logical organization of data in Python.

 » Lists are collections of individual variables.

 » Tuples are essentially immutable (read-only) lists.

 » Sets are like lists but can only contain unique values.

 » Dictionaries can contain key:value pairs of indexed data.

53Controlling Program Flow

| 3 |
Controlling Program Flow

Chapter Overview
 » Logical comparisons and loops allow control of program flow
 » The if statement compares values and executes code accordingly
 » A loop lets you execute the same code multiple times

Until this point, our Python programs have been executed in only one
direction. This works fine for extremely simple programs, but most of the
time we’ll need to collect input and then make decisions based on that input.
Python is a powerful Swiss Army knife that is capable of so much more than
simple top-to-bottom scripting. With logical comparisons, we can control
the flow of the program. Our code can make decisions and adjust for as many
conditions as we choose.

Logical Comparisons
Comparisons are at the heart of every decision in programming. Recall

what I said in chapter 1: programs collect information, process it, then
produce a result. We’ve collected input with the input function, and we’ve
displayed output with the print function. But we really haven’t processed it
in any meaningful way. Python provides a variety of ways to compare data.

If
With the if evaluation, we’re asking Python to say, “Do something if
this condition is met.” Oftentimes the comparison will go something
like this:

a = "Yes"

b = "Yes"

if a == b:

 print("a is equal to b")03-01.py

54 PYTHON QUICKSTART GUIDE

Note that when we assign a value to a variable, as in a = "Yes", we use
one equals sign, and when we make a comparison, like if a == b, we
use two. This tells the interpreter we want to compare the two values, not
take the value of variable b and place it in variable a. At the end of our if
statement, we use a colon.

Before you type this code into the interpreter or add it to your scratch.py
file, let’s address a few things. First, you’ll notice that the print function
is indented. Some programming languages are not so picky about this
type of formatting, but Python is strict and requires indentation in this
and other instances, which we’ll cover in later chapters.

I simply hit the TAB key on the keyboard and Visual Studio Code will
indent the code for me.

While you can use spaces instead of tabs to indent in Python, I strongly
recommend using tabs. You have fewer keystrokes with tabs, they’re
consistent, and if you want to change the indent size at some point,
you can adjust the size of a tab in your editor rather than going
through your file and adjusting indents to match your new preference.

Before reading any further, try to predict what will happen when you run
the code. Then run the previous Python code and see if you were right.

When you do, you’ll see this:

a is equal to b

Let’s change things a bit.

a = "Yes"

b = "No"

if a == b:

 print("a is equal to b")

What will happen now? If you run this code, you should see nothing. The
condition tested by the if statement wasn’t met, so the print function
won’t run.

03-02.py

55Controlling Program Flow

You can do several things when a condition is met—you aren't limited to
just one command.

a = "Yes"

b = "Yes"

if a == b:

 print("a is equal to b")

 print("Really, it is, I promise!")

else:

 print("a is not equal to b")

 When you run this, here’s what you’ll see:

a is equal to b

Really, it is, I promise!

You can enter as many lines as you wish—just be sure they’re indented
with the TAB key.

You aren’t limited to checking for equality. You can also check a variety
of conditions, like “less than” (using the < sign), “greater than” (using the
> sign), and more. For now, we’ll stick to equals, less than, and greater
than, but in future chapters we’ll explore how to make more complex
comparisons.

Here are some examples using less than and greater than comparisons.

a = 1

b = 2

if a < b:

 print("a is less than b")

Else
What if we want to do one thing if the condition is true and another if
the condition is false? The else statement lets us do just that.

a = "Yes"

b = "No"

03-03.py

03-04.py

03-05.py

56 PYTHON QUICKSTART GUIDE

if a == b:

 print("a is equal to b")

else:

 print("a is not equal to b")

When we run this code, the second print statement (“a is not equal to
b”) will run because the condition wasn’t met.

Elif (else if)
Sometimes we want to compare conditions in a chain, starting with a base
assumption and then asking the logical equivalent of “If something isn’t
true, perhaps this next comparison will be true.” Let’s look at an example.

a = 1

b = 2

c = 3

if a > b:

 print("a is greater than b")

elif b < c:

 print("b is less than c")

 When you run this code in the interpreter, you’ll see this:

b is less than c

This is displayed because the first comparison, a > b, was unsuccessful,
so elif asked another question of the interpreter—is b less than c? Since
it is, the second print statement was processed.

If you use an else, it must appear after all elifs.

The symbols used for comparison are called operators. For example, the
double equals sign is an operator that means “if one variable is equal to
another.” Here is a list of comparison operators we can use in Python
(figure 15).

03-06.py

57Controlling Program Flow

ESSENTIAL COMPARISON OPERATORS IN PYTHON

== Equals

!= Not equals

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Nested Comparisons
Comparisons don’t have to be one-dimensional—we can nest them

together to perform complex logical comparisons. Here is an example:

a = 1

b = 2

c = 3

if a b:

 print("a is greater than b")

 if b != c:

 print("but b is not equal to c")

 else:

 print("b is equal c")

else:

 print("a is less than b")

Q: Can you predict how this code will run?

Pretend you are the Python interpreter and you’re tasked with running
this code. Step through each line in your head and see if you can follow the
flow. Now try changing the values of a, b, and c and predict again.

There is no practical limit to how many layers deep your nested comparisons
can go, but you must pay special attention to indentation. When you start the
lines of code that are to be run for the next comparison, they must be tabbed

fig. 15

03-07.py

58 PYTHON QUICKSTART GUIDE

over until you come out of that part of the code. It may be helpful to think of
these indented sections as blocks of code, and, indeed, they are often called
“code blocks.” Visual Studio Code will help you with the formatting and
show red underlines (figure 16) so you can alter the formatting (figure 17).

Visual Studio Code marks improperly formatted code
with red squiggly underlines, as in line 8.

Properly formatted code is not marked. (Note that Visual Studio Code replaces the
!= that we typed with an equals sign with a slash through it, which better conveys the
meaning. We use the != only because we can’t make this symbol with our keyboard.)

fig. 16

fig. 17

59Controlling Program Flow

I would caution against too many nested comparisons. It makes your
code harder to follow and can make it easier to miss an error. For now, you
probably don’t have to worry about this, but it will become more important as
your programs become more complex.

Loops
You may not realize it, but your computer is currently running a multitude

of operations inside several running program loops. A program loop is simply
a piece of code that is executed repeatedly for a fixed number of times, until a
certain condition is met, or until you turn your computer off.

Some of these loops, executed by the operating system, tell the program
you’re running (e.g., Visual Studio Code) whether you’ve pressed any keys
or moved your mouse. Another loop is checking your input to see if you
have made a syntax error or to provide help with a particular function. Still
another is keeping your internet connection alive, checking mail, displaying
notifications, and doing literally thousands of other tasks. When a computer
is “sitting there doing nothing,” it is really processing many things constantly
in loops.

Loops are quite important in programming because they let us repeat
functionality. If loops didn’t exist, we would have to write code that handled
every possible input and output in our program over and over. It would be
tedious and extremely counterproductive. Loops are a tremendous timesaver
and extremely powerful.

Loops let us use the programming concept of iteration; that is, stepping
through variables or parts of data, running code that interacts with that data,
then moving to the next piece. When we move through a collection of data
like this in a loop, we are said to be iterating over it.

For
A for loop is extremely versatile, allowing us to perform operations
on a data structure. We can also use it to repeat code for a number of
times specified by a supplied number (via a variable or a range or inserted
directly into the code). Let’s look at some examples.

Display the planets

planets = ["Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn",

"Uranus", "Neptune"]

03-08.py

60 PYTHON QUICKSTART GUIDE

for planet in planets:

 print(planet)

 This code displays:

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

Before we examine what’s happening in this code, I’d like to point out
that this is different than merely using print(planets). When we print
the contents of a list, it displays just as we entered it into our code. Using
the previous for statement, we’re iterating over the planet list and running
the print statement on each entry.

Now let’s step through the code line by line. First, the planet list is
defined with the list of currently named planets in our solar system. Then
we use the for statement to say, “For each planet in planets, run the
following code.”

A for statement contains two major parts: the data structure or range
to iterate through, and the temporary variable we’ll use (in this case,
planet). The indented text after the for statement is the for loop itself,
in this case, the print function. At the end of the for statement is a
colon to let the interpreter know that the code to be repeated starts on
the next line, and the subsequent lines of code that make up the loop are
indented. The code to run inside the for loop can consist of as many lines
as we like, but that code must be indented (figure 18).

Why did I name the temporary variable planet in this code? Does
it matter what I named it? Technically, no—I could use any name.
However, I like to follow the convention of giving a list of items
a plural name, like planets, customers, students, etc., and the
temporary variable used in a loop a singular name, like planet,
customer, or student. You don't have to follow this pattern, but I
find it helpful and encourage you to use it.

61Controlling Program Flow

Indentation is critical in Python. If you don't use the indent for the
code inside the for loop, you'll get an error.

Even though we’ve covered the basic concept of for loops, they’re
extremely flexible and useful, so let’s look at various ways to use them.

Iterate through a string

a = "Hello, World!"

for c in a:

 print(c)

This code displays as follows:

H

e

l

l

o

,

W

o

r

l

d

!

fig. 18

03-09.py

62 PYTHON QUICKSTART GUIDE

In this case, the string, a, was iterated as though the letters in it were part
of a list. A for loop treats strings as lists of individual characters, so the
temporary variable c is set to the value of each letter in the string with
each pass.

Why did I name the temporary variable c? As I mentioned before,
the name doesn't matter, but I used c as a short form of "character."
If it's not part of a plural named set (e.g., customers, students, etc.),
I prefer to give the temporary variable a one-letter abbreviation of
what the singular form will be. In this case, each part of a string is a
character, thus a c. Use whatever naming scheme works for you, but
be consistent. This way you, and others who might read your code,
will be able to follow along with ease.

Here’s an example in which we modify the temporary variable.

singular _ words = ["student", "teacher", "room"]

for word in singular _ words:

 word = word + "s"

 print(word)

In this case, we created a list with three singular nouns, then iterated over
that three-word list with a for statement, setting word as the temporary,
in-loop variable. We then modified the temporary variable by setting it
equal to itself plus the letter "s" at the end, then displayed the result.

However, I could have made this code simpler. Instead of modifying the
temporary variable word, I could have saved a line and used this:

singular _ words = ["student", "teacher", "room"]

for word in singular _ words:

 print(word + "s")

This code produces the same result but without modifying the temporary
variable named word. In this simple situation, this optimization is
desirable, but if I was going to use the variable word later in the loop
(especially with an “s” at the end), setting that once and using it afterwards
is preferable, like in the first example.

If we want to run code after the for loop is finished, the else statement
can be used.

03-10.py

03-11.py

63Controlling Program Flow

singular _ words = ["student", "teacher", "room"]

for word in singular _ words:

 print(word + "s")

else:

 print("Done!")

In this case, the three plural words will be displayed, followed by “Done!”

You might wonder why you would use else when you can simply put the
code that you want to execute directly after the for loop. Good question!
Code in the else portion will not run if the for loop has been exited by
break, which we’ll cover shortly. This strategy will let you run code with
else that you want to run only if the for loop is successfully completed.

Range
For loops can work over ranges of numbers. To accomplish this, we
supply the range function in place of the data structure normally used in
the for loop.

Display the first ten numbers

for i in range(10):

 print(i)

This produces:

0

1

2

3

4

5

6

7

8

9

If you expected the digits shown to be 1 through 10, recall that Python
starts counting at zero.

The range function returns the equivalent of a list. So, in this
example, for is iterating over a list like [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].
The range function is far more concise.

03-12.py

03-13.py

64 PYTHON QUICKSTART GUIDE

In this example, the for loop iterates over the result from the range
function supplied with the argument 10. An argument is a value that we
supply to a function (like the text we provide to the print function). The
range function is executed with 10 as its argument. Just as the print
function performs action, the range function does work too, but instead
of displaying a result itself, it simply returns a value to the for statement,
so it knows how many times to execute the loop.

I used the variable i in this example because it is a variable name often
used in loops across many programming languages. This has historical
precedent: FORTRAN, a programming language originally developed
by IBM in the 1950s, used the letters i through n to denote integers.
This tradition stuck with early programmers and has persisted until
now. Of course, you don't have to use i; you can use x, z, purple, or
rhinoceros, but following these kinds of traditional patterns makes
it easier for the people who will examine and work with your code to
follow what you're doing.

Enumerate
range is extremely helpful for iterating over a list, but what if we need
to track the position in the list? We could maintain a separate variable
and increment it by 1 in each pass of the loop, but that’s not necessary.
enumerate to the rescue!

The planets

planets = ["Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn",

"Uranus", "Neptune"]

Display the planet and its number

for index, value in enumerate(planets):

 print("Planet " + str(index) + ": " + value)

With this code, we’ll get this:

Planet 0: Mercury

Planet 1: Venus

Planet 2: Earth

Planet 3: Mars

Planet 4: Jupiter

Planet 5: Saturn

03-14.py

65Controlling Program Flow

Planet 6: Uranus

Planet 7: Neptune

But that’s not quite what we want. The index starts at zero, so let’s add 1
to what we display.

The planets

planets = ["Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn",

"Uranus", "Neptune"]

Display the planet and its number

for index, value in enumerate(planets):

 print("Planet " + str(index + 1) + ": " + value)

That does the trick!

Planet 1: Mercury

Planet 2: Venus

Planet 3: Earth

Planet 4: Mars

Planet 5: Jupiter

Planet 6: Saturn

Planet 7: Uranus

Planet 8: Neptune

enumerate provides us with both the index and the value. You don’t have
to name them index and value like I did in this example. You can name
them i and v, or whatever you like.

While
A while loop runs commands as long as a comparison evaluates to
be true. Evaluation in Python is the act of running a statement and
obtaining a value. When comparing values, an evaluation will be true
or false (figure 19). Let’s look at an example and go through it in detail.

While i is less than 10, display i

i = 0

while i < 10:

 print(i)

 i += 1

03-15.py

03-16.py

66 PYTHON QUICKSTART GUIDE

In this example, we first set the variable i to zero. Then we use the while
statement to execute two commands as long as the comparison i < 10
(i is less than 10) evaluates to be true. The comparison will initially be
true because 0 is less than 10, so the first command, the print function,
is executed. Then the second command is executed: a statement that is
a shortcut for adding one digit to i (or, said in a more programming-
specific way, incrementing the i variable by 1).

The i += 1 is shorthand for the following:

i = i + 1

Both i += 1 and i = i + 1 will give the same result, but i += 1 is easier
to type and is very commonly used.

When we run the code, the numbers 0 through 9 are displayed.

0

1

2

3

4

5

6

7

8

9

fig. 19

67Controlling Program Flow

If we want to display the numbers 1 through 10, we can simply change
the starting value of i.

While i is less than or equal to 10, display i

i = 1

while i <= 10:

 print(i)

 i += 1

In this case, we’re setting the initial value of i to 1 instead of 0 and then
using the <= comparison, meaning less than or equal to, instead of <. So
the count will go from 1 to 10.

1

2

3

4

5

6

7

8

9

10

Remember how I said that Boolean variables would become useful in this
chapter? They’re incredibly useful in loops—specifically while loops. A
while loop executes if the comparison in it is true, and as such, we don’t
have to specifically compare two values. For example, Python contains
several built-in constants—that is, predefined values that are immutable
(read-only). Two that are especially useful are True and False (styled
with capital first letters).

This code will run indefinitely (also called an infinite loop):

while True:

 print("It's true!")

You can run this code if you want, but if you do, you’ll have to either
hit CTRL+C in the interpreter or click on the Run menu and click Stop
Debugging to interrupt the program. If you don’t, it will continue forever,
because True is always true.

68 PYTHON QUICKSTART GUIDE

On the other hand, this code …

while False:

 print("It's true!")

… will run and immediately finish without displaying anything, because
the False constant is never true and thus the while loop is never executed.

Let’s go through one more example with while loops. Say we want
Python to sing the old “99 Bottles of Beer” drinking song. An everyday
scenario in programming, to be sure! The while loop is perfect for this.

bottles = 99

while bottles > 0:

 print(str(bottles) + " bottles of beer on the wall.")

 print(str(bottles) + " bottles of beer.")

 bottles -= 1

 print("Take one down, pass it around,")

 print(str(bottles) + " bottles of beer on the wall.")

Put this in your scratch file and run it. If all goes well, you’ll see the old
tune’s lyrics written out for you in the results window. Let’s step through
this code and see what it does.

First, we set the bottles variable to 99. Then we start a while loop and
say, “run the following code while bottles is greater than zero.” Then we
print the first and second lines, inserting the bottles variable (integer)
into the print statement when necessary, converting it inline to a string.
On the next line, we subtract 1 from the bottles variable, then run
print again, twice, using the same integer-to-string conversion via str,
but this time on the bottles variable that has now had 1 subtracted from
it. The code will loop until the expression bottles > 0 is no longer true
(that is, when bottles becomes 0).

Try writing the previous example using a for loop instead of a while loop.

Break
A while or a for doesn’t have to run its full course. By using the break
statement, we can conditionally exit a loop before it’s finished.

03-17.py

69Controlling Program Flow

while True:

 print("Hello, World!")

 break

Without the break, this would be an infinite loop. But instead, the loop
starts, displays “Hello, World!”, then exits the loop.

Hello, World!

Instead of immediately breaking, we can conditionally break.

for i in range(10):

 print(i)

 if i > 5: break

If we run this code, here is what we’ll see:

0

1

2

3

4

5

6

In this case, we loop through a range of 10 with i as our temporary
variable. For each iteration, we display the value, then on the next line we
check to see if it’s greater than 5. If so, we break, exiting the loop before
it’s finished.

I put the break statement on the same line as the comparison
statement, so that if i > 5: break forms one line. This
is permissible in Python if the code to be executed for the
conditional (if i > 5 in this case) can fit on one line. I'm generally
not a fan of trying to make everything fit on one line, as I believe
code looks neater when given room to breathe, but in this case,
since the next line indented would simply contain the word break,
it looks better and is more concise.

If you expected numbers 0 through 5 to be displayed, don’t worry—this is
a common mistake. “Greater than” simply asks the question, "Is i greater

70 PYTHON QUICKSTART GUIDE

than 5?" This is not true until i is actually 6, A while loop executes if the
comparison in it is true because we ask that question after we display the
number, and each new start of the loop increments the counter (i).

If we want to display the numbers 0 through 5, we have two choices.
First, we can change the > (greater than) comparison operator to >=
(greater than or equal to). Or we can keep the comparison just as it is and
move the print function after it, like this:

for i in range(10):

 if i > 5: break

 print(i)

Either way works fine. Sometimes there are two (or more) equally valid
approaches to solving a problem in programming.

Continue
The continue statement allows us to skip the current iteration and move
to the next without exiting the loop. Let’s look at an example.

for i in range(10):

 if i % 2: continue

 print(i)

If we run this code, we’ll see the following output:

0

2

4

6

8

The % operator is called the modulo operator, or mod for short. Mod
performs a division operation on the variable by the number you provide
(in this case, it divides i by 2) and returns only the remainder. Using this
technique, we can tell if a number is odd because if you divide a number
by 2 and it has a remainder, it’s odd.

It might seem odd (OK, I admit it, pun intended) that a number can
provide a true or false comparison. But in Python, 0 is false and any
non-zero integer is true. So when i is odd, the i mod (%) 2 is not zero,

71Controlling Program Flow

so it evaluates as true, and the code for the conditional is run—in this
case, continue. When that happens, the next line(s) is skipped, and
the interpreter returns to the next step in the loop. Therefore, only even
numbers are displayed.

Let’s walk through what Python does with this evaluation when i is 3:

 » Substitute i with 3
 » Evaluate: 3 % 2
 » Evaluate: if 3 % 2: continue
 » Evaluate: if 1: continue
 » Evaluate if True: continue (since Python considers any non-zero

integer as True)
 » Since evaluation becomes True, continue

Nested Loops
Loops can exist within themselves, just like nested comparisons.

for i in range(10):

 for j in range(10):

 print(str(i) + str(j))

When you run this code in Visual Studio Code via your scratch.py file,
you’ll see the numbers 00 through 99 displayed. Let’s take this nested
loop step by step.

First, a for loop is established with a range of 10 using i as the temporary
variable. With each pass through the loop, i goes from 0 to 9. With each
iteration of i, a new loop is started using j with a range of 10. Since we’re
in the loop of both i and j at this point, both variables are accessible to
us, so we display them both using the print statement.

Before displaying them, we convert both to strings via the str function.
If we didn’t do this, we’d add both numbers (using math, not joining
strings), and the results would be very different.

As with nested comparisons, you can go as deep as you want with nested
loops, but I advise keeping them as short as possible so that your code is
fast, easily read, and simple to maintain.

72 PYTHON QUICKSTART GUIDE

To watch the Quick Clip, use the camera on your mobile phone
to scan the QR code or visit the link below.

www.quickclips.io/python-3or

Number-Guessing Game
You now have most of the pieces you need to create an extremely simple

game. I’m not referring to the coff ee shop game, but rather a simple number-
guessing game. You undoubtedly played it as a kid. You think of a number
between one and ten, or perhaps one and a hundred, and someone else tries to
guess what it is. Here’s the basic outline of how a game like this would work:

1. Generate a random number between 1 and 10.
2. Ask the player for their guess.
3. Compare the guess and report the result.

Th e only thing missing here is how to generate random numbers.
Fortunately, Python makes that simple. At the top of your code, you’ll include
these lines:

from random import seed

from random import randint

We’ll get into the specifi cs of importing modules in chapter 9, but for
now, just know that it includes the random number functionality we’ll need
for this exercise. Now we can simply use the randint function to generate a
number between 1 and 10:

Take an interactive tour of how
nested loops work.

73Controlling Program Flow

number = randint(1, 10)

Armed with this knowledge, you possess the last piece of the puzzle
needed for making this game. Rather than showing you the source code for
the game, I am challenging you to create it on your own. Writing code that you
create in your head is the best way to learn to program. I know you can do it!

Try this on your own first, but if you do run into problems and need a
hint, don’t feel bad. You can refer to the appendix for a solution.

Notice that I said a solution rather than the solution. There are multiple
approaches to take here, and none of them is wrong. Let’s see which one you
use. By the way, feel free to expand the game beyond just guessing 1 through
10. Here are some suggested enhancements:

 » Expand the random digits from 10 to 100.
 » Display whether the guess is higher or lower than the number.
 » Loop until they get the correct answer.
 » Show how far away the number is from their guess.

ClydeBank Coffee Shop Simulator: The Circle of Life
The life of a video game is eternal—well, at least as long as it’s running.

In game design, there is the concept of a core gameplay loop. In the gameplay
loop, a player makes choices, implements them, and then sees the outcome.
In our game, that will be a straightforward series of events.

 » The player is shown the day of the month (day number) and weather
forecast.

 » The player is asked how much they want to spend on advertising
and if they want to buy more coffee.

 » A simulation of the day’s events occurs.
 » The sales results are shown to the player.
 » Return to step 1.

Typically, in a semi-infinite loop like this, we have a running flag, that
is, a variable (often named running) that is initially set to True. To exit the
gameplay loop (i.e., if the player wants to quit the game), the running variable
is set to False. The simplest example might look like this:

running = True

while running:

 # Do things

74 PYTHON QUICKSTART GUIDE

Unless those “things” alluded to in the comment set the running variable
to False at some point, this will continue forever.

Let’s look at the code for the coffee shop simulator game so far. There are
a few new concepts, which we’ll explain after the code.

ClydeBank Coffee Shop Simulator 4000

Copyright 2022 (C) ClydeBank Media, All Rights Reserved.

Import items from the random module to generate weather

from random import seed

from random import randint

Current day number

day = 1

Starting cash on hand

cash = 100.00

Coffee on hand (cups)

coffee = 100

Sales list of dictionaries

sales = [

{

"day": 1,

"coffee _ inv": 100,

"advertising": "10",

"temp": 68,

"cups _ sold": 16

},

{

"day": 2,

"coffee _ inv": 84,

"advertising": "15",

"temp": 72,

"cups _ sold": 20

},

{

"day": 3,

"coffee _ inv": 64,

"advertising": "5",

CCS-03.py

75Controlling Program Flow

"temp": 78,

"cups _ sold": 10

},

]

Create an empty sales list

sales = []

Print welcome message

print("ClydeBank Coffee Shop Simulator 4000, Version 1.00")

print("Copyright (C) 2022 ClydeBank Media, All Rights Reserved.\n")

print("Let's collect some information before we start the game.\n")

Get name and shop name

name = input("What is your name? ")

shop _ name = input("What do you want to name your coffee shop? ")

print("\nOk, let's get started. Have fun!")

The main game loop

running = True

while running:

 # Display the day and add a "fancy" text effect

 print("\n-----| Day " + str(day) + " @ " + shop _ name + " |-----")

 # Generate a random temperature between 20 and 90

 # We'll consider seasons later on, but this is good enough for now

 temperature = randint(20, 90)

 # Display the cash and weather

 print("You have $" + str(cash) + " cash and it's " + str(temperature) + " degrees.")

 print("You have coffee on hand to make " + str(coffee) + " cups.\n")

 # Get price of a cup of coffee

 cup _ price = input("What do you want to charge per cup of coffee? ")

 # Get price of a cup of coffee

 print("\nYou can buy advertising to help promote sales.")

 advertising = input("How much advertising do you want to buy? (0 for none)? ")

 # Convert advertising into a float

76 PYTHON QUICKSTART GUIDE

 advertising = float(advertising)

 # Deduct advertising from cash on hand

 cash -= advertising

 # TODO: Calculate today's performance

 # TODO: Display today's performance

 # Before we loop around, add a day

 day += 1

You may recall these two lines from our number-guessing game:

from random import seed

from random import randint

About midway through the code, we start the main game loop. We
display the day, weather, and how much cash and coffee they have. Then we
deduct the advertising from the cash on hand, and before we leave the loop,
we add 1 to the day.

The focus of this chapter was on the loop, so we put in a # TODO comment
to note the lack of game processing and displaying the results of the day.
This TODO comment isn’t specific to Python, and it’s not really an official
standard, but quite a few editors and most programmers will know that
seeing TODO in a comment means that you (or someone else) will finish the
feature described in the comment later. It’s a great way to keep a placeholder
and describe your thoughts at the time. Once you’ve completed the feature,
just remove the comment. The best part is that this scheme requires no other
software—it’s simply a way to put a to-do list in your code.

If you run this code several times, you’ll notice there are some bugs—
especially if you don’t enter a value for certain input statements. Don’t worry.
We’ll address that in the next chapter.

Feel free to modify the game in any way you see fit. We’re only
providing a template, but you can take it as far as you’d like to go.
Want to change some text, or even the name of the game? Go for
it! Just remember that if you change any of the functionality, you’ll
need to adjust for it in future additions as we continue learning
about Python.

77Controlling Program Flow

Chapter Recap

 » To compare one value to another and run code based on the result,
use the if statement.

 » The for loop can iterate over a data structure like a list or run code
a certain number of times with the range statement.

 » A while loop allows you to run code until a certain condition is met.

 » The break statement allows you to prematurely exit a loop.

79Handling Errors

| 4 |
Handling Errors

Chapter Overview
 » Errors happen, but they can be addressed with exception handlers
 » Wrapping code in try provides a safety harness against failure
 » The finally statement ensures that code is run even if an error occurs

Things will go wrong. Count on it. Fortunately, Python lets us construct an
excellent safety net for when the unexpected happens.

As you may have discovered, Python stops running your program if
an error occurs. While you’re learning, or testing a concept, this is fine.
However, if you’re going to use your program for serious work (or fun) or plan
to distribute it to others, you’ll want to handle unexpected issues with grace,
rather than simply exiting the program.

When I wrote video games as a teenager, I didn’t really understand
error handling. And the languages I used at the time didn’t have the robust
error-handling techniques that we have now with Python and other modern
languages. If anything went wrong—perhaps even just moving my character
a bit too far off-screen—the game would crash.

One other aspect to consider when it comes to error handling: if you
are going to perform critical work, an error and abrupt termination of your
program could cause data or financial loss. Handling errors with care can be
of vital importance. This task may seem daunting, but don’t worry, Python
makes it easy to save the day.

Exceptions
When an error happens, it causes an exception. You may also hear it said

than an error “throws” an exception. This expression is commonly used to
describe code that executes in some abnormal way. Either way, it’s the same
situation—something happened, and we need to deal with it in our code. You
can visualize how exceptions are handled with the chart in figure 20.

80 PYTHON QUICKSTART GUIDE

The Python exception-handling process.

We’ll get to try, except, else, and finally, but first, let’s set the stage.
To explore this topic, we’ll need to write some code that purposely generates
an error. I know that sounds weird, but the best way to see how to handle
errors is to create some. One of the simplest errors that can occur is when
we try to divide a number by zero. When Python encounters this issue, it
generates an exception (technically a ZeroDivisionError, but we’ll get into
specific exceptions shortly).

You might wonder why Python can’t continue from such a seemingly
simple issue, but if an exception occurs, the state of the program’s flow is suddenly
in question, and to prevent further problems, the interpreter stops execution.

Divide a number by zero

a = 7

b = 0

print(str(a) + " divided by " + str(b) + " is " + str(a / b))

print("All done!")

fig. 20

04-01.py

81Handling Errors

If you run this in the interpreter or put it in your scratch file in Python,
you’ll see this:

Traceback (most recent call last):

 File "scratch.py", line 1, in <module>

ZeroDivisionError: division by zero

The best way to avoid this error would be to check that the variables are
not zero before you try to divide them. However, sometimes it is difficult or
inconvenient to check for invalid data up front. So, for the purposes of our
example, we’ll assume the worst case and try to cope with the fact we’ve been
given incorrect data.

If we think an operation might generate an error, we can wrap it in a try
statement.

Divide a number by zero

a = 7

b = 0

try:

 print(str(a) + " divided by " + str(b) + " is " + str(a / b))

except:

 print("Sorry, a problem occurred dividing the numbers.")

print("All done!")

The indentation on try and except is much like that of if/else and
for/else, so we must press TAB on the code after try: and its companion,
except:.

Any code in the try: block is executed as normal but with one key
difference—any error that occurs is processed by the code in the indented
lines after except:. If we run the previous code, we’ll see this:

Sorry, a problem occurred dividing the numbers.

All done!

The variables were set, and the print statement was executed just as
before, but this time, since an error occurred, try shifted execution of the code
to the except statement, and it printed the apology phrase. Then, execution
continued outside of the try block, printing the message "All done!"

04-02.py

82 PYTHON QUICKSTART GUIDE

If I had used try blocks in my early video-game days, I could have
handled the errors a lot more gracefully and not had games crashing on
anything unexpected. Divide-by-zero was an error I ran into quite often, and
to avoid it, I’d add extra conditionals around my calculations. However, you
can’t catch every bug before it happens, so it’s good to have a safety net for
when things go wrong.

Speaking of safety nets, if you use except as shown previously, with
nothing else specified on that line, you’ll catch all exceptions. This is generally
not recommended. Catching all exceptions doesn’t allow much specificity in
the way you handle the error. Sometimes I’ll catch all exceptions in a piece of
code first and then note which exceptions are fired during extensive testing.
Then I can handle those specific errors in the way best suited for the situation.

Divide a number by zero

a = 7

b = 0

try:

 print(str(a) + " divided by " + str(b) + " is " + str(a / b))

except ZeroDivisionError as e:

 print("Sorry, a problem occurred dividing the numbers.")

print("All done!")

By specifying ZeroDivisionError, we’re telling Python we’re only
interested in handling that particular type of exception. Everything else will
be unhandled and thus cause the program to fail should a problem arise. If
we run the previous code, it will display the apology just as before. But let’s
throw a wrench into the works.

Divide a number by zero

a = 7

b = 0

try:

 print(str(a) + " divided by " + str(b) + " is " + str(a / b))

except OverflowError as e:

 print("Sorry, a problem occurred dividing the numbers.")

print("All done!")

83Handling Errors

Here, we’re telling Python we’ll handle the OverflowError exception—
an error that occurs when the resulting answer to a math problem is too large
to store. That doesn’t happen here, so the ZeroDivisionError: division
by zero error occurs and the program terminates early, not showing the "All
done!" message.

If we’re not sure which exception might happen, we can use the generic
Exception, like this:

except Exception as e:

This will do the trick, but if we can narrow down what could occur (or
more specifically, which exception error we can realistically recover from), it’s
best to specify that exception.

You probably noticed the e in the except line. This is the temporary
variable (much like i is the temporary variable in for i in range(10))
that contains details about the exception error. Let’s change the code back to
what it is in the previous snippet and add a line to print the contents of the
e variable.

Divide a number by zero

a = 7

b = 0

try:

 print(str(a) + " divided by " + str(b) + " is " + str(a / b))

except Exception as e:

 print("Sorry, a problem occurred dividing the numbers.")

 print("Error details: " + str(e))

print("All done!")

When we run this code, we’ll see this:

Sorry, a problem occurred dividing the numbers.

Error details: integer division or modulo by zero

All done!

You might find it odd that I used str on the temporary variable named
e within the except code block. If we don’t include it, an error will be
generated, because e isn’t technically a string. It’s an exception, which is a

04-03.py

84 PYTHON QUICKSTART GUIDE

type of data called a class. We’ll get into those in chapter 6, but for now,
consider it a special data structure. When we use the str function on e, we
convert it into a string so its contents can be displayed on-screen.

Please see "List of Built-in Exceptions" included with your Digital
Assets at go.quickstartguides.com/python.

Mopping Up the Mess with Finally
When an exception happens, things can get messy. With the help of the

finally clause, we can restore sanity to the execution of our program. Code
in the finally block is executed even if an exception is raised in the code
protected by try.

Divide a number by zero

a = 7

b = 0

try:

 print(str(a) + " divided by " + str(b) + " is " + str(a / b))

except Exception as e:

 print("Sorry, a problem occurred dividing the numbers.")

 print("Error details: " + str(e))

finally:

 print("But still, we tried!")

print("All done!")

If we run this code, here’s what we’ll see:

Sorry, a problem occurred dividing the numbers.

Error details: integer division or modulo by zero

But still, we tried!

All done!

Here, the exception occurred when the divide-by-zero operation was
attempted, then the exception handler—that is, the code in the except
block—ran and printed the error details. Then the finally code ran and
displayed "But still, we tried!" before returning control outside of the try
statement and back to the main program, which displays "All done!" before
it ends.

04-04.py

85Handling Errors

It’s important to note that the finally code will always run, exception or
not. This makes it ideal for placing code that cleans up the messes that could
potentially be made in the try loop. In a more complex program, this would
do more than print a message; it would use conditionals to restore sanity to
the execution of the program. When we get into file and network access in
chapters 12 and 13, you’ll find the finally block extremely useful for ensuring
that resources (i.e., open files, network connections, etc.) are closed properly
to prevent problems if something goes wrong.

ClydeBank Coffee Shop: Spilt Milk
Our game is coming along nicely, but there’s a problem we’ll run into

with any prolonged amount of testing. If the user doesn’t input the correct
values when prompted, or just hits ENTER, it can cause an exception. Let’s
fix that!

Here’s the corrected code, and I’ll explain the fixes below.

ClydeBank Coffee Shop Simulator 4000

Copyright 2022 (C) ClydeBank Media, All Rights Reserved.

Import items from the random module to generate weather

from random import seed

from random import randint

Current day number

day = 1

Starting cash on hand

cash = 100.00

Coffee on hand (cups)

coffee = 100

Sales list of dictionaries

sales = [

{

"day": 1,

"coffee _ inv": 100,

"advertising": "10",

CCS-04.py

86 PYTHON QUICKSTART GUIDE

"temp": 68,

"cups _ sold": 16

},

{

"day": 2,

"coffee _ inv": 84,

"advertising": "15",

"temp": 72,

"cups _ sold": 20

},

{

"day": 3,

"coffee _ inv": 64,

"advertising": "5",

"temp": 78,

"cups _ sold": 10

},

]

Create an empty sales list

sales = []

Print welcome message

print("ClydeBank Coffee Shop Simulator 4000, Version 1.00")

print("Copyright (C) 2022 ClydeBank Media, All Rights Reserved.\n")

print("Let's collect some information before we start the game.\n")

Get name and shop name using the following approach:

1. Set name and shop _ name to False

2. Use while not name and shop _ name to continue to prompt for a non-empty string

name = False

while not name:

 name = input("What is your name? ")

shop _ name = False

while not shop _ name:

 shop _ name = input("What do you want to name your coffee shop? ")

We have what we need, so let's get started!

87Handling Errors

print("\nOk, let's get started. Have fun!")

The main game loop

running = True

while running:

 # Display the day and add a "fancy" text effect

 print("\n-----| Day " + str(day) + " @ " + shop _ name + " |-----")

 # Generate a random temperature between 20 and 90

 # We'll consider seasons later on, but this is good enough for now

 temperature = randint(20, 90)

 # Display the cash and weather

 print("You have $" + str(cash) + " cash on hand and the temperature is " + str(temperature) + ".")

 print("You have enough coffee on hand to make " + str(coffee) + " cups.\n")

 # Get price of a cup of coffee

 cup _ price = input("What do you want to charge per cup of coffee? ")

 # Get price of a cup of coffee

 print("\nYou can buy advertising to help promote sales.")

 advertising = input("How much do you want to spend on advertising (0 for none)? ")

 # Convert advertising into a float

 # If it fails, assign it to 0

 try:

 advertising = float(advertising)

 except ValueError:

 advertising = 0

 # Deduct advertising from cash on hand

 cash -= advertising

 # TODO: Calculate today's performance

 # TODO: Display today's performance

 # Before we loop around, add a day

 day += 1

88 PYTHON QUICKSTART GUIDE

Not every error-handling scheme has to be an exception handler. We see
this in the while not loop I use to get the name and shop _ name variable.
We didn’t cover adding not into the equation, but as its name suggests, it
simply negates the comparison. So, if we say while not name, and name
was set to False, it will loop until name evaluates to True, or, in the case of a
string, has content. If a string is empty, it evaluates to False.

At the conversion of advertising to a float, we don’t have to prompt the
user for another value. If something goes wrong—say they enter a letter or
something similar—it’s safe to assume that we can fall back to the value 0.
Because of this, our exception block for this function is simple.

We’ve taken the game about as far as we can go without some more
advanced functionality. I’m eager to introduce functions and classes to you.
This will make a huge difference in how we structure our code and make
things easier to navigate and understand.

Chapter Recap

 » An exception occurs when an error happens. We can handle
exceptions with the try statement.

 » Whenever a problem occurs in the try block, code in the except
block is run.

 » If no error occurs, code in the else block is run, but this block is
skipped if something goes wrong.

 » The finally block is executed in either case and is commonly used
to restore the program's execution to a sane state.

PART II
FUNCTIONS AND CLASSES

91Creating Reusable Tasks with Functions

| 5 |
Creating Reusable Tasks with Functions

Chapter Overview
 » Functions allow us to reuse code
 » We can pass arguments (parameters) to functions
 » Keyword arguments make it easy to pass arguments

Up until now, we’ve provided instructions, line by line, to the Python
interpreter and it’s carried them out for us in the exact order given. This is fine
in simple programs, but in more complex applications, we’ll need to repeat
lines or series of lines of code over and over—sometimes with different input.
It’s impractical to simply copy and paste these lines repeatedly. That’s where
functions come into play.

By bundling lines of code together in a function, we avoid repeating
ourselves (thus adhering to a programming principle called DRY—Don’t
Repeat Yourself). When we keep our code DRY, we can start thinking about
our program in terms of building blocks rather than one long recitation. We
move from writing a simple script to an application. And what’s more, we can
reuse the functions in other programs, saving ourselves tremendous time in
the future.

Our First Function
Let’s start with a simple yet immediately useful example so we can see

how functions can benefit us in Python programming. But before we do,
consider this—you’ve been using functions already and didn’t know it. We’ve
used print, input, str, int, float, and more. Keep this in the back of your
mind for now; we’ll get back to it in a moment. For now, let’s look at our first
custom function.

Define the ask function

def ask(prompt):

 return input(prompt + " ")05-01.py

92 PYTHON QUICKSTART GUIDE

Use the ask function to find out how many cups we want

question = ask("How many cups do you want?")

print(question)

Try running the previous code in your scratch.py file and see what
happens. It should prompt you to enter a value (in this case, "How many cups
do you want?") and then display what you entered.

Before we get into a line-by-line analysis, I want to note a quick
housekeeping item. There is an unnecessary line in this program. We’re saving
the result of ask in a variable called question. Instead, we can eliminate the
question variable and supply the result of the ask function directly to print.

Define the ask function

def ask(prompt):

 return input(prompt + " ")

Use the ask function to find out how many cups we want

print(ask("How many cups do you want?"))

Next, it’s important to know what parts of this code constitute the
function itself. Here, I’ve relisted the code, but this time I bolded the function
(figure 21).

The last line, print, is part of the main program. The lines before that
(excluding the comment directly above it) are the function definition.

When we define a function with the def statement, we aren’t running
the function at that point. Instead, we’re telling the interpreter, "Here’s
some code I will run later." A function definition is like a lesson we teach
Python. We give the lesson a name (in this case, ask), we provide instructions
(the indented code inside that block), and then the "lesson," or function, is
available for use in the rest of our code.

05-02.py

fig. 21

93Creating Reusable Tasks with Functions

When we continue execution to the print statement, it then runs the
ask function, filling the variable prompt with whatever we provide it in the
parentheses. The same thing happens when we use the print function, or any
other built-in function in Python. The text we supply to the print statement
becomes a temporary variable that is used within the function’s code itself
(the indented portion after the def ask(prompt): line). After it displays the
text, it returns control to the main program so Python can run our next line
of code.

When I say, "returns control to the main program," I mean that the main
program is essentially our Python code file. The function is a subset of that
code (everything contained in the indent after def), and when the function
is being executed, the code that called it (in our previous example, the print
function with its inline use of ask), stops running and waits on the function
to finish before it can proceed. The print statement doesn’t know what to
display until ask returns, and when it does, it then has text supplied to it via
the return statement in the ask function. To illustrate this flow, see figure 22.

The flow of program execution in our example.

Running a function is a temporary diversion, and then we’re back to the
top-to-bottom execution we’ve been using so far.

Passing Values and Returning a Result
In chapter 3, we briefly discussed arguments. Recall that an argument is a

value we pass to a function. But did you know you’ve already been using them
since chapter 1? That might seem hard to believe, but remember that when
your program uses print, it’s calling the print function. Granted, the print
function is built in to Python, but nevertheless it’s still a function, running
code behind the scenes to display text on the screen.

Then, in chapter 3 when we discussed for loops, we had this example:

fig. 22

94 PYTHON QUICKSTART GUIDE

Display the first ten numbers

for i in range(10):

 print(i)

In this case, we have two uses of functions: range and print. In this
example, the value 10 in the for loop and the value represented by the variable
i are arguments. These arguments provide information to the function for
use only inside its code.

Armed with this knowledge, let’s take another look at our ask function.

def ask(prompt):

 return input(prompt + " ")

In our ask function, the prompt in the first line is the name of the
temporary variable that will be available for use inside the function. It doesn’t
have to be named prompt, but in keeping with the scheme of giving variables
meaningful names, I called it prompt because that is in fact what it will
supply—a prompt to the user. In the next line, this value is then used as an
argument for the input function after a space is appended to it. The space is
added purely for cosmetic reasons, so that when the user types there is a space
between the prompt and their input. This space is added inline (as opposed
to modifying the prompt variable or creating a new variable), and the input
function will receive the value of prompt with a space at the end.

The return statement is the line of code responsible for returning a value
to the code that called the function. Now that the function is defined, we can
(outside of the function) call ask again.

name = ask("What is your name?")

In this line of code, the ask function is called with the argument as a
string with the text "What is your name?" This is then used in the function,
with a space added to the end, to get the user’s input. Then, when the user
provides a value, the return statement delivers that response back to the line
that called the ask function. This is then stored in the name variable. There’s
some back-and-forth going on with this function (and my explanation), so if
it doesn’t immediately click with you, don’t worry. We’ll work through plenty
more examples of this.

We aren’t limited to passing one value to a function. The function can ask
for as many as it needs.

95Creating Reusable Tasks with Functions

Define the function full _ name

def full _ name(first, middle, last, display):

 name = first + " " + middle + " " + last

 if display:

 print(name)

 return name

Use our newly created function

full _ name("Robert", "W", "Oliver", True)

complete _ name = full _ name("Robert", "W", "Oliver", False)

print(complete _ name)

If we run this code in our scratch.py file in Visual Studio Code, we’ll
see my name printed twice. To understand why this happened, let’s go line
by line.

First, we create a new function that accepts four arguments—first,
middle, last, and display. The first three arguments are the first, middle,
and last name of a person, and the last argument is True or False. The
function first creates the combined name (stored in the name variable) by
combining all the variables with a space between them. Then an if statement
checks to see if display is True or False. If true, it prints the name variable.
If not, it simply skips this conditional code block. Either way, the full _ name
function returns the value stored in the name variable.

The first time we use the full _ name function, we specify True for
display, so it prints the name it creates. However, the second time it is run,
since we provided False for the display argument, it doesn’t print the name.
It assigns the value it creates to the complete _ name variable but otherwise
displays nothing. On the third line, we print the complete _ name variable.
So it’s only shown twice. If we had specified True for display on the second
line, it would have printed three times.

You might have noticed that we use

if display:

instead of

if display == True:

05-03.py

96 PYTHON QUICKSTART GUIDE

There is essentially no difference between these versions. If we use the if
statement to evaluate only a variable, it will test whether that variable is true
or false. This means it’s literally True or False (the values) as in this case.
Additionally, as you may recall from chapter 3 where continue in loops was
discussed, an integer variable is true in a conditional if it is anything other
than zero. If it’s zero, it will be false.

We must supply a value for each argument when calling the function. If
our function takes one argument, we must provide one argument (like
our ask function). However, if our function takes four, as in our full_
name function, we must provide four arguments while using it. If we
don't, Python will generate an error explaining how many arguments
it expects for the function. There is one exception for the function—
except when you use default arguments. We'll address those soon.

Modifying Arguments
I strongly advise against modifying arguments that we pass to our

functions.

x = 5

def double(x):

 x = x * 2

double(x)

print(x)

When we run this code, x will remain 5. You might expect 10, but this
function doesn’t return a value, and the multiplication that’s done within this
function stays within this function. The following would be a better way to
handle this situation:

x = 5

def double(n):

 return n * 2

x = double(x)

print(x)

97Creating Reusable Tasks with Functions

In this case, x is now 10. This wasn’t fixed by my swapping x for n. I did
that to make the function a bit more generic and to avoid using the same
variable name twice. Otherwise, there is nothing special about these variable
names. The difference is that the function double now returns a value
rather than just performing multiplication inside the function. This return
statement passes the result of n * 2 outside the function—to the calling
code. In this case, the calling code is double(x), and this return value ends
up in the x variable.

There are situations where we can modify arguments, but going down that
road will surely lead us to dragons. They can be slain, but we must be careful.
In general, unless there’s a specific need, I recommend against this practice.

Default Arguments
It’s possible to tell Python to provide a default value for an argument in

case the code that calls it doesn’t specify an argument. Let’s modify our ask
function to have a default prompt value.

def ask(prompt = "Please enter a value: "):

 return input(prompt + " ")

In this code, we define the ask function just as we did before, except we
change prompt to include a default value. Now we can call ask without a
prompt at all and the prompt argument will be filled with a temporary value.

def ask(prompt = "Please enter a value: "):

 return input(prompt + " ")

a = ask()

print(a)

When it’s run, we’ll see this:

Please enter a value:

We can type anything, and then we’ll see the program display what we
typed in the input field. When a default argument value is specified, we don’t
have to provide a value, but we can if we want to. If we do, our value will be
used and not the default.

05-04.py

98 PYTHON QUICKSTART GUIDE

a = ask()

b = ask("What do you want for b?")

This produces two different prompts:

Please enter a value:

What do you want for b?

In the first, the default prompt is used, and in the second, we provide an
argument that overrides this default and uses what we specified.

You may notice something about the space after the default value. Let’s
look at our modified function again.

def ask(prompt = "Please enter a value: "):

 return input(prompt + " ")

Note that the default value, Please enter a value: , has a space after
it. This means that Python will add two spaces when asking for the input,
because the default value has a space after it and we add a space inline with
prompt + " " for the argument for input. If we enter a prompt without a
space it will be correct, but otherwise we’ll get two. Fortunately, we can fix
this with a conditional.

def ask(prompt = "Please enter a value: "):

 if prompt.endswith(" "):

 return input(prompt)

 else:

 return input(prompt + " ")

In this enhanced ask function, we provide a default argument value for
prompt in the first line. Then we check whether prompt ends with a space.
If it does, we return whatever input returns for us, supplying the prompt
variable unmodified to input. If not, then we do the same, but this time
appending a space at the end of the prompt.

It may seem strange that we check to see if the string ends in a space by
putting a dot between prompt and the endswith function. This dot notation
is something we use when dealing with classes, and we’ll cover those in
chapter 6, but for now just think of this line as "If the prompt ends with
whatever string is in the parentheses (in this case, a space), run this code."

You can use a default argument for multiple arguments in your function.
For example, let’s provide defaults for our full _ name function.

99Creating Reusable Tasks with Functions

def full _ name(first = "First", middle = "Middle", last = "Last", display = False):

 name = first + " " + middle + " " + last

 if display:

 print(name)

 return name

In this case, we’re providing defaults for all arguments. If we run full _

name() it will return "First Middle Last". Note that the last argument,
display, is set to False, and False doesn’t have quotes around it because it
isn’t a string, it’s a value built into Python.

We can think of arguments that don't have a default value as
required arguments because if we don't specify a value for them,
Python will generate an error.

Even though we can provide as many default arguments as we want, we
must specify any default arguments after any other argument that requires a
value. Let’s consider two examples. For brevity’s sake, I’ve omitted the code
block of the function.

This works because the last variable provides a default value

def full _ name(first, middle, last, display = False):

This also works because the last two variables provide a default value

def full _ name(first, middle, last = "Last", display = False):

This doesn't work because a required variable

comes after one with a default value

def full _ name(first = "First", middle, last, display = False):

I know this may seem a bit confusing, but a helpful way to look at it is
from the interpreter’s point of view. If we don’t provide a value for the first
variable but provide a value for the middle two, how does it know which value
should go into each argument? By keeping our default argument(s) at the end
of our function definition lines, we will help Python understand which value
goes with what variable.

Keyword Arguments
Keyword arguments act much like regular arguments but with a twist—

the order in which we provide them to the function doesn’t matter. This is

05-05.py

100 PYTHON QUICKSTART GUIDE

especially helpful when we want to expand a function’s capability but don’t
want to go back and edit every call to rearrange the order of the functions.

To demonstrate this, let’s look at our full _ name function again. I’ve
set the display argument to a default value of False, but otherwise the first
three arguments are required.

def full _ name(first, middle, last, display = False):

 name = first + " " + middle + " " + last

 if display:

 print(name)

 return name

If we want to use keyword arguments, we don’t have to change a thing
with the function definition itself. Instead, we simply change the way we call
the function.

print(full _ name(first = "Robert", middle = "W", last = "Oliver"))

Here, we provide the values for first, middle, and last, but instead of
relying on their position in the function definition, we name each argument
and specify the value we wish to provide for it. We omitted the display
value because its default is False. Besides, we’re printing the output anyway,
because when full _ name returns the fully computed name, it will take that
value inline and supply it as the argument to the print function.

In this example, nothing much has changed because we’re still providing
them in the right order. But now, let’s mix things up a bit.

print(full _ name(last = "Oliver", first = "Robert", middle = "W"))

When we run this code, we’ll still see the same result—my name displayed
on the screen, with each value being in the right argument. By supplying the
name for each argument, we’re telling Python where to place them. We can
even specify display too, if we like.

This passes the display value as a keyword argument

print(full _ name(last = "Oliver", first = "Robert", middle = "W", display = False))

If we use keyword arguments while calling a function, we should
use them for each argument. Technically, we can mix and match
keyword arguments with regular arguments if keyword arguments
come last. But for clarity's sake, I advise against it.

101Creating Reusable Tasks with Functions

The general rule of thumb is that keyword arguments are useful when a
function takes more than one or two parameters and it’s difficult to remember
the order. Additionally, if we think the function will expand later with
more arguments, it’s a good idea to use keyword arguments now rather than
make lots of edits to the rest of our code. There isn’t a performance penalty
for using keyword arguments, so if you like the concept (especially for more
complex functions with multiple arguments), go ahead and use them as much
as you wish.

Arbitrary Arguments
Arbitrary arguments provide a way to specify that a function can receive one

or many arguments. We don’t have to specify each individual argument name
with this method; instead, we merely provide the name of a tuple, and that will
be accessible within the function and contain all the values passed to it.

A tuple acts much like a list (that is, it contains a list of strings or
numbers), but it cannot be modified and is therefore read-only, or
immutable. Please refer to chapter 2 for details.

Define the average function

def average(*numbers):

 sum = 0

 for n in numbers:

 # Add n to sum

 # (+= means add n to sum and store in sum)

 sum += n

 return sum / len(numbers)

Use our newly minted function

print(average(10, 40, 80, 74, 16, 42, 12, 6))

If we run this code, we’ll see that the average is calculated as 35.
Specifically, it shows 35.0 because the result of a division operation is a float,
even if it is a whole number. Let’s step through this code line by line to
examine what it does.

First, we define the average function. For the argument, we specify
one—numbers. However, we put an asterisk (star) in front of it to indicate
it will be an arbitrary argument. We set the variable sum to zero, then loop
through the tuple numbers, which was provided to the code inside the

05-06.py

102 PYTHON QUICKSTART GUIDE

function. Inside the for loop, n is our temporary variable, and with each
iteration (pass-through), we add the value n, which is one of the numbers
provided to the function, to the sum. The sum value grows throughout the for
loop, and at the end of the loop, we return the sum divided by (represented
with a forward slash) the total count of items in the numbers.

Aside from the arbitrary arguments, we’re introducing something else—
the len function. This is a built-in function in Python that gives us the total
number of items (length) in a variable. I say variable and not specifically list
or tuple because len is incredibly versatile. While we can get the length of
lists, sets, tuples, and dictionaries, we can also use it to get the number of
characters in a string.

print(len("Hello, World!"))

When we run this code, we’ll see the length displayed as 13.

Why is a tuple provided by Python to store the arguments
provided in an arbitrary argument function? Recall that tuples are
immutable (read-only). Since modifying function arguments doesn't
affect their values outside of the function, making them immutable
makes sense because it prevents you from modifying them and
mistakenly thinking that will have an effect outside the function.

Scope
When we discuss scope in programming, we are generally referring to the

place where data structures and functions can be accessed. That might sound
a bit confusing, and, admittedly, scoping was a difficult concept for me to
learn. But you have a huge advantage—you have already been using scope.

The arguments in a function definition (that is, def ask(prompt):,
where prompt is the argument) become variables for use inside the function.
They aren’t accessible outside the function, and thus they are scoped to that
function. To get a variable out of the function for use in other functions or
code, we use return to deliver that value back to the original scope.

We’ll be expanding on the topic of scope as we continue through the book,
but I wanted to introduce this term now—both to explain what you’ve already
been using and to lay a foundation for your understanding of how variables
live within more complex programs that we’ll explore in future chapters.

103Creating Reusable Tasks with Functions

Generator Functions
A typical function in Python runs until it ends with a return statement,

but a Python generator runs until it reaches a yield statement, which returns
control of the program back to whatever code called the generator. But that’s
not the end of the story. Just like the song that never ends, we can keep on
calling the generator function and it will pick up right where it left off and
continue until it reaches the next yield statement.

You might be wondering just how many yield statements a generator
needs if it might be called many times. It’s true that we can include multiple
yields in a statement, but in most cases, a generator function, just like a real
generator (the kind that produces electricity), runs until we don’t need it
anymore. Therefore, for or while loops are generally used in generators to
keep the engine (i.e., the function) running.

To illustrate this, let’s look at a simple example.

def infinity():

 i = 0

 while True:

 yield i

 i += 1

This is similar to the range() function, except range requires us to supply
a number limit. In this case, we have essentially an infinite loop. Let’s use this
generator:

for i in infinity():

 print(i)

This code will run forever if we let it, but let’s hit the stop button that
appears near the top of Visual Studio (or click inside the terminal window
and press CTRL+C). Each time we go through the for loop, the infinity
generator is used, resuming at the yield point and incrementing the integer
returned.

Remember the “99 Bottles of Beer” song from chapter 3? It’s time to
refactor it. Refactoring is the process of restructuring or refining code
(generally without changing its overall behavior). It’s usually done when we
find a better way of doing something, and it usually hides behind statements
like "Bug fixes and performance improvements" that are seen in app store
change notes.

That’s a lot of theoretical talk. Let’s see a generator in action. First, let’s
look at the original code.

104 PYTHON QUICKSTART GUIDE

bottles = 99

while bottles > 0:

 print(str(bottles) + " bottles of beer on the wall.")

 print(str(bottles) + " bottles of beer.")

 bottles -= 1

 print("Take one down, pass it around,")

 print(str(bottles) + " bottles of beer on the wall.")

print("Take one down, pass it around,")

print(str(bottles) + " bottles of beer on the wall.")

This is serviceable, but the code is crying out for a generator since it
repeats an action over and over.

Define the generator function

with the start argument defaulting to 99

def bottles _ song(start = 99):

 # Set the initial number of bottles to the start argument

 bottles = start

 # Loop through until bottles are gone

 while bottles > 0:

 # Display the song

 print(str(bottles) + " bottles of beer on the wall.")

 print(str(bottles) + " bottles of beer.")

 print("Take one down, pass it around, ")

 # Subtract a bottle

 bottles -= 1

 print(str(bottles) + " bottles of beer on the wall.")

 # Yield to the calling function

 yield

 # Pick back up here when we return

 return True

Loop through the generator

for i in bottles _ song():

 # Don't do anything as the generator does the printing

 pass

First, we define the generator function. It starts out just like any other
function, with a default argument of start set to 99. The song typically starts
with one hundred bottles (at least as I’ve heard it), so it makes sense to provide
that value if none is specified. Inside the function we set the bottles variable

05-07.py

105Creating Reusable Tasks with Functions

to whatever our starting value is, then start a while loop that runs as long as
there is more than one bottle (that is, bottles is greater than 0).

In the while loop, we use print to display the song as before, converting
the bottles integer to a string inline. Then we subtract 1 from the bottles
variable and then yield. Once all the bottles are gone (i.e., the while loop
condition is no longer true because bottles isn’t greater than 0), we return
True. In a generator, returning instead of yielding stops the generator, as
we’ve reached the end of all possible paths of execution inside the function.

In the for loop outside the function, we iterate bottles _ song(), which
instructs Python to call our iterator as often as it can until it finishes (reaches
the return statement). Then, in our for loop, we do something unusual—we
call pass. In Python, pass does absolutely nothing. We don’t need the loop
to do anything because each time for calls bottles _ song, our generator
does the heavy lifting (displaying the contents of the song).

If we wanted the for loop to do the printing, we would create a temporary
string called verse (it could be any name, but this matches our intent) inside
the while loop, then supply verse to the yield function.

Define the bottles _ song function

with the start argument defaulting to 99

def bottles _ song(start = 99):

 # Set the initial number of bottles to the start argument

 bottles = start

 # Loop through until bottles are gone

 while bottles > 0:

 # Display the song

 verse = str(bottles) + " bottles of beer on the wall. "

 verse += str(bottles) + " bottles of beer. "

 verse += "Take one down, pass it around, "

 # Subtract a bottle

 bottles -= 1

 verse += str(bottles) + " bottles of beer on the wall."

 # Yield to the calling function

 yield verse

 # Pick back up here when we return

 return True

Loop through the generator

for v in bottles _ song():

 print(v)

05-08.py

106 PYTHON QUICKSTART GUIDE

In this version, verse becomes our buffer (a place to temporarily store
data) where we construct the song rather than displaying it with print. We
then use yield verse to yield just as before, but this time we send back the
value of verse to the caller, in this case, the for loop at the bottom of the code.

This verse is passed to the code block inside the loop in the variable v. I
named it v because it’s short for verse and temporary variables in loops are
often given single-character names for simplicity. The verse is printed, and
then the bottles _ song generator is returned to service, returning to the
while loop until there are no more bottles of beer on the wall.

Python’s pass statement serves several purposes. Most importantly, loops
must have code in them, and pass satisfies this requirement without
taking any action.

However, the pass statement inspires a detour that’s worth pursuing in
your programming journey. Actions like this are considered a NOP (no-
operation) statement, meaning it does nothing. I say “considered” because
Python technically just skips over pass, but I want to introduce the
concept of NOP to provide a behind-the-scenes peek at how the Python
code you enter is represented at a lower level in the computer.

You might wonder why you’d want to do such a thing. Isn’t the point of
programming to tell the computer to do something, not nothing? An
excellent point! But there is a reason for operations like pass. The very
first software programs used NOP instructions to increase the timing
between certain events. Processors would take a small amount of time
to process the NOP instruction, and when several were executed in
sequence, especially in a loop, they would insert a time buffer between
actions. One thing this time spacing was used for was to set the pace of
video games. A character walking across the screen would walk slower if
more NOPs were added to the loop that animated their movement, and
faster if fewer NOPs were executed.

As processors became faster, these timing loops became almost
nonsensical. Games designed for slower computers would be too fast
to play on faster ones, which created huge problems for players. Soon,
games started to rely on ticks from the computer’s internal clock to time
actions, bringing predictable pauses.

These NOPs weren’t just used in games. Operations like NOPs were used

107Creating Reusable Tasks with Functions

by operating systems to reduce power usage or processor temperature.
In some early multitasking systems, programs that needed to wait for
something to complete but didn’t want to freeze the computer could use
operations like NOP in loops to yield control to the system.

NOPs have many other purposes and are still in use today. Strategic use of
them in a program can provide a smoother user experience, and they can
serve as a placeholder for future expansion by the developer. Even though
computers are known for executing an astonishing number of operations
per second, sometimes the best thing you can instruct a computer to do
is to merely do nothing and wait.

We need to make an optimization to our bottle song. On each pass, a
new string named verse is created, because Python strings are immutable.
Internally, Python is moving around a lot of memory to make this happen,
and that can slow things down—especially in loops with a lot of elements.
One hundred verses probably isn’t enough to cause a problem that’s noticeable,
but nevertheless, we should always strive to be reasonably frugal with system
resources, as they aren’t unlimited. To fix this, we can create a list of verses
and then join them at the end.

Define the bottles _ song function with the start argument defaulting to 99

def bottles _ song(start = 99):

 # Set the initial number of bottles to the start argument

 bottles = start

 # Loop through until bottles are gone

 while bottles > 0:

 # Display the song

 this _ verse = []

 this _ verse.append(str(bottles) + " bottles of beer on the wall. ")

 this _ verse.append(str(bottles) + " bottles of beer. ")

 this _ verse.append("Take one down, pass it around, ")

 # Subtract a bottle

 bottles -= 1

 this _ verse.append(str(bottles) + " bottles of beer on the wall. ")

 # Yield to the calling function

 yield "".join(this _ verse)

 # Pick back up here when we return

 return True

05-09.py

108 PYTHON QUICKSTART GUIDE

Loop through the generator

for v in bottles _ song():

 print(v)

In this code, we create an empty list called this _ verse and append
each created string. Then we take an empty string (i.e., "") and use join to
combine each item on the list (each verse, in this case) into a string and then
yield that value. This does the same work as before but uses less memory and
CPU power. This approach might seem a bit strange at first, but it touches on
a concept we’ll explore in chapter 6. For now, just note that all strings have
this functionality.

One final note about generators. In our example, the song isn’t long (and
defaults to 100 verses), but what if we wanted our song to be the longest
drinking song in the history of drinking songs? Perhaps one trillion verses?
A generator makes that possible because it constructs the song from scratch,
verse by verse. If our generator created Fibonacci sequence numbers (i.e., 1,
1, 2, 3, 5, 8, 13, etc.), then we could use it to propagate a seemingly infinite
number of values.

But if we stored a trillion verses of our song in long form (as though we
had typed them in a text editor), it would take at least 80 terabytes of memory.
That’s a preposterous amount and would most certainly exceed the capacity of
computers (especially laptops and desktops) for the next few years. Even when
technology does reach a point where 80 terabytes is a seemingly insignificant
amount, why use the resources when we don’t have to? Our generator function
contains a simple bit of reusable code that can keep us singing silly tunes until
the heat death of the universe. Now that’s true, scalable power!

MORE BOTTLES! Here’s a fun exercise to try. Take the bottle song
code (preferably the last version, using the generator) and reverse it,
causing it to start from 1 and work up to 99. I highly encourage you to
try this on your own. You can do it! If you get stuck, though, consult the
appendix for a solution.

ClydeBank Coffee Shop: Our First Major Refactor
First, we should define the term refactor. To refactor code means to refine

it generally without changing its overall behavior.
By introducing functions, we can eliminate a lot of duplicate code and

make things easier to understand—yet preserve the original functionality.
Also, as we expand the game with future functionality, the functions we’ve

109Creating Reusable Tasks with Functions

created will save us time because we’ll have to modify only them, not the loop
or other critical game code. For example, our get _ weather function can
become a lot more sophisticated than simply generating a random number.
The code that calls get _ weather doesn’t have to know what is going in
within that function; it could query an internet resource for the current
temperature or connect to a Raspberry Pi device with a thermometer sensor
attached. Whatever it does, our code only cares about the result it returns.

Code that should appear on a single line but must be broken due
to page constraints is indicated using arrows. A straight arrow (↦)
at the end of a line and and a curved arrow (↪) at the beginning of
the next line indicate that those lines should be combined to make
one continuous line.

ClydeBank Coffee Shop Simulator 4000

Copyright 2022 (C) ClydeBank Media, All Rights Reserved.

Import items from the random module to generate weather

from random import seed

from random import randint

Current day number

day = 1

Starting cash on hand

cash = 100.00

Coffee on hand (cups)

coffee = 100

Sales list of dictionaries

sales = [

{

"day": 1,

"coffee _ inv": 100,

"advertising": "10",

"temp": 68,

"cups _ sold": 16

},

{

CCS-05.py

110 PYTHON QUICKSTART GUIDE

"day": 2,

"coffee _ inv": 84,

"advertising": "15",

"temp": 72,

"cups _ sold": 20

},

{

"day": 3,

"coffee _ inv": 64,

"advertising": "5",

"temp": 78,

"cups _ sold": 10

},

]

Create an empty sales list

sales = []

def welcome():

 print("ClydeBank Coffee Shop Simulator 4000, Version 1.00")

 print("Copyright (C) 2022 ClydeBank Media, All Rights Reserved.\n")

 print("Let's collect some information before we start the game.\n")

def prompt(display="Please input a string", require=True):

 if require:

 s = False

 while not s:

 s = input(display + " ")

 else:

 s = input(display + " ")

 return s

def daily _ stats(cash _ on _ hand, weather _ temp, coffee _ inventory):

 print("You have $" + str(cash _ on _ hand) + " cash on hand and the temperature is ↦

 ↪ " + str(weather _ temp) + ".")

 print("You have enough coffee on hand to make " + str(coffee _ inventory) + " ↦
 ↪ cups.\n")

def convert _ to _ float(s):

 # If conversion fails, assign 0 to it

 try:

 f = float(s)

111Creating Reusable Tasks with Functions

 except ValueError:

 f = 0

 return f

def get _ weather():

 # Generate a random temperature between 20 and 90

 # We'll consider seasons later on, but this is good enough for now

 return randint(20, 90)

Print welcome message

welcome()

Get name and store name

name = prompt("What is your name?", True)

shop _ name = prompt("What do you want to name your coffee shop?", True)

We have what we need, so let's get started!

print("\nOk, let's get started. Have fun!")

The main game loop

running = True

while running:

 # Display the day and add a "fancy" text effect

 print("\n-----| Day " + str(day) + " @ " + shop _ name + " |-----")

 temperature = get _ weather()

 # Display the cash and weather

 daily _ stats(cash, temperature, coffee)

 # Get price of a cup of coffee

 cup _ price = prompt("What do you want to charge per cup of coffee?")

 # Get price of a cup of coffee

 print("\nYou can buy advertising to help promote sales.")

 advertising = prompt("How much do you want to spend on advertising ↦

 ↪ (0 for none)?", False)

 # Convert advertising into a float

 advertising = convert _ to _ float(advertising)

112 PYTHON QUICKSTART GUIDE

 # Deduct advertising from cash on hand

 cash -= advertising

 # TODO: Calculate today's performance

 # TODO: Display today's performance

 # Before we loop around, add a day

 day += 1

Chapter Recap

 » Functions allow us to organize our code into reusable portions.
This not only saves us time but makes it easier to debug, test, and
optimize our code.

 » When we provide a value (or values) to a function, it’s called passing
arguments. Arguments are values that are provided to the function
for use within its code.

 » Default arguments provide initial values to arguments, making
them optional to the calling code.

 » Keyword arguments allow us to provide arguments in an easier way
by labeling them.

113Classes

| 6 |
Classes

Chapter Overview
 » Classes allow us to organize data and logic into a single container
 » Objects are instances of classes
 » Classes can have instance and class variables

In chapter 2, we learned about how to structure our data in Python. In chapter
5, we learned how to organize our logic into functions. Now it’s time to
combine all that into one incredibly useful package—classes. This paradigm
of classes and the objects they produce is part of a broader scheme in Python
(and programming in general) called object-oriented programming.

The term “object-oriented programming” is just a fancy way of describing
an approach to programming that involves objects. These objects contain
code and data and are modeled from classes. That’s a lot to unpack, so let’s
break down each part of this paradigm.

fig. 23

114 PYTHON QUICKSTART GUIDE

Until now, we’ve been writing our programs in a very procedural way, that
is, mostly sequentially with our code only taking detours into functions and
then returning to the main program flow. With object-oriented programming,
we go beyond this paradigm by clustering our logic (i.e., functions) alongside
our data, better defining our goals (figure 23).

A class in Python defines a structure that can contain both data (variables)
and logic (functions) in a single, reusable container. A class is like a cookie
cutter, defining a collection of functions and variables.

Classes don’t do anything by themselves, though, just like you can’t (or
shouldn’t) eat a cookie cutter. When you want to make use of a class, you
create an object from it. Following our delicious dessert metaphor, if classes
are the cookie cutter, objects that you create from them are the cookies.

When a function (logic) is added to a class, it’s called a method. I’ll call
them methods in reference to classes from now on, but whenever you see that
word, just think function.

Now that we’ve defined the terms and applied our cheesy food metaphors,
let’s get our aprons dirty and start baking!

The Hello World Class
Let’s dust off our favorite introductory phrase and jump right into an

example.

Define the World class

class World:

 # Define our greeting

 greeting = "Hello, World!"

 # Run this whenever the object is created

 def __ init __ (self):

 # Print the greeting

 print(self.greeting)

Use the class World to create a world object named w

w = World()

Copy and paste this code into your scratch.py file and run it. The result
is fairly straightforward:

Hello World!

06-01.py

115Classes

Example code, highlighting the class data, the __init__ method, and the main program.

There’s a lot of new syntax here, so let’s unpack this example. In the first
line, we create the World class. Class names in Python, by convention, start
with a capital letter. Inside the class block, we create a string called greeting
and assign it the text "Hello, World!" Then we create a method (function)
inside the class called ͟͟init͟͟ (note the two underscores, the word init,
then two more underscores).

This method has an argument called self. It’s a special argument that
Python automatically uses to reference the object created by the class—in
other words, itself. Then it uses the print function to print the contents of the
string greeting, but since greeting is not inside the scope of the ͟͟init͟͟
method, it uses the reference self that was passed to act as a pointer to the
scope above it, giving it access to the greeting string.

Let’s dive a bit deeper into some of these concepts. First, I said that
the ͟͟init͟͟ method is inside the class. Just as the code of a function is
contained in the indented code after it, the entire method ͟͟init͟͟ belongs
to the World class. The variable greeting is also contained within the World
class. Although this example class contains only one method and one variable,
classes can have as many variables and methods as needed.

One additional thing: the method name ͟͟init͟͟ sticks out like a sore
thumb. You may be wondering why it has two underscores on either side.
Most of your methods will be named just like other functions you’ve created
before, with lowercase letters and no special characters before or after them.
But the ͟͟init͟͟ method is special. It is automatically called when an object
is created from a class (such as when we created the object named w from the
class World in the last line of our example).

fig. 24

116 PYTHON QUICKSTART GUIDE

Instance Variables
The best way to explain instance variables is to start with an example of a

different kind of variable within a class. I know that may seem counterintuitive,
but bear with me.

In this example, we create several new objects from the Customer class.

Define a new class

class Customer:

 def __ init __ (self):

 name = "Robert"

Create three objects based on the Customer class

c1 = Customer()

c2 = Customer()

c3 = Customer()

Next, we create three objects from the Customer class. I’ve given them
the names c1, c2, and c3, signifying customers 1, 2, and 3. I didn’t have to
name them that, but since I had previously named a customer object c, I
wanted a way to easily distinguish between them.

But there’s a problem with this approach. Each customer will have the
same variable called name with the value "Robert". Surely we want each
object from the Customer class to have its own name. To do that, we use an
instance variable, which is a variable defined within a class that is specific to
that instance (in other words, specific to that object).

Each object (c1, c2, and c3) has its own unique copy of the name variable,
but since we set the variable in the ͟͟init͟͟ method, it’s the same in all
three cases. Let’s change that and, while we’re at it, provide another detail for
our customer list.

Define a new class

class Customer:

 def __ init __ (self, name, city):

 self.name = name

 self.city = city

 def greet(self):

 print("Hello, " + self.name + "!")

Create three objects based on the Customer class

06-02.py

117Classes

c1 = Customer("Sarah", "Atlanta")

c2 = Customer("Robert", "Florence")

c3 = Customer("Thomas", "Denver")

Add the customer objects to a list

customers = [c1, c2, c3]

Iterate through list, greet, then display information

for c in customers:

 c.greet()

 print(c.name + " lives in " + c.city + ".")

When you run this code, here’s what you’ll see:

Hello, Sarah!

Sarah lives in Atlanta.

Hello, Robert!

Robert lives in Florence.

Hello, Thomas!

Thomas lives in Denver.

This example builds on our existing Customer class. First, we use the
͟͟init͟͟ method to set internal (to the class) variables name and city. They
are referenced by self because they belong to each object based on that class.

We accept three parameters on the ͟͟init͟͟ method, but only two are
for our use—the self argument allows us to reference the class variables
inside the ͟͟init͟͟ method. Then we assign the values in the arguments
passed called name and city to self.name and self.city, which are really
just variables inside the class.

Recall that the ͟͟init͟͟ method is special in that Python calls it
automatically when an object is created. Because of this unique status, we can
pass values to it when we create the object (figure 25).

I added a method called greet(), which simply says “Hello”, to the name
instance variable found in each customer object.

As in the previous examples, we created three objects from the class, c1,
c2, and c3, and added them to a list called customers. Because they’re in a
list, we can iterate over them and perform the same action on each—in this
case, first calling greet() and then displaying the name and city.

The key takeaway here is that each object has its own copy of the name and
city variables. But that doesn’t change the class. Just like adding sprinkles

118 PYTHON QUICKSTART GUIDE

to one of your cookies doesn’t change your cookie cutter, the Customer class
isn’t changed by giving each object a unique name and city. It only serves as
a template. The objects (cookies) have these unique values.

Comparing the ͟͟init͟͟ method arguments with the creation of the customer object.

Class Variables
While instance variables are unique to each object, class variables are

established inside the class and are shared by each object created from that
class. To continue with our cookie metaphor, adding sprinkles to the cookies
doesn’t change the cookie cutter, but modifying the cookie cutter will change
every cookie.

We’ve already used class variables once at the beginning of this chapter
in our “Hello World!” class.

Define the World class

class World:

 # Define our greeting

 greeting = "Hello, World!"

Run this whenever the object is created

def __ init __ (self):

 # Print the greeting

 print(self.greeting)

Use the class World to create a world object named w

w = World()

The greeting class variable is set for all the objects created from the
World class. You can create as many objects from World as you like and they’ll
all have w.greeting set to “Hello, World!” Even though this class uses
the print function to display self.greeting automatically upon creation
(because it’s in __ init __), we can use print(w.greeting) outside the class

fig. 25

119Classes

(right below the w = World() line) to do the same thing. Inside the class, we
have to use self.greeting because we need a reference to the instance of the
class, and self provides that. But outside, w is the object (in our example) and
simply accessing w.greeting produces the same result.

Another interesting attribute of class variables is that they are accessible
from the class itself.

Define the World class

class World:

 # Define our greeting

 greeting = "Hello, World!"

print(World.greeting)

If this seems a bit strange, that’s good! It should, because when we talk
about classes in Python, we really are more focused on what they produce—
objects. Nevertheless, having some data structures accessible at the class level
can be quite useful, especially when using these values outside of the class.
We’ll be doing more of that in future chapters.

Scope in Classes
In chapter 5 we discussed scope in regard to functions, but now, since

we’re introducing classes that contain methods, it’s important to talk about
this new layer of the Python onion.

Classes contain variables and methods, and those belong to the class.
Code that isn’t part of that class cannot interact with those variables or
methods directly—another reference point is needed by which to access them.

Let’s look at some code that will demonstrate the scope of variables.

This variable exists in the main scope

name = "Sarah"

Define a new class with a class variable called name

class Customer:

 name = "Robert"

Create a new customer so that __ init __ is called

customer = Customer()

06-03.py

06-04.py

120 PYTHON QUICKSTART GUIDE

Display the name in the main scope

print(customer.name)

Here, we define a string called name with the value “Sarah”. Then we
define a new class called Customer and create a class variable within it called
name and assign it the value “Robert”.

When we run the code, it displays “Robert”. It does this because the
print function displays the value of customer.name, not the name variable
in the main scope.

The same situation occurs with instance variables.

This variable exists in the main scope

name = "Sarah"

Define a new class with a class variable called name

class Customer:

 def __ init __ (self, name):

 self.name = name

Create a new customer so that __ init __ is called

customer = Customer("Robert")

Display the name in the main scope

print(customer.name)

In this example, the same situation occurs—the name variable in the
main scope is “Sarah” but customer.name is “Robert”.

Object Lifecycle
Objects are born, live their life within the Python interpreter, and

eventually die. In figure 26, we can see the cycle of an object and the various
methods that are automatically called at each stage of its existence based on
our World class.

Let’s look at each of the special lifecycle methods in depth.

06-05.py

121Classes

__init__
As we discussed earlier in this chapter, the __ init __ method is
automatically called whenever an object is created from a class.
Generally, it is tasked with setting up any instance variables that the
object will later need.

class World:

 # Define our greeting

 greeting = "Hello, World!"

 # Run this whenever the object is created

 def __ init __ (self):

 # Print the greeting

 print(self.greeting)

We don’t have to create an __ init __ method, but most classes will have
them to set up variables the object needs to use. Arguments passed at the
object’s creation will be available in __ init __ , declared after the self
argument in the method definition.

fig. 26

122 PYTHON QUICKSTART GUIDE

Define a new class

class Customer:

 # Define the init method, using name and city as arguments

 def __ init __ (self, name, city):

 self.name = name

 self.city = city

Create three objects based on the Customer class

The name and city are passed to __ init __

c1 = Customer("Sarah", "Atlanta")

c2 = Customer("Robert", "Florence")

c3 = Customer("Thomas", "Denver")

__enter__ and __exit__
The __ enter __ method is called by the interpreter when we use the with
statement. This handy feature allows us to run code within a block that
makes use of a resource that we create (like an open file). This encourages
us to use and manage resources wisely.

Define a new class

class Customer:

 def __ init __ (self, name, city):

 self.name = name

 self.city = city

 def __ enter __ (self):

 print("Entering scope.")

 # Run code upon entering scope of with statement

 return self

 def __ exit __ (self, exc _ type, exc _ value, traceback):

 print("Leaving scope.")

 # Run code upon leaving scope of width statement

 def greet(self):

 print("Hello, " + self.name + "!")

Use with to create a scope

with Customer("Robert", "Florence") as robert:

 robert.greet()

06-06.py

06-07.py

123Classes

The program’s execution begins at the with statement at the end of the
file. This creates a "temporary" object named robert from the Customer
class. I say temporary because this object is created inline by the with
statement and will be destroyed at the end of the indented code block
contained in the with statement.

When the object is created, the __ init __ method fires. This takes the
name and city arguments and sets them as instance variables. Since a
with statement was used to create the object, the __ enter __ method is
called right after that. Here, we display a quick message to tell ourselves
where we are in the object lifecycle, then we can run any code we like at
this point. However, once we’re done, we must return self at the end
of the __ enter __ method.

The with block provides the customer object (accessible as robert, which
the as robert at the end of the with statement indicates) so that it can
be used within the code block. Then the greet method is called on the
robert object and the greeting is displayed.

After the code in the with block is done, the __ exit __ method is
fired, which takes four arguments: self, exc _ type, exc _ value, and
traceback. The self argument gives code within the method an anchor
from which it can access other methods and variables in the class, and
the exc _ type, exc _ value, and traceback arguments are populated
with values if an exception occurs. Otherwise, they are optional. Inside
__ exit __ , we display a message that lets us know where we are, and
then we run any code we want when the with statement is about to end.

At the end of the processing of __ exit __ , control is returned to the last
line of the with statement block, which then dispenses with the object (in
this case, robert).

__del__
All good things must come to an end—including our objects. When
we no longer need an object, we can use the del function to delete it.
Deleting objects when we no longer need them reduces memory usage in
a program. Deleting objects is permanent, but we can create more if we
wish. To delte objects we can instruct Python to trigger a special method
called __ del __ . Here’s an example:

124 PYTHON QUICKSTART GUIDE

class World:

 def __ init __ (self):

 print("I'm alive!")

 def __ del __ (self):

 print("I'm gone!")

earth = World()

del(earth)

When we run this program, we’ll see this:

I'm alive!

I'm gone!

When the object earth was created from the class World, the __ init __
method was executed, thus printing “I’m alive!” When the object was
deleted, the __ del __ method was executed, printing “I’m gone!”

Be careful when using __ del __ , because it has several drawbacks. First,
excessively long or error-prone code in this method can interfere with
garbage collection, the Python process that cleans up unneeded objects to
keep resource usage low and prevents memory leaks (the gradual decline
of free memory caused by data consuming more and more memory).
Additionally, an object might not be deleted when you think it is (unless
you explicitly delete it with del), so relying on this method can be risky.

Properties and Private Variables
We’re already familiar with instance variables—that is, variables that

belong to an object and are referenced by self.variable _ name inside the
class and object.variable _ name outside the class. These fill most of our
object variable needs. However, sometimes we want to perform actions when
accessing that variable. That’s where properties come in handy.

Let’s look at two different approaches. Both accomplish the same thing
but in different ways.

Convert kilometers to miles

class Converter:

 def __ init __ (self, km):

 self.km = km

06-08.py

06-09.py

125Classes

 def to _ miles(self):

 return self.km / 1.609

Convert 3 kilometers to miles

distance1 = Converter(3)

print(distance1.to _ miles())

In this first example, we use the traditional approach—specifying
the number of kilometers when we create the object distance1 from the
class Converter. This sets the km instance variable, and then to _ miles
returns this instance variable value divided by 1.609, which yields a rough
approximation of miles. This works, but there’s another way.

class Distance:

 def __ init __ (self, km):

 self. _ km = km

 @property

 def km(self):

 return self. _ km

 @property

 def miles(self):

 return self. _ km / 1.609

distance2 = Distance(3)

print(str(distance2.km))

print(str(distance2.miles))

The first thing you may notice about this approach is that the class
name is Distance rather than Converter. I named it that because the main
purpose of the class is not to convert but rather to store a value of a distance.
In other words, the objects created from this class represent an actual value,
not just a container for a utility function. That may seem like a subtle and
perhaps unimportant difference, but as we explore usage patterns of classes
throughout the rest of the book, you’ll appreciate the distinction.

Also, the instance variable _ km has an underscore in front of it. When we
add _ in front of a variable, this, by convention, denotes a private variable—
that is, a variable not directly accessible from outside the class. It is private, or
internal, to the class itself. To access it, we’ll use one of the property methods
available, either km or miles.

06-10.py

126 PYTHON QUICKSTART GUIDE

The convention of adding an underscore before a private variable
is strong and should not be deviated from unless you have a very
good reason to do so. Conventions are helpful not just to you, but to
programmers who must later read, understand, and modify your code.

Property methods have @property above them. This is called a decorator
(because it “decorates” a function) and it tells Python to treat it more as a
variable than as a function. In the first example, we used to _ miles() with
parentheses because it was a function. However, km and miles are properties
in this example, so from the outside, we access them just like we would
instance variables. We don’t have to do anything to convert kilometers to
kilometers, so the km property simply returns self. _ km, our private variable.
Converting to miles involves a bit of math, so our miles property returns
self. _ km after dividing it by 1.609.

In addition to modifying a variable before we return it, we can also run
code when we set a property. This is especially useful for validating data.

class Distance:

 def __ init __ (self, km):

 self. _ km = km

 @property

 def km(self):

 return self. _ km

 @km.setter

 def km(self, value):

 self. _ km = value

 @property

 def miles(self):

 return self. _ km / 1.609

 @miles.setter

 def miles(self, value):

 self. _ km = value * 1.609

distance2 = Distance(3)

print("3 kilometers is " + str(distance2.miles) + " miles.")

distance2.miles = 3

print(str(distance2.miles) + " miles is " + str(distance2.km) + " kilometers.")

06-11.py

127Classes

In this example, we set an initial value to the distance2 object in
kilometers but can easily get both kilometers and miles from it. And, if we
want to give it a distance in miles, we can simply set distance2.miles = 3
and we internally set self. _ km to the correct value in kilometers, thanks to
the @miles.setter property.

As we covered previously, putting the @property decorator above
a function converts it into a property. Once it’s a property, we can define
a setter, that is, a property that sets a value internal to the object. We do
this by adding a decorator with the @ sign, then the name of the property
with .setter at the end of it. In this example, the setter for km simply sets
self. _ km to the value provided, because internally we’re storing the value as
kilometers anyway, but when we use the miles setter, we multiply it by 1.609.

When I learned about properties in Python, I was a bit confused at
first. I think this is partially because the idea of a function acting more
like a variable was weird to me. Additionally, the examples that I saw used
somewhat contrived problems to demonstrate how properties worked. My
understanding of properties didn’t solidify until I used them for unique, real-
world issues in my programming work.

I tell you this for two reasons. First, you can program in Python and
never create properties and you’ll be just fine. They aren’t essential for Python
programming. Nevertheless, I think they give you tremendous flexibility in
the way you design your classes, and this leads to better programs. Second, if
you don’t quite see the value in Python properties right now, or it’s a bit fuzzy,
don’t worry. We’ll use them more as the book progresses, and as various use
cases pop up in examples and in our Coffee Shop game, I believe you’ll find
them as indispensable as I do.

Inches to Centimeters
Our Distance class does a great job of converting between miles and

kilometers. Let’s expand on that concept a bit and create a Length class.
Instead of using miles and kilometers, we can convert inches and centimeters.

The principles are the same, but you’ll have to adjust several parts of the
code, including the math required for the new conversion. Try this on your
own, but if you get stuck, you can refer to the appendix for a solution.

(Hint: 1 inch is equal to 2.54 centimeters.)

128 PYTHON QUICKSTART GUIDE

ClydeBank Coffee Shop: Our Second Refactor
We now have lots of classes to empower our coffee shop simulator game.

With this new level of organization and functionality, we can complete the
basic game loop. First, let’s look at the new code.

ClydeBank Coffee Shop Simulator 4000

Copyright 2022 (C) ClydeBank Media, All Rights Reserved.

Import the random module

import random

def welcome():

 print("ClydeBank Coffee Shop Simulator 4000, Version 1.00")

 print("Copyright (C) 2022 ClydeBank Media, All Rights Reserved.\n")

 print("Let's collect some information before we start the game.\n")

def prompt(display="Please input a string", require=True):

 if require:

 s = False

 while not s:

 s = input(display + " ")

 else:

 s = input(display + " ")

 return s

def convert _ to _ float(s):

 # If conversion fails, assign 0 to it

 try:

 f = float(s)

 except ValueError:

 f = 0

 return f

def x _ of _ y(x, y):

 num _ list = []

 # Return a list of x copies of y

 for i in range(x):

 num _ list.append(y)

 return num _ list

CCS-06.py

129Classes

class CoffeeShopSimulator:

 # Minimum and maximum temperatures

 TEMP _ MIN = 20

 TEMP _ MAX = 90

 def __ init __ (self, player _ name, shop _ name):

 # Set player and coffee shop names

 self.player _ name = player _ name

 self.shop _ name = shop _ name

 # Current day number

 self.day = 1

 # Cash on hand at start

 self.cash = 100.00

 # Inventory at start

 self.coffee _ inventory = 100

 # Sales list

 self.sales = []

 # Possible temperatures

 self.temps = self.make _ temp _ distribution()

 def run(self):

 print("\nOk, let's get started. Have fun!")

 # The main game loop

 running = True

 while running:

 # Display the day and add a "fancy" text effect

 self.day _ header()

 # Get the weather

 temperature = self.weather

 # Display the cash and weather

 self.daily _ stats(temperature)

130 PYTHON QUICKSTART GUIDE

 # Get price of a cup of coffee

 cup _ price = float(prompt("What do you want to charge per cup of coffee?"))

 # Get advertising spend

 print("\nYou can buy advertising to help promote sales.")

 advertising = prompt("How much do you want to spend on advertising (0 ↦

 ↪ for none)?", False)

 # Convert advertising into a float

 advertising = convert _ to _ float(advertising)

 # Deduct advertising from cash on hand

 self.cash -= advertising

 # Simulate today's sales

 cups _ sold = self.simulate(temperature, advertising, cup _ price)

 gross _ profit = cups _ sold * cup _ price

 # Display the results

 print("You sold " + str(cups _ sold) + " cups of coffee today.")

 print("You made $" + str(gross _ profit) + ".")

 # Add the profit to our coffers

 self.cash += gross _ profit

 # Subtract inventory

 self.coffee _ inventory -= cups _ sold

 # Before we loop around, add a day

 self.increment _ day()

 def simulate(self, temperature, advertising, cup _ price):

 # Find out how many cups were sold

 cups _ sold = self.daily _ sales(temperature, advertising)

 # Save the sales data for today

 self.sales.append({

 "day": self.day,

 "coffee _ inv": self.coffee _ inventory,

 "advertising": advertising,

 "temp": temperature,

131Classes

 "cup _ price": cup _ price,

 "cups _ sold": cups _ sold

 })

 # We technically don't need this, but why make the next step

 # read from the sales list when we have the data right here

 return cups _ sold

 def make _ temp _ distribution(self):

 # This is not a good bell curve, but it will do for now

 # until we get to more advanced mathematics

 temps = []

 # First, find the average between TEMP _ MIN and TEMP _ MAX

 avg = (self.TEMP _ MIN + self.TEMP _ MAX) / 2

 # Find the distance between TEMP _ MAX and the average

 max _ dist _ from _ avg = self.TEMP _ MAX - avg

 # Loop through all possible temperatures

 for i in range(self.TEMP _ MIN, self.TEMP _ MAX):

 # How far away is the temperature from average?

 # abs() gives us the absolute value

 dist _ from _ avg = abs(avg - i)

 # How far away is the dist _ from _ avg from the maximum?

 # This will be lower for temps at the extremes

 dist _ from _ max _ dist = max _ dist _ from _ avg - dist _ from _ avg

 # If the value is zero, make it one

 if dist _ from _ max _ dist == 0:

 dist _ from _ max _ dist = 1

 # Append the output of x _ of _ y to temps

 for t in x _ of _ y(int(dist _ from _ max _ dist), i):

 temps.append(t)

 return temps

 def increment _ day(self):

 self.day += 1

 def daily _ stats(self, temperature):

 print("You have $" + str(self.cash) + " cash on hand and the temperature is " + ↦

 ↪ str(temperature) + ".")

132 PYTHON QUICKSTART GUIDE

 print("You have enough coffee on hand to make " + str(self.coffee_inventory) ↦

 ↪ + " cups.\n")

 def day _ header(self):

 print("\n-----| Day " + str(self.day) + " @ " + self.shop _ name + " |-----")

 def daily _ sales(self, temperature, advertising):

 return int((self.TEMP _ MAX - temperature) * (advertising * 0.5))

 @property

 def weather(self):

 # Generate a random temperature between 20 and 90

 # We'll consider seasons later on, but this is good enough for now

 return random.choice(self.temps)

Print welcome message

welcome()

Get name and store name

t _ name = prompt("What is your name?", True)

t _ shop _ name = prompt("What do you want to name your coffee shop?", True)

Create the game object

game = CoffeeShopSimulator(t _ name, t _ shop _ name)

Run the game

game.run()

Now the game is functionally complete. I say functionally because it’s not
really done, but it is playable. The structure has changed quite a bit though,
so let’s step through the changes.

The Game Class
Most of the game’s logic has been moved into the CoffeeShopSimulator
class. This better organizes the structure and lets us streamline variable
sharing within the game. Since most of the content is in the class, the
main program simply gets the name, shop _ name, and then creates an
object called game derived from the CoffeeShopSimulator class. Then
the run method is called on the game object, which starts the show.

133Classes

To watch the Quick Clip, use the camera on your mobile phone
to scan the QR code or visit the link below.

www.quickclips.io/python-4or

The __init__ Method
Th e game sets up needed variables in the __ init __ method, including
the sales list that will contain the player’s daily progress. It also calls
a method named make _ temp _ distribution, which sets up a list of
possible temperature values.

The make_temp_distribution Method
I wanted to make the temperatures seem somewhat realistic rather
than just a random smattering of possible values. While this method is
in no way optimized or even ideal for the problem at hand, it does the
job. It still doesn’t account for seasons, but it gives a somewhat passible
approximation of a typical swing of temperatures in a temperate climate
in spring or fall.

Let’s step through it line by line, as it is a bit complex. First, we create an
empty list named temps. Th en we fi nd the average between self.TEMP _

MIN and self.TEMP _ MAX by adding both together and dividing them by
2. Th en we get the maximum distance from average by subtracting the
average from self.TEMP _ MAX.

Armed with this information, we start a loop that uses range to iterate
between self.TEMP _ MIN and self.TEMP _ MAX. Th en we use the abs
function to fi nd the absolute value of the average minus our current
position in the loop between self.TEMP _ MIN and self.TEMP _ MAX.

Let’s walk through the
CoffeeShopSimulator class.

134 PYTHON QUICKSTART GUIDE

Next, we calculate how far this distance is from the maximum. The
purpose of this is to derive the distance from max distance, which
essentially tells us how close the current position in the loop (i) is from
the extreme hot and cold points in the list. Using this value, we append
the temperature to the final list (temps)dist _ from _ max _ dist
times using the function x _ of _ y times. By this I mean that the the
temperature is repeated dist _ from _ max _ dist times in a list that is
then appended to the final result.

Our final list (temps), which is returned, provides a range of values that
more commonly occur near the center, or peak, of the bell curve.

The Game Loop
The run method now starts the loop, displays the header, gets a
temperature for the day, and prompts the player for price and advertising
information. With this information, it runs the simulation via the
simulate method, which runs the daily _ sales method to simulate
sales. For now, this is just a simple calculation that favors colder
temperatures and more advertising, but we’ll expand on it later. After
that method returns with the sales, it appends a dictionary to the sales
list and then returns control to the main loop. Once there, it displays
the day’s sales, adds the profit of the day, subtracts the inventory, and
increments the day counter.

Then it’s rinse and repeat for the next day.

Even though the game is technically working right now, there are quite
a few problems. First, there is no inventory check to prevent running out of
coffee, or a prompt to buy any if there was. We need to add a prompt that asks
the user to buy more coffee each day, preferably at the end of the day. Also,
there’s no way to leave the game other than closing the terminal or pressing
CTRL+C, so we’ll need to add an escape hatch.

There are a lot of deficiencies, but as it stands it is technically playable.
We’ll continue to improve it as we go through the book. Why not have a bit
of fun and play a few days of the simulator?

Here’s a suggestion. Modify the constructor of the CoffeeShopSimulator
class to accept optional player _ name and shop _ name values so you can
construct a game object without prompts.

135Classes

If you choose to do this, copy the folder with the game code to
another location (perhaps coffee-shop-no-prompts or similar)
and work on that new copy, because this modified code won’t be
compatible with the future additions we’re going to make to the
game. Nevertheless, this will be a good exercise to help you better
understand classes and constructors.

Chapter Recap

 » Classes allow us to organize data and logic into reusable containers.

 » Classes are like cookie cutters, serving as a template for objects to
be created.

 » Objects have a lifecycle and automatically call __ init __ upon
their creation.

 » Properties are preferred over instance variables when we need to run
code upon getting or setting a value from an object.

137Inheritance and Design Patterns

| 7 |
Inheritance and Design Patterns

Chapter Overview
 » Classes can inherit methods and variables from parent classes
 » Classes can have multiple parents and ancestors
 » Using class design patterns can save time in development

Inheritance in object-oriented programming is a way for a class to be based
on another class. A class inherited from its parent class will acquire all the
parent’s structure, including methods, class variables, and properties.

Before we dive into an example, let’s consider furniture. I’m sure you
never expected a discussion about furniture in a programming book, but
there’s a first time for everything. We’ll need furniture in our coffee shop,
and although it will be just a small part of our game, this paradigm will
nevertheless explain the concept of inheritance.

 Many classes of furniture, all inherited from the Furniture class.

fig. 27

138 PYTHON QUICKSTART GUIDE

If we were to create a Furniture class, it might have properties like
width, height, and perhaps even the material of which it’s made. Now consider
a Chair. I’ve capitalized the word so that you can see my intent—let’s imagine
it’s a class. Chairs are furniture. They have width and height and are made
of materials. But they also have a seat, and some have backs and some have
arms. A chair has the base properties of Furniture but also properties of its
own.

Parent and Child
Consider our furniture metaphor—a chair is a piece of furniture. Let’s

convert that concept into Python code. I’m going to use instance variables for
the basic properties because (currently) we don’t need to perform any kind of
transformation on those properties when accessing or setting them. This may
change in the future, and that situation would call for properties, but for now,
instance variables will do.

First, let's define the Furniture class

class Furniture:

 def __ init __ (self, width = 0, height = 0, material = "Wood"):

 self.width = width

 self.height = height

 self.material = material

Next, let's define the Chair class

class Chair(Furniture):

 def __ init __(self, width = 0, height = 0, material = "Wood", arms = True, back = True):

 super(). __ init __ (width, height, material)

 self.arms = arms

 self.back = back

Two new elements are introduced here—the parentheses after class
Chair and the super() function.

Why would width and height be 0? In practice (except maybe in the
realm of science fiction), we certainly wouldn’t find a piece of furniture
with no width or height. The reason I defaulted these values to zero is an
old habit from when I designed graphical user interface applications. In
some situations, it was advantageous to spawn a window or control that
had no width or height but could still receive events.

139Inheritance and Design Patterns

If we really were constructing software dealing with furniture, we
probably wouldn’t allow these values, but even in that case this kind
of escape hatch from reality could be helpful. In fact, a few years ago
I worked on a website where a hidden, fake product was added to the
cart when certain industry customers (rather than the public) placed an
order. The presence of this hidden product told the checkout code how to
process the customer.

First, with the parentheses, we specify Furniture in class
Chair(Furniture) because that’s the base, or parent, class of the child
class Chair. Both parent and child classes can be used independently of one
another, but the child class (Chair) inherits everything from the parent.
So the Chair class has instance variables named arms and back, as well as
width, height, and material. Furniture is still usable as a separate class
and has only width, height, and material.

Second, the super() function is a shortcut to the parent class (in this case,
Furniture). Just as self allows instance methods to interact with instance
variables, super() lets us make use of the parent’s functionality.

You might wonder why this is necessary, though, because I stated
that child classes inherit all their functionality from their parents. They
do, but we defined an __ init __ method in Chair, and this overrode the
__ init __ method in Furniture. Since we need both, as soon as we enter
the __ init __ method of Chair, we call super(). __ init __ (width,

height, material), which calls the __ init __ method of Furniture. This
lets us blend the functionality of both __ init __ methods.

Using super() wouldn’t be necessary if we hadn’t defined a custom
__ init __ method for Chair, but we did because we want to give it some
initial instance variables of its own (i.e., arms and back). Since the line
super(). __ init __ (width, height, material) calls the __ init __
function in the parent Furniture class, it allows for three arguments:
width, height, and material. They aren’t required because they have
default values in the Furniture __ init __ function, but I wanted them to
be able to be set to non-default values, so I added them to Chair's __ init __
function as well.

Expanding Child Classes
Chairs have other unique properties that most Furniture doesn’t.

Consider the idea of a folding chair. In this case, we’ll add a method to the
Chair class:

140 PYTHON QUICKSTART GUIDE

First, let's define the Furniture class

class Furniture:

 def __ init __ (self, width = 0, height = 0, material = "Wood"):

 self.width = width

 self.height = height

 self.material = material

Next, let's define the Chair class

class Chair(Furniture):

 def __ init __(self, width = 0, height = 0, material = "Wood", arms = True, back = True):

 super(). __ init __ (width, height, material)

 self.arms = arms

 self.back = back

 def fold(self):

 self.folded = True

 print("The chair is now folded and ready for transport.")

 def unfold(self):

 self.folded = False

 print("The chair is now unfolded and ready for use.")

In this example, I added two methods to the Chair class: fold and
unfold. The fold method sets self.folded to True, and the unfold method
sets self.folded to False. It is important to note that only the Chair class
gets these extra methods and the additional instance variable. The original
Furniture class, its parent, remains unchanged.

You may have noticed that I didn’t add an argument to __ init __ for
folded. I wanted it to always default to False, with no possibility of override
at object creation. It isn’t necessary to allow every instance variable to be set
by arguments to the __ init __ method. Until fold() or unfold() is called,
self.folded doesn’t exist. Another approach to this would be to make folded
a property and set it to True or False, then do some action on each state.

If I come back later and add an instance variable, property, or method to
the Furniture class, the Chair class will receive those "upgrades" as well.

Multilevel Inheritance
Python allows for a class to have an ancestral line of inheritance. When

a class has a chain of ancestors, this is called multilevel inheritance. The child
class gains all the methods, instance variables, and properties of the ancestor
at each level of inheritance.

07-01.py

141Inheritance and Design Patterns

The best way to explain this is to dive right into an example. We’ll expand
on our furniture metaphor with an additional class, Bench.

class Furniture:

 def __ init __ (self, width = 0, height = 0, material = "Wood"):

 self.width = width

 self.height = height

 self.material = material

class Chair(Furniture):

 def __ init __(self, material, width = 0, height = 0, arms = True, back = True):

 super(). __ init __ (width, height, material)

 self.arms = arms

 self.back = back

class Bench(Chair):

 pass

In this example, we define the Furniture and the Chair classes as
normal. Then we create a new class—a Bench. Since at this point there isn’t
anything substantial to add to the Bench class, I just add pass, which allows
me to create a new, empty class. I can always add to it later.

But Bench isn’t empty. It contains the instance variables width, height,
and material from Furniture, and arms and back from Chair.

We can get a glimpse into our objects with the built-in vars() function.

class Furniture:

 def __ init __(self, width = 0, height = 0, material = "Wood"):

 self.width = width

 self.height = height

 self.material = material

class Chair(Furniture):

 def __ init __(self, material, width = 0, height = 0, arms = True, back = True):

 super(). __ init __(width, height, material)

 self.arms = arms

 self.back = back

class Bench(Chair):

 pass

07-02.py

142 PYTHON QUICKSTART GUIDE

sofa = Bench("Metal")

print(vars(sofa))

When we run this code, the following is displayed:

{'width': 0, 'height': 0, 'material': 'Metal', 'arms': True, 'back': True}

Even though we didn’t give Bench any additional content, it still inherited
its values (and their initial defaults) from Chair and Furniture.

The vars() function is very useful for testing and debugging.
Providing it an object for its argument returns the dictionary for
the object in question. This contains all the mutable (i.e., writable)
attributes and their values.

Multiple Inheritance
Additionally, a Python class can have multiple parents. Children

of multiple parents share attributes of both parents. In object-oriented
programming, this is called multiple inheritance (figure 28).

Multiple inheritance compared to multilevel inheritance.

To demonstrate this, I’ve reworked our furniture example to include
the parent classes Furniture and Surface, then created a new class called
Table. A Table is, of course, both a piece of Furniture and a Surface, so it
has both classes as parents.

fig. 28

143Inheritance and Design Patterns

class Furniture:

 def __ init __(self, width, height, material):

 self.width = width

 self.height = height

 self.material = material

class Surface:

 def __ init __(self, flat):

 self.flat = flat

class Table(Furniture, Surface):

 def __ init __(self, width = 0, height = 0, material = "Wood", flat = True):

 Furniture. __ init __(self, width, height, material)

 Surface. __ init __(self, flat)

 self.legs = 4

a = Table()

print(vars(a))

When we run this code, it displays as follows:

{'width': 0, 'height': 0, 'material': 'Wood', 'flat': True, 'legs': 4}

This indicates it received width, height, and material from Furniture,
flat from Surface, and has legs added as its own unique instance variable.
It’s important to note that the legs instance variable is part of Table and is
not part of Furniture or Surface.

Also, instead of super(). __ init __ , I specified Furniture. __

init __ (self, width, height, material) and Surface. __ init __

(self, flat) in the __ init __ function for the Table class. Since Table
has two parents, super() isn’t specific enough; therefore, each __ init __ is
used directly.

You may have noticed I dropped the default arguments on Furniture. I
did this because I’m not directly using Furniture. Instead, I created a Table
object, and that’s what will ultimately require the arguments. I put all the
defaults in the __ init __ of Table, so the table object doesn’t need any
arguments. I can provide them, of course, if necessary.

I advised using keyword arguments when there are many arguments or
the arguments are subject to change. This is a perfect example of an

07-03.py

144 PYTHON QUICKSTART GUIDE

instance when keyword arguments would be handy and avoid a lot of
referencing back and forth between the class definition and the object's
creation. If I wanted to specify custom values for each, I could replace

a = Table()

with

a = Table(width = 5, height = 5, material = "Metal", flat = True)

Introduction to Design Patterns
The possibilities with inheritance and class design are almost infinite,

but as you write more Python code, you’ll find yourself using similar patterns
to solve problems. In fact, using a design pattern—that is, a structured way
of solving a problem—is a very useful technique when you have classes that
share many things in common.

Design patterns help prevent “blank page syndrome,” a term that usually
refers to writing. Staring at a blank page can be intimidating, whether you’re
writing the next great novel or a simple Python program. Having a pattern to
build from is incredibly helpful. If I’m writing a large application, I typically
start by thinking about the data I intend to store and designing classes around
that data.

If there are going to be many classes, I think about what those classes
have in common and then create base classes. Like a Chair, a Table is also a
piece of Furniture, and by having the Furniture base to work from, I can
create a Table class and save myself the hassle of giving it height, width, and
material instance variables. Doing this keeps us on the Don’t Repeat Yourself
design pattern that encourages us to code once and reuse when needed.

There are quite a few abstract design patterns in computer science, and
although it’s always tempting to delve into the theory behind what we do, I’d
rather introduce you to the actual real-world scenarios you may encounter
and how to solve them than to fill the glossary with a wide assortment of
conceptual terms. So, while these are actual design patterns you’ll encounter,
we’ll explore them with relevant examples rather than dry chalkboard-type
lecturing that can put any beginning (and expert) Python programmer to sleep.

To explore these patterns further, let’s consider our furniture paradigm
more carefully. We have a wide variety of types of furniture, and as we add
more and more to our collection—each with its own instance variables and
properties—our argument list upon object creation will soon grow to become
long and potentially confusing.

145Inheritance and Design Patterns

Python has named parameters, so we don’t have to remember the position
of many different arguments on object creation. Nevertheless, it’s still a pain
to enter so many parameters when creating a new object. And if we’re creating
a lot of different types of furniture, the process can become tedious and error-
prone. Let’s consider some ways to make it easier.

Default Arguments
Default arguments can make this simpler. They can make your code
clearer and save typing.

class Furniture:

 def __ init __(self, width, height, material):

 self.width = width

 self.height = height

 self.material = material

class Surface:

 def __ init __(self, flat):

 self.flat = flat

class Table(Furniture, Surface):

 def __ init __ (self, width = 0, height = 0, material = "Wood", flat = True):

 Furniture. __ init __(self, width, height, material)

 Surface. __ init __(self, flat)

 self.legs = 4

The Table class uses all default arguments, so you can use a = Table()
and you’re off to the races with the a object containing reasonable default
values. After all, how many tables aren’t flat?

If you need to change the object’s properties after creation, you can—and
this is preferred if it’s the exception, not the rule.

Two quiet, unassuming, regular tables. Nothing fancy here.

We create them with no parameters and they receive defaults.

a = Table()

b = Table()

And then there's a weird table named fred. Poor fred.

He's not like the other tables a and b, he's not flat!

fred = Table(flat = False)

07-04.py

146 PYTHON QUICKSTART GUIDE

Collection of Objects
If you need to create a lot of objects and want to iterate through them with
a loop, using lists and dictionaries is a very handy way to do that. Let’s fill
the coffee bar with Stool objects. For brevity, the specific details of the
classes have been removed from this example.

class Furniture:

 pass

class Chair(Furniture):

 pass

class Stool(Chair):

 def __ init __ (self, number):

 self.number = number

Create an empty list named bar

bar = []

Add 8 Stools to the bar

for i in range(8):

 bar.append(Stool(i))

Q: What type of inheritance is this? Multilevel or multiple inheritance?

In this example, we create blank Furniture and Chair classes and a
Stool class that takes a parameter named number. Then we create an
empty list with bar = []. This will hold our collection of Stool objects.

Next we’ll start a loop with a range of 0 to 7, then call the append
method. You might find it odd that I say method rather than function.
That’s because a list (bar, in this case) is a special kind of object that has
methods of its own, and append is a method that adds a value to the list.
In this case, we’re supplying a new Stool object as the argument to the
append method while setting the number argument to i.

The result is a collection of eight Stool objects in the bar list. We can
access them by their number.

print(bar[2].number)

07-05.py

147Inheritance and Design Patterns

This results in 2 being displayed in the interpreter.

You can change any of the stools, too:

bar[4].number = 54

This will set the number instance variable of the fourth Stool object
in the bar list to 54. Note that it doesn’t change the index position in
the bar list. You can’t use bar[54] because it’s still bar[4] (i.e., the fifth
stool object in the list—remember, counting in indexes starts at zero).
However, the number instance variable in the object is changed, and you
can verify it with print.

print(bar[4].number)

This displays 54.

You can always add a ninth Stool object (or more).

bar.append(Stool)

This can be verified with

print(len(bar))

It will now show 9, indicating there are 9 stools in the list.

The bar list can just as easily be a dictionary. Since dictionaries contain
keys rather than just index positions, you can give your Stool objects
names or otherwise associate some meaningful data to them so they can
be easily accessed in the dictionary.

class Furniture:

 pass

class Chair(Furniture):

 pass

class Stool(Chair):

 pass

148 PYTHON QUICKSTART GUIDE

Create an empty dictionary named bar

bar = {}

Create several Stool objects

fred = Stool()

marvin = Stool()

Add them to the bar dictionary

bar["Fred"] = fred

bar["Marvin"] = marvin

In this example, we create our Stool object inherited from Chair (which
is inherited from Furniture), then create an empty bar dictionary. Then
we create fred and marvin, our two new favorite stools with spiffy
names. Since dictionaries are key:value data structures, we can give a
friendly key to each when we add them to the dictionary.

 Then we can reference, oh, say fred, for example, with:

bar["Fred"]

There are many more design patterns to explore when working with
classes and objects, and we’ll use several throughout this book. For now, I
wanted to introduce you to the concept, so you’ll look for these patterns in the
future and use them to help solve your programming problems more easily
and with less work.

A Fantasy World
As an up-and-coming video game developer, you’ve set your sights on

something a bit bigger—a role-playing game. That’s an ambitious task for
any programmer, because there are many elements that go into a game of
this genre, not to mention the code it would take to display a graphical user
interface and possibly three-dimensional elements on the screen.

Nevertheless, the humble beginnings of a large game could start with
some simple class design. Let’s create some classes that will contain elements
you might find in a role-playing game, like these:

 » Players
 » Player classes (types of players, like fighters, healers, mages, etc.)
 » Weapons

149Inheritance and Design Patterns

 » Armor
 » Magic spells
 » Monsters

Feel free to add more to this list if you like, but this should get us off
to a good start. The object of this exercise is not to worry about methods,
variables, etc., but to focus on the design of the classes and how they use
inheritance. Still, if you want to make your healer heal, your rogue steal, or
your fireballs incinerate a monster, go for it!

It’s critical to note here that there are no wrong answers in these exercises.
How you choose to lay out this game data is entirely up to you. Let your
imagination run wild!

If you get stuck or would like to see an example I came up with, please
refer to the appendix.

Chapter Recap

 » Inheritance allows classes to obtain methods and variables from
parents. Classes can have one parent or multiple parents and inherit
structure from each.

 » Multilevel inheritance forms a chain of ancestors passing a growing
collection of traits to their children. Multiple inheritance allows
classes to inherit structure from more than one parent.

 » Design patterns are systematic approaches to solving real-world
programming issues. Both abstract and practical programming
design can help jump-start your development projects.

151Saving Time with Dataclasses

| 8 |
Saving Time with Dataclasses

Chapter Overview
 » The dataclasses module can save you a lot of time
 » Instance variables can be created automatically with dataclasses
 » The @dataclass decorator can be customized with keyword

arguments

If your project has a lot of classes—especially if those classes contain
extensive functionality—you’ll find yourself repeating the same patterns. The
dataclasses module will save you time by eliminating much of the redundant
lifecycle and setup code that’s common in Python applications.

Dataclasses is a standard module that was added in Python 3.7 and is
incredibly helpful. You might not find it in many existing projects because it
is relatively new, but if you use more than a few classes, I highly recommend it.

Automatic Instance Variables
Dataclasses can automatically add instance variables for you. You may

recall our Customer class example from chapter 6:

Define a new class

class Customer:

 def __ init __ (self, name, city):

 self.name = name

 self.city = city

Let’s rewrite it, this time with dataclasses. We’ll cover importing in
chapter 9, so don’t worry about that yet.

Include the dataclasses module

from dataclasses import dataclass

152 PYTHON QUICKSTART GUIDE

Define a new class

@dataclass

class Customer:

 name: str

 city: str

In dataclasses, the str references strings.

That’s it! When Python runs this code, the Customer class will be identical
to the previous one. The @dataclass decorator from the dataclasses module
will automatically add an __ init __ method and add name and city as
instance variables, including the code necessary to set the self.name = name
and self.city = city.

In this code, the format for instance variables in the Customer class is the
variable name, then a colon, then the type of variable. If you wanted to add a
variable called bonus _ points, it would look like this:

Include the dataclasses module

from dataclasses import dataclass

Define a new class

@dataclass

class Customer:

 name: str

 city: str

 bonus _ points: int

We can also define default values. If we want a customer to start with
100 bonus points (unless otherwise specified during object creation), we can.
These bonus points are loyalty reward points that a customer earns on each
purchase, but we can start off every new customer with 100.

@dataclass

class Customer:

 name: str

 city: str

 bonus _ points: int = 100

Now if we create a new customer, like this:

c1 = Customer()

153Saving Time with Dataclasses

… the customer will have 100 bonus points.

print(c1.bonus _ points)

produces:

100

But let’s give just one customer 200 points at the start.

c2 = Customer("John Smith", "Anytown", 200)

print(c2.bonus _ points)

produces:

200

Let’s add one more instance variable, total _ spent:

@dataclass

class Customer:

 name: str

 city: str

 bonus _ points: int = 100

 total _ spent: float = 0.00

We set a default on total _ spent to 0.00 because it’s assumed that a
new customer won’t have spent anything with us yet. Though we haven’t
specifically shown it in an example, we can set a default value for strings
(str) too.

@dataclass

class Customer:

 name: str

 city: str = "Florence"

 bonus _ points: int = 100

 total _ spent: float = 0.00

So by only specifying the name, the one variable for which we haven’t set
a default value, we get the others filled in for us automatically.

154 PYTHON QUICKSTART GUIDE

c1 = Customer("Robert")

print(c1)

produces:

Customer(name='Robert', city='Florence', bonus _ points=100, total _ spent=0.0)

This is already a timesaver, but imagine what a real-life Customer class
might look like. If we had fields like first _ name, last _ name, address,
city, state, country, and postal _ code, the savings would really add up.
Not only that, but by automatically generating the initialization code and
__ init __ method, we’re less likely to accidentally make a mistake.

Dataclass Features
Behind the scenes, dataclass does a lot more than make it easier to set

up variables. We can toggle its functionality with keyword arguments to the
@dataclass decorator. These arguments control the features that the
decorator injects into the class that is defined on the next line.

As we explore the functionality of each feature, we will also get acquainted
with some new special methods you haven’t used yet.

@dataclass(init=True, repr=True, eq=True, order=False, frozen=False)

You don’t have to include all these arguments. Specify only the
ones for which you want to define a value other than the default
value. Moreover, I’ve left off a few arguments that are rarely used
or are specific to extremely recent versions of Python, which aren’t
well supported by most installed versions.

Since there are quite a few arguments, let’s explore each in detail,
including their defaults. Each of these accepts True or False.

init
The init argument defaults to True and instructs the dataclass
decorator to automatically generate the __ init __ method.

repr
The repr argument allows our class to represent itself as a string. A
practical purpose for this is to compare objects. The repr argument

155Saving Time with Dataclasses

defaults to True. If it is True, the repr() function will call this method
on the class to obtain the string.

We can see an example of this behavior with our Customer class:

@dataclass

class Customer:

 name: str

 city: str = "Florence"

 bonus _ points: int = 100

 total _ spent: float = 0.00

c1 = Customer("Robert")

print(repr(c1))

 When we run this code, we’ll get this:

Customer(name='Robert', city='Florence', bonus _ points=100, total _ spent=0.0)

eq
The eq argument defaults to True. If it is True, the __ eq __ method will
allow for a comparison of two objects from the same class using the ==
operator.

For example:

c1 = Customer("Robert")

c2 = Customer("Marsha")

print(c1 == c2)

This will output False. The functionality that dataclass provides for
the __ eq __ method is good, but we can define this ourselves, as with
any other method. If we define an __ eq __ method in our class, we can
craft a specific way to test for equality. For example:

def __ eq __ (self, other):

 if isinstance(other, Customer):

 return self.name == other.name

 return False

156 PYTHON QUICKSTART GUIDE

This does two things. First, it checks whether other is an instance
(object) of Customer via the isinstance function, which returns True if
the first argument is an instance of the second argument, a class. If not,
it returns False. Otherwise, it checks to see if name on both the self
object and the other object are equal. If so, it returns True.

This comparison is done outside the class via c1 == c2 (or any other two
objects, as long as they’re the same kind of object).

order
The order argument defaults to False. If it’s set to True, though,
dataclass automatically creates __ lt __ , __ le __ , __ gt __ , and
__ ge __ methods (less than, less than or equal to, greater than, and
greater than or equal to, respectively).

Similar to the __ eq __ method, these methods allow for comparisons
between two objects using <, <=, >, and >=.

frozen
By default, the frozen argument is set to False. If we set it to True, the
objects from this class will be read-only (immutable), which would allow
the class to be stored in a set or as a key in a dictionary.

Dataclasses Compatibility
Dataclasses are incredibly useful, and since they’ve been a part of

Python’s standard library since version 3.7, it’s hard to justify not using
them. I’ve used them in my projects since their introduction in 2018. If your
programs are run on a Python version earlier than 3.7, or were written before
mid-2018, you may want to consider omitting them until your Python version
can be upgraded.

Since 3.7 has been out for about five years as of this publication, you
probably won’t run into many issues, but this should be considered if you plan
on running your programs on slightly older machines.

157Saving Time with Dataclasses

Chapter Recap

 » In projects using multiple classes, we’ll save a lot of time by using
the dataclasses module, added in Python version 3.7.

 » Instance variables can be created automatically with dataclasses. We
can specify the type of variable (str, int, float) as well as provide a
default value.

 » The @dataclass decorator can be controlled via a wide assortment
of keyword arguments, but we only need to provide them when we
want to deviate from defaults.

159Reusing Code with Modules and Packages

| 9 |
Reusing Code with Modules and Packages

Chapter Overview
 » A module is a Python program file
 » Modules can be used in other Python programs
 » Packages are collections of modules

Classes are powerful tools that give us the flexibility to create nearly any
project we can imagine. But with this power comes great responsibility—
namely, the responsibility to keep our code maintainable. As our game grows
larger, we’ll need to keep it organized or else it will become more difficult
for us to work on. If we want to bring in another programmer or are lucky
enough to have a game publisher take our coffee shop simulator game to the
next level, we’ll have a whole team working on the project. Whether a project
is just for ourselves or written by a large organization, maintaining a tidy,
well-structured workspace is essential.

Python modules are simply Python code files that provide one or more
classes, functions, or variables together. This module then creates a reusable
package that can be used in other programs. A Python module doesn’t even
have to be written in Python! Other programming languages (namely, C/
C++) can construct modules, and the interpreter can load them and make
them accessible as though they were native Python.

Namespaces
Before we get into building our own modules, let’s look at how modules

are organized in a Python program. To do that, we need to see exactly how
import works and how it adjusts the namespace in our program.

Let’s look at the locale standard module, which handles
internationalization (i.e., a set of character, time, currency, and number
formatting conventions for a country). We’ll use the locale module to get a
dictionary of all the available locales installed on the system.

160 PYTHON QUICKSTART GUIDE

import locale

for l in locale.locale _ alias:

 print(l)

When we run this code, we’ll see a list of our computer’s supported
locales. The list will vary from computer to computer, and it will likely be
quite long.

In this example, the module magic begins with the first line of code:
import. The import function brings into the current code all the classes,
functions, and variables that are defined in the module named locale, and
then we can reference them with the name of that module.

For example, if we run this …

import locale

… we can access locale.locale _ alias. But we can’t just use locale _

alias by itself because it is in the locale namespace. A namespace is a
collection of code that exists in a separate space. Recall that there are various
scopes within a Python program. For example, instance variables need to be
accessed with self because they exist one level up from the function calling
them and thus are part of the class’s namespace, or scope. You can think
of namespaces like concentric rings of access, and to access something in
another ring you must have a pointer to that namespace (figure 29).

The namespace relationships of the main program, its classes
and methods, and the imported module named locale.

fig. 29

161Reusing Code with Modules and Packages

In figure 29, the concentric rings each define a namespace. The circle
off to the right side is the locale module, included in the program via the
import function. It exists outside the main program, which is why we need
to reference its name, locale, when using functionality within it. The main
program is its own namespace, often referred to as the “global” namespace.
The for loop defines its own namespace, referenced by l, which becomes
each item of the dictionary locale.locale _ alias.

When we are accessing functionality in other namespaces (i.e., not
within the current namespace), we specify the name of the namespace,
then a dot, before the resource so Python knows how to find it.

Importing Modules
To use a standard module, simply include:

import name

In this example, name refers to the name of the module we want to
import. Generally, import statements are at the top of a program. There are
some possible exceptions, which we’ll address in chapter 18.

We can also import a module as another name if we so choose. For
example, if I wanted to name the locale module robert, I could:

import locale as robert

And then I would use robert.locale _ alias instead of locale.
locale _ alias.

Unless there's a naming conflict, or the module's name you want
to use is long, I wouldn't recommend this. It can confuse you and
others if they work on your code. I would avoid renaming modules
unless it makes your code more readable. You might ask why I
mentioned it only to recommend against using it. Because, as you
see other Python code and use third-party modules, you'll no doubt
encounter this usage pattern. Now you'll be able to spot it and use
it if desired—but I would recommend doing so sparingly, if at all.

We can also import particular functionality from a module. For
example, let’s say I need to process an email, but I don’t need to send or
receive a message.

162 PYTHON QUICKSTART GUIDE

from email import parser

In this case, I’m importing only the parser code from the email module.
I can then use the parser namespace to access its logic and process my mail.
If I had used the traditional route:

import email

… then I would have to use email.parser to access those methods.
To dig deeper into the contents of modules, let’s launch the Python

interpreter rather than using Visual Studio Code for the moment, because
some of the commands below require an interactive session, which is easier to
do directly in the interpreter.

Remember the vars function that lists the variables inside a class? It
works on modules too.

vars(email)

We’ll see a long list of variables contained within the module. If we
want a list of functions/methods from a module (or class), the dir function
has us covered:

dir(email)

And finally, if we want to see a helpful documentation on a module, we’ll
use the help function:

help(email)

The help function is, well, incredibly helpful. It provides a reference for
using a module without requiring internet access, a search engine, or even a
book! When the help browser launches, we use the arrow keys or page down/
up to navigate its contents. We can search for specific text with the / key and
then type what we want to search for and press ENTER. To quit the help
viewer, we press the Q key.

Creating Your Own Module
Python modules are easy to write. In fact, you already know everything

you need to know to make a Python module, because, at its core, a module
in Python is just a Python code file with one or more classes, variables, and/

163Reusing Code with Modules and Packages

or functions. Nevertheless, you’ll need a bit of organizational knowledge to
assemble a module.

Let’s construct a simple module, then use it in a program. First, create a
new file called distance.py and add this code. It might look familiar—it’s
our Distance class!

class Distance:

 def __ init __ (self, km):

 self. _ km = km

 @property

 def km(self):

 return self. _ km

 @km.setter

 def km(self, value):

 self. _ km = value

 @property

 def miles(self):

 return self. _ km / 1.609

 @miles.setter

 def miles(self, value):

 self. _ km = value * 1.609

Save the file, then create a new file called moduletest.py.

import distance

dist = distance.Distance(3)

print("3 kilometers is " + str(dist.miles) + " miles.")

dist.miles = 3

print(str(dist.miles) + " miles is " + str(dist.km) + " kilometers.")

Save this file and run it. If all goes well, you’ll see our familiar output:

3 kilometers is 1.8645121193287757 miles.

3.0 miles is 4.827 kilometers.

If you get an error, check to make sure both files are in the same directory
and that you don’t have any typos.

09-01.py

09-02.py

164 PYTHON QUICKSTART GUIDE

Let’s step through what’s happening in the moduletest.py code. First,
we import the distance module. If you’re wondering how distance.py is a
module, that’s only natural. As we discussed before the example, a module is
essentially just a Python code file.

Even though the file is named distance.py, we import it with
import distance.

Then we create a Distance object named dist, but we must use distance.
Distance to reference the Distance class because it is part of the distance
namespace due to our module import.

The rest of the code uses the miles and km properties of the Distance
class to display (and set) the distance in both measurement systems as it did
in chapter 6. Congratulations! You’ve written your first module.

Standard Modules
Standard modules are those that are built in to Python and provide a

wide assortment of functionality in the base system. These modules are quite
extensive; in fact, there are too many to list here, but as we progress through
the book we’ll explore and use quite a few of them. For a full list, please see
https://docs.python.org/3/py-modindex.html.

Packages
As we’ve learned in this chapter, a module is a single .py file. For larger

modules, it isn’t practical to include everything we need in one file. If a
module contains many classes, splitting it up into multiple files makes it
easier to maintain.

A package is simply a collection of regular Python program files (like our
distance.py file) that are arranged in a structured pattern. This pattern can
be as simple as several files in a folder or a collection of subfolders containing
additional parts of a larger module. This organization is necessary so that
Python knows how to assemble the namespace. Just like modules, packages
can be imported into a program via the import function.

Let’s browse the contents of an example package. Our distance.py will
be part of it, but I added an area.py and a timecalc.py file. I named it
timecalc.py instead of time.py because time is a standard module built in
to Python. In area.py, I added the following:

165Reusing Code with Modules and Packages

class Area:

 pass

Th is creates a blank Area class for later expansion. Th en I created a
timecalc.py fi le and added:

class Timecalc:

 pass

Our new package, combined in a folder I created called calculations,
contains (I should say, will someday contain) classes necessary for dealing
with area, time, and distance to help us solve those infamous “A train has
been traveling at sixty miles per hour in a southwestern direction for three
hours. What fl avor of pie is the conductor eating?” math problems.

Th e time, area, and distance modules (i.e., Python code fi les) in a folder
named calculations, as shown in the macOS Finder fi le browser.

If you have a fi le called program.py in the directory with your package
fi les, you can use these:

import area

import distance

import timecalc

Th is works fi ne, but it isn't very convenient. As they exist right now,
these are three simple stand-alone modules. However, since they’re related in
functionality, it makes sense to bundle them together in a package. To do so,
we only need to add an __ init __ .py fi le to this folder.

fi g. 30

166 PYTHON QUICKSTART GUIDE

An __ init __ .py file must be in a folder for Python to treat that folder
as a package. In it, we’ll import the modules (i.e., Python code files) so that
when the package is imported into the main program one folder above the
package contents, it will load all the modules. When an object is created, its
__ init __ method is run, and in the same way, when a package is imported,
the __ init __ .py is executed.

from .distance import *

from .area import *

from .timecalc import *

There are two components of this __ init __ .py file that are new—the
dot before the module name and the star/asterisk after the import statement.
The dot before distance, area, and timecalc tells Python to look in the
current folder (relative to the __ init __ .py file) for the modules. The star/
asterisk tells Python to import all the contents of the module.

We could say:

from .distance import Distance

… which would import only the Distance class. But, as modules often
contain multiple classes, using * would ensure that we got all the module’s
contents.

Once we have the __ init __ .py file created, we can create our program.
py (or any other file name) program one level up from the calculations
folder (i.e., above it) and use …

import calculations

… to import all three modules. The resulting namespace is calculations,
so to use our Distance class, we would specify …

d = calculations.Distance(5)

… to create a Distance object with a default value of five kilometers.
Armed with this knowledge, you can now create packages of your classes

(and functions) and reuse them in other programs.

167Reusing Code with Modules and Packages

ClydeBank Coffee Shop: Modularizing the Game
Right now, our game exists in one module. This isn’t ideal, because it’s

clumsy to navigate. Let’s fix that. We’ll move the CoffeeShopSimulator class
into its own file, then move the utility functions (including welcome, prompt,
convert _ to _ float, and x _ of _ y) to a module named utilities. Then
we can include both in the main.py file.

main.py
ClydeBank Coffee Shop Simulator 4000

Copyright 2022 (C) ClydeBank Media, All Rights Reserved.

Import all functions from the utility module

from utilities import *

Import the game class from the coffee _ shop _ simulator module

from coffee _ shop _ simulator import CoffeeShopSimulator

Print welcome message

welcome()

Get name and store name

t _ name = prompt("What is your name?", True)

t _ shop _ name = prompt("What do you want to name your coffee shop?", True)

Create the game object

game = CoffeeShopSimulator(t _ name, t _ shop _ name)

Run the game

game.run()

utilities.py
def welcome():

 print("ClydeBank Coffee Shop Simulator 4000, Version 1.00")

 print("Copyright (C) 2022 ClydeBank Media, All Rights Reserved.\n")

 print("Let's collect some information before we start the game.\n")

def prompt(display="Please input a string", require=True):

 if require:

 s = False

 while not s:

 s = input(display + " ")

CCS-07.py

CCS-08.py

168 PYTHON QUICKSTART GUIDE

 else:

 s = input(display + " ")

 return s

def convert _ to _ float(s):

 # If conversion fails, assign it to 0

 try:

 f = float(s)

 except ValueError:

 f = 0

 return f

def x _ of _ y(x, y):

 num _ list = []

 # Return a list of x copies of y

 for i in range(x):

 num _ list.append(y)

 return num _ list

coffee_shop_simulator.py
Import needed modules

import random

import re

from utilities import *

class CoffeeShopSimulator:

 # Minimum and maximum temperatures

 TEMP _ MIN = 20

 TEMP _ MAX = 90

 def __ init __ (self, player _ name, shop _ name):

 # Set player and coffee shop names

 self.player _ name = player _ name

 self.shop _ name = shop _ name

 # Current day number

 self.day = 1

CCS-09.py

169Reusing Code with Modules and Packages

 # Cash on hand at start

 self.cash = 100.00

 # Inventory at start

 self.coffee _ inventory = 100

 # Sales list

 self.sales = []

 # Possible temperatures

 self.temps = self.make _ temp _ distribution()

 def run(self):

 print("\nOk, let's get started. Have fun!")

 # The main game loop

 running = True

 while running:

 # Display the day and add a "fancy" text effect

 self.day _ header()

 # Get the weather

 temperature = self.weather

 # Display the cash and weather

 self.daily _ stats(temperature)

 # Get price of a cup of coffee

 cup _ price = float(prompt("What do you want to charge per cup of coffee?"))

 # Get advertising spend

 print("\nYou can buy advertising to help promote sales.")

 advertising = prompt("How much do you want to spend on advertising (0 ↦

 ↪ for none)?", False)

 # Convert advertising into a float

 advertising = convert _ to _ float(advertising)

 # Deduct advertising from cash on hand

 self.cash -= advertising

170 PYTHON QUICKSTART GUIDE

 # Simulate today's sales

 cups _ sold = self.simulate(temperature, advertising, cup _ price)

 gross _ profit = cups _ sold * cup _ price

 # Display the results

 print("You sold " + str(cups _ sold) + " cups of coffee today.")

 print("You made $" + str(gross _ profit) + ".")

 # Add the profit to our coffers

 self.cash += gross _ profit

 # Subtract inventory

 self.coffee _ inventory -= cups _ sold

 # Before we loop around, add a day

 self.increment _ day()

 def simulate(self, temperature, advertising, cup _ price):

 # Find out how many cups were sold

 cups _ sold = self.daily _ sales(temperature, advertising)

 # Save the sales data for today

 self.sales.append({

 "day": self.day,

 "coffee _ inv": self.coffee _ inventory,

 "advertising": advertising,

 "temp": temperature,

 "cup _ price": cup _ price,

 "cups _ sold": cups _ sold

 })

 # We technically don't need this, but why make the next step

 # read from the sales list when we have the data right here

 return cups _ sold

 def make _ temp _ distribution(self):

 # This is not a good bell curve, but it will do for now

 # until we get to more advanced mathematics

 temps = []

171Reusing Code with Modules and Packages

 # First, find the average between TEMP _ MIN and TEMP _ MAX

 avg = (self.TEMP _ MIN + self.TEMP _ MAX) / 2

 # Find the distance between TEMP _ MAX and the average

 max _ dist _ from _ avg = self.TEMP _ MAX - avg

 # Loop through all possible temperatures

 for i in range(self.TEMP _ MIN, self.TEMP _ MAX):

 # How far away is the temperature from average?

 # abs() gives us the absolute value

 dist _ from _ avg = abs(avg - i)

 # How far away is the dist _ from _ avg from the maximum?

 # This will be lower for temps at the extremes

 dist _ from _ max _ dist = max _ dist _ from _ avg - dist _ from _ avg

 # If the value is zero, make it one

 if dist _ from _ max _ dist == 0:

 dist _ from _ max _ dist = 1

 # Append the output of x _ of _ y to temps

 for t in x _ of _ y(int(dist _ from _ max _ dist), i):

 temps.append(t)

 return temps

 def increment _ day(self):

 self.day += 1

 def daily _ stats(self, temperature):

 print("You have $" + str(self.cash) + " cash on hand and the temperature is ↦

 ↪ " + str(temperature) + ".")

 print("You have enough coffee on hand to make " + str(self.coffee _ inventory) ↦

 ↪ + " cups.\n")

 def day _ header(self):

 print("\n-----| Day " + str(self.day) + " @ " + self.shop _ name + " |-----")

 def daily _ sales(self, temperature, advertising):

 return int((self.TEMP _ MAX - temperature) * (advertising * 0.5))

 @property

 def weather(self):

 # Generate a random temperature between 20 and 90

172 PYTHON QUICKSTART GUIDE

 # We'll consider seasons later on, but this is good enough for now

 return random.choice(self.temps)

The game now consists of three files (main.py, utilities.py, and
coffee _ shop _ simulator.py), and everything is much easier to find. Also,
the main.py file is extremely simple to read and understand.

As we explore advanced functionality in Python, we’ll learn how to add
the finishing touches our game needs to be a fun game to play—and replay!

Chapter Recap

 » Python's standard modules provide a wealth of functionality.

 » Every Python code file is a module. Packages are collections of
Python modules.

 » Both modules and packages can be imported into other Python
programs via the import statement.

PART III
PYTHON IN ACTION

175Advanced Strings

| 10 |
Advanced Strings

Chapter Overview
 » Python contains extensive text manipulation functionality
 » Using regular expressions is a powerful way to spot patterns in text
 » Compressing data saves resources

Throughout this book we’ve worked with strings in a rather basic way, but in
this chapter we’ll explore some of the extremely powerful ways that Python
can manipulate strings.

Before we get deep into it, let’s expand the definition of a string in
Python. Sure, we’ve already discussed that strings are just text in a variable.
But strings are also objects and therefore have built-in functionality (i.e.,
methods) that we can use to do all sorts of helpful things.

One note, though, before we begin. In previous chapters, I’ve explained
the details of each line of example code, even if we’ve covered it before.
Now that we’ve explored the basics of Python, including its object-oriented
features, I’m going to spend a bit less time doing that and instead rely more
on code comments. Don’t worry—anytime a new concept is introduced, we’ll
cover it in detail.

Standard String Operations

Finding and Replacing Text
You’ll likely be interacting with text a lot in Python, and a common task
you’ll need to be able to do is to search and modify strings. Python makes
this easy.

Create a string

a = "Hello, World!"

10-01.py

176 PYTHON QUICKSTART GUIDE

Search for "World" in the string

if a.find("World") != -1:

 # Replace "World" with "Reader"

 b = a.replace("World", "Reader")

 # Display the results

 print(a)

 print("... was replaced with ...")

 print(b)

In this example, we use the find method on the string named a and provide
an argument with "World". This will return a True value (specifically,
it returns 7, because that’s the character position in the string where
“World” starts), so the code inside the if conditional block is executed.
That said, it may also return a -1 value if World isn’t found, so we must
make sure the result of find isn’t equal to -1.

Inside the block, we create a new string b that stores the results of
a.replace("World", "Reader"). The replace method looks through
the string and replaces the first argument with the second argument. So
“Hello, World!” becomes “Hello, Reader!” Then we print the strings
named a and b with a brief message in between them. Note that the
string a remains “Hello, World!” because replace doesn’t change the
value of the a string, it just returns the replaced value.

Here’s the result:

Hello, World!

… was replaced with …

Hello, Reader!

We could have simplified the code further:

Create a string

a = "Hello, World!"

Search for "World" in the string

if a.find("World") != -1:

 # Replace "World" with "Reader"

10-02.py

177Advanced Strings

 print(a)

 print("... was replaced with ...")

 print(a.replace("World", "Reader"))

This version does the same thing but doesn’t create a string named b;
instead, it runs the replace method on the string a inline in the print
statement. If we might need that string later, and didn’t just want to
display it, we would store it in a separate variable (like we did when we
assigned the result to b), or overwrite the original variable, like this:

a = a.replace("World", "Reader")

print(a)

But be careful with this approach, because the string a is forever changed,
and if you needed a copy of the original for some reason, it would be lost.

Cases
We can do some other neat things with strings in Python. Here are some
methods for dealing with capitalization.

Create our string

title = "Python QuickStart Guide"

Display it all uppercase

print(title.upper())

Display it all lowercase

print(title.lower())

When we run this, it displays:

PYTHON QUICKSTART GUIDE

python quickstart guide

Pattern Counting
If we need to know the number of times a character (or string of characters)
occurs in a string, the count() method has us covered.

Create our string

tongue _ twister = "She sells seashells by the seashore."

10-03.py

10-04.py

178 PYTHON QUICKSTART GUIDE

Count the number of 's' in tongue _ twister and display it

print("There are " + str(tongue _ twister.count("s")) + " letter s in:")

print(tongue _ twister)

With count(), we get an integer with the number of times the character(s)
in the argument is present in the string. In this case, it’s 7, but since it’s
an integer, we must convert it to a string to use it with print. When we
run this, we get:

There are 7 letter s in:

She sells seashells by the seashore.

Splitting and Joining
Sometimes it’s helpful to split a string into characters and put them in a
list. Conversely, we may also want to combine the contents of a list into a
string. The split and join methods let us do just that (figure 31).

Splitting strings into lists in Python.

Here’s an example that splits a sentence into words.

A simple string

fox = "The quick brown fox jumps over the lazy dog."

Split the string

fox _ list = fox.split()

Display the resulting list

print(fox _ list)

This example will display as follows:

['The', 'quick', 'brown', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog.']

fig. 31

10-05.py

179Advanced Strings

By default, without arguments, split will separate a string with spaces
(or any whitespace—multiple spaces work, too). However, if we provide
a character or string to split as an argument, we can split a string with
any delimiter (that is, any character used to separate segments of data—in
this case, to break apart the string).

An (obviously fake) ID number

id = "123-45-6789"

Split id by a dash character

id _ segments = id.split("-")

Display it

print(id _ segments)

This code displays:

['123', '45', '6789']

You can also use multiple characters as your delimiter:

New glossary terms

glossary = "delimiter, module, package, class, object"

Split by comma then a space

glossary _ list = glossary.split(", ")

Display it

print(glossary _ list)

This produces:

['delimiter', 'module', 'package', 'class', 'object']

Now that we’ve broken a string into multiple pieces with split, let’s put
it back together again.

Our glossary terms

glossary = ['delimiter', 'module', 'package', 'class', 'object']

10-06.py

10-07.py

10-08.py

180 PYTHON QUICKSTART GUIDE

The new joined string

glossary _ string = ", ".join(glossary)

Display it

print(glossary _ string)

Don’t be alarmed if the join line made you do a double take. It’s odd, I’ll
admit. The method join is used on a string object, but that string object
is the character or string that will be used to join the pieces (i.e., parts of
the list) together. In this case, it’s a comma and a space, but it could be
anything. Then the argument to join is the list (in this case, glossary).

Input Validation
Input validation is the process of confirming that a variable fits a certain
pattern. Validating the data we receive from users (or from files or network
sources) is important in preventing errors and ensuring that our code will
be able to operate properly on the data provided to it.

Ask user for a value

value = input("Please enter a value: ")

Check if every character is a number

"3102" – True

"4111123412341234" – True

"04/22/2022" - False

"1600 Pennsylvania Avenue" - False

if value.isnumeric():

 print("It's a number.")

Check if every character is a letter

Spaces, punctuation, and numbers don't count

"Yes" – True

"Yes " - False

"Yes 3" - False

"Yes!" – False

if value.isalpha():

 print("It is filled with alphabet characters only.")

Check if the string is alphanumeric (i.e., letters and numbers)

"1600 Pennsylvania Avenue" – False

10-09.py

181Advanced Strings

"Washington, D.C." – False

"Washington DC" – False

"Washington" - True

if value.isalnum():

 print("It's alphanumeric.")

A common oversight when working with isalnum() is forgetting
that it will not count spaces as alphanumeric characters. Only letters
and numbers—no punctuation, spaces, or otherwise—will be True
with isalnum().

These functions are very useful for validating data, but they do have
shortcomings in that they don’t consider exceptions to the rules (i.e.,
spaces, punctuation, etc.). Next, we’ll examine regular expressions, which
will let us work around these issues and add a whole new set of abilities
to validate input.

Regular Expressions
Regular expressions (often called regex for short) are a weird, sometimes

arcane set of symbols that tell Python how to search through strings and
match specific portions.

I’ll be honest up front about regular expressions—you’ll love them or
you’ll hate them. Either way, you’ll use them quite a bit in your Python
programming career, because they’re exquisitely powerful.

Despite their incredible capability, it took me years, perhaps even a
decade, to truly use regular expressions well. In programming years (not
to be confused with, but similar in scope to, dog years) that might as well
be an eternity. I muddled along with searching and replacing text in more
traditional ways and borrowing regular expressions from open-source
software and public sources to accomplish what I needed to.

But once I truly understood them, I commanded a powerful text
processing engine at my fingertips. Now you, the owner of this book, can
skip ahead of my decade of string searching ambiguity and unlock the true
power of the regular expression.

Before we get started, allow me to talk up regular expressions just a bit
more. Nearly all programming languages and many programs that work
with text (including Visual Studio Code and even Microsoft Word) have
built-in support for regular expressions. That means that what you learn
here will apply not only to Python but to other programming languages and
hundreds—possibly thousands—of other programs.

182 PYTHON QUICKSTART GUIDE

Basically, a regular expression is a string of characters and special codes
that are designed to match certain patterns in strings. With them, we can
search for more than just characters in a string—we can find complex patterns
that we can’t otherwise locate with find or replace.

Additionally, complex types of input validation are possible with regular
expressions, ones that go beyond simple methods like isnumeric or isalpha.

Let’s start with the simplest possible example of a regular expression in
Python.

Import the regular expression engine

import re

Define our content

text = "Hello, World!"

Is "Hello" in our string?

if re.search("Hello", text):

 print("Hello is in the string.")

else:

 print("Hello isn't in the string.")

When we run this code, we’ll see this:

Hello is in the string.

At first glance, we’re not doing anything substantially new. The search
function from the re module (i.e., re.search) takes two parameters, the
regular expression and the string that will be searched. Since our regular
expression was merely a word (“Hello” in this case), the expression wasn’t
anything more than an exact match. The search function simply looked for
“Hello” in the string and found it, and thus it evaluated to be True. Since it
was True, the “Hello is in the string” message was printed.

Admittedly, that’s not impressive, but you just learned how to create your
first regular expression. Now let’s build on that to do more advanced things.

Import the regular expression engine

import re

Define our content

text = "Hello, World!"

10-10.py

10-11.py

183Advanced Strings

Is "Hello" in our string?

if re.search("hello", text, re.IGNORECASE):

 print("hello is in the string.")

else:

 print("hello isn't in the string.")

When we run this, we’ll see:

hello is in the string.

In this case, we supplied hello as our regular expression, and it will serve
the exact same function as the Hello regex, except it won’t match by default
because the regular expression has a capital H at the beginning. By default,
these expressions are case-sensitive, meaning they do not make allowances
for case deviation (if we specify lowercase, we will only match a lowercase
string).

That’s where the third (and optional) parameter to search comes into
play. The re.IGNORECASE is really just a flag, another word for “option” in
programming terminology, that tells the search function to ignore the case
and treat “hello” and “Hello” as the same string.

You can shorten re.IGNORECASE to re.I, and this is far simpler to
type. However, IGNORECASE makes it clear to other programmers
(especially ones who may not know about re.I) what you intend to
do with your regular expression search. If you use re.I, I suggest
leaving a comment above it to note that it is a case-insensitive
search. This helps you and anyone else that may come along later
to read or edit your code.

search can do more than just return a True or False if there’s a match.
We can fetch the contents of that match. Matching text in regular expressions
could fill a chapter all by itself, but let’s walk through an example you’re likely
to encounter in real life.

Import the regular expression engine

import re

Define our content

text = "The quick gray fox jumped over the lazy dog!" 10-12.py

184 PYTHON QUICKSTART GUIDE

Find

match = re.search("(gray|grey)", text, re.IGNORECASE)

Print the match

print(match.group(0))

In this example, we use re.search in the exact same way, but instead
of evaluating for True/False we fetch the result of the search and place it in
match. Our regex is (gray|grey), and the parentheses tell Python to find and
return any text (or evaluation of other regex code) inside the parentheses. In
this case, we have the US and UK spellings of the same word (gray in the US
and grey across the pond), and the pipe symbol between them specifies that
either the first or second variation is acceptable. Finally, the last line prints
the match.

The object returned by re.search (match in this case) also contains other
information about the matching result. The span method gives us the exact
position in the string where the match occurred.

match.span()

contains:

(10, 14)

The first value specifies the start of the match, and the second specifies
the index of the character after the end of the match. We can use this data to
alter the string.

Import the regular expression engine

import re

Define our content

text = "The quick gray fox jumped over the lazy dog!"

Find

match = re.search("(gray|grey)", text, re.IGNORECASE)

Get start and end of match

match _ start = match.span()[0]

match _ end = match.span()[1]

10-13.py

185Advanced Strings

Replacement text

replace _ text = "grey"

Replace gray with grey using the position from span

new _ text = text[:match _ start] + replace _ text + text[match _ end:]

Display results

print("Old text: " + text)

print("New text: " + new _ text)

The new code starts when we get the match _ start and match _ end

from the span method. The first result in the span method is the start, and
the second the end, so we store these values for the next step. The replace _

text is the UK spelling that we’re going to substitute for the US spelling.
Next we construct a new string called new _ text that begins with the

text string, starting at the beginning and including everything up to the
position match _ start. The colon before the index position tells Python to
return the portion of the string up to (but not including) the position. We
then add (concatenate) the replace _ text string and add the rest of the
original text string. The colon after the position index tells Python to return
the portion of the string starting at the position, including that portion and
everything up to the end.

In other words, our new _ text string consists of the first part of the
text string up to the match _ start position, then the replace _ text
string, then the remainder of the original text string starting at the match _

end position.
So when we run the code, here is what we get:

Old text: The quick gray fox jumped over the lazy dog!

New text: The quick grey fox jumped over the lazy dog!

Let’s do some more searching through strings, this time with a more
advanced regex. It might seem a bit obscure at first, but bear with me.

You’ll notice sequences \b and \w. Before we go into their purpose, it’s
important to understand that this is a special sequence of characters called
an escape sequence. It’s given this name because, in the context of regular
expressions, they escape the normal processing of the regular expression
and tell Python that the character immediately after the backslash is to be
considered not part of the expression but a character to match.

186 PYTHON QUICKSTART GUIDE

The regular expression symbols \b and \w are metacharacters—symbols
that have special meaning. They denote a type of character or string of
characters in a string.

Escape sequences exist beyond the realm of regular expressions,
so I stated “in the context of regular expressions” to make it clear
that escape sequences have other uses (e.g., recall the \n sequence
that signals a newline). In general, escape sequences are groups of
characters that mean something other than what they literally state.
For example, in regular expressions, \b is not telling the program to
match a backslash then a b.

Now let’s look at an example that uses a more advanced regex involving
metacharacters. We’ll go through it in detail after the example.

Import the regular expression engine

import re

Define our content

text = "This is the the house. It has red red paint."

Regular expression to find duplicate words

Use prefix r before to treat as raw (unescaped) string

regex = r"\b(\w+)\s+\1\b"

Find any duplicate words

matches = re.findall(regex, text, re.IGNORECASE)

Print the duplicate words

for match in matches:

 print(match)

When you run this code, it finds the duplicate words.

the

red

You’ll notice a few things different with this code, so let’s step through
them. First, we predefine our regular expression into a string called regex,
but there’s something new here. The r in front of the string tells Python to
treat the string as a raw string. When it does this, it doesn’t perform any

10-14.py

187Advanced Strings

escaping; that is, the \b, \w, etc., are treated as literal values. So, if \n were
in this string, it wouldn’t generate a newline—instead it would be exactly \n
with no newline. This is necessary to prevent Python from turning the \b escape
code into a backspace, which would cause an error in our regular expression.

We’ll step through the regular expression in a moment, but first, note
that we used re.findall. This returns a dictionary of the matches it finds.
That’s why we’re able to iterate over them in the last loop, displaying each
that was found in the string. You can even use len(matches) to determine
the number of matches found, since matches is a dictionary.

Now, the elephant in the room—the weird-looking regex. Let’s go
through it symbol by symbol and it will make sense. To keep things easily
digestible, I’ve constructed a handy table (figure 32).

SYMBOL OBJECTIVE

\b Matches empty string at the beginning or end of a word
(i.e., a word boundary).

\w+ \w matches any single word character (i.e., a-z, A-Z, 0-9).
The + causes the \w to match unlimited times.

(\w+) The parentheses around the \w+ tell Python to capture
(save for later) what is matched inside them.

\s+
\s matches any single whitespace character (including but
not limited to spaces). Unlike \b, this doesn't have to be
at the beginning or end of a word. The + causes the \s to
match unlimited times.

\1 Matches the first capturing group again, which is (\w+). The
1 denotes the first group.

\b Matches empty string at the beginning or end of a word.

Regular expression metacharacters and symbols in the regex
"\b(\w+)\s+\1\b" as shown in the code the example.

Don’t worry if this doesn’t make sense to you. Regular expressions like
this didn’t make sense to me for years. However, the more I used them in my
programs and copy/pasted expressions I found online, the more I learned how
they work. One of the most useful ways to learn about regular expressions is
to take an existing regex and modify it to suit your needs.

fig. 32

188 PYTHON QUICKSTART GUIDE

Regex Anchors
What if I want to see if a string starts with the letter H? To do that, I’ll
use the ^ regex anchor. A regex anchor is a character that signifies a certain
position in a string, and the caret (̂) signifies the beginning of a string.

Import the regular expression engine

import re

Define our content

text = "Hello, World!"

Does the string begin with the letter H?

if re.search("^H", text):

 print("The string begins with H.")

else:

 print("The string does not begin with H.")

When we run this, we’ll see:

The string begins with H.

The regular expression ^H tells Python to search for a capital letter H at
the beginning of the strong (we didn’t use the case-insensitive flag, so
it must match a capital letter). Since the regular expression matched, it
evaluated to be True, and the proper message was displayed.

Let’s do the same thing in reverse—that is, use the $ symbol to denote
the end of a string.

Import the regular expression engine

import re

Define our content

text = "Hello, World!"

Does the string end in an exclamation point?

if re.search("\!$", text):

 print("The string ends with an exclamation point.")

else:

 print("The string doesn't end with an exclamation point.")

10-15.py

10-16.py

189Advanced Strings

Here’s what we see when we run the code:

The string ends with an exclamation point.

When this regular expression runs, it matches, because at the end of
the string (denoted by the $ in the regex) an exclamation point exists
(denoted by a backslash and an exclamation point: \!) .

There are two new things in this example. First, we specify the dollar
symbol ($) to tell Python to start from the end of the string with the
match, not the beginning. Second, we place a backslash (\) before the
exclamation mark (!) because the exclamation mark itself is a regex
symbol, and putting a backslash before it tells Python that we don’t mean
to use the regex symbol but rather the actual character (often called a
literal character in programming parlance).

If we wanted to see if the string ended in a period or any other non-letter
or non-number, we would have to escape that character as well with an
escape sequence. With a regular expression of \.$ we could see if the
string ended in a period. If we wanted to detect whether a string ended
in the letter o, the regex would be o$, with no escaping necessary via the
backslash because o is an alphanumeric character.

When we work with multiline strings, we often want to match the
beginning or end of each line, rather than the beginning or end of the
whole string. To do so, we can specify the re.MULTILINE flag, which
changes the behavior of ^ and $ to match the start and end of each line,
respectively.

But that raises an interesting question: how do we make multiline strings?
The triple-quote delimiter is our new friend.

text = """This is a multiline string.

It has multiple lines to it.

So, fittingly, it's called a multiline string.

When you type a string and hit ENTER,

a special character is inserted in the string.

That special character is a backslash followed by n."""

190 PYTHON QUICKSTART GUIDE

In chapter 1, we discussed the \n sequence that inserted a newline.
By entering a multiline string in our editor, this \n sequence is already
added for us because it's on a new line.

If we want a regex that matches the exact beginning of the string, even
if it has multiple lines, we use \A. Conversely, \Z matches the end of the
string. So re.search("\AThis", text) would work because the first line
starts with “This” and the \A anchor directs the regular expression to
start at the very beginning.

Match
The re.match function takes the same parameters as the re.search
function except it tries to match the regex pattern at the beginning of
the string and not the entire string. The re.match function is faster, so if
you’re looking for something at the beginning, it’s better to use it instead
of re.search.

Import the regular expression engine

import re

Our string

test = "Hello, World!"

Match

if re.match("e", test):

 print("re.match says it has an e in it.")

Search

if re.search("e", test):

 print("re.search says it has an e in it.")

When we run the code, we see this:

re.search says it has an e in it.

We do not see the match conditional print statement. Since match
looks only at the start of the string, the capital H that begins the string
invalidates the match. The re.search function, on the other hand, finds
every occurrence of e in the string, so the statement evaluates to be True
because it found at least one match.

10-17.py

191Advanced Strings

Splitting Strings with Regexes
You can use re.split to break apart strings using a regular expression.
Recall that the regular split function splits strings based on a delimiter
of one or more characters. The re.split function is similar except the
splitting delimiter can be a regular expression, giving you considerably
more flexibility.

In the next example, we’ll split a string with spaces and then with non-
word characters using the \s and \W metacharacters. Recall that \s means
any whitespace character—that’s simple enough.

As for \W, this matches any non-word character (space, punctuation, etc.).
You might be wondering why we didn’t use \w (which matches any word
character). It might be great for finding individual words, but this is the
delimiter we are providing to split, so if we split by words we’d end up
with no meaningful results because we’d match only the space between
the words. So we use \W as the delimiter to match the spaces between
the words, and thus split returns each word. Adding the + at the end
matches one or multiple non-word characters.

Just like the regular split function, re.split returns a list of the split
strings.

Import the regular expression engine

import re

Our string

test = "The quick brown fox is fast!"

Split by spaces using the \s metacharacter

Since we want to account for multiple spaces, we add +

space _ split = re.split("\s+", test)

print(space _ split)

Split by word using the non-word metacharacter

Since we want to account for multiple

non-word characters, we add +

word _ split = re.split("\W+", test)

print(word _ split)

10-18.py

192 PYTHON QUICKSTART GUIDE

This code produces the following:

['The', 'quick', 'brown', 'fox', 'is', 'fast!']

['The', 'quick', 'brown', 'fox', 'is', 'fast', '']

An interesting note here is that the split by spaces gives us the exclamation
mark at the end of the word “fast”, whereas splitting by non-word
characters omits this. Since \W+ splits by one or more non-word characters,
it doesn’t return the exclamation mark at the end of the word “fast” but
instead uses it to split the string, leaving an empty entry at the end.

Substitution
The re.sub function allows us to perform a find-and-replace operation
using regular expressions.

Import the regular expression engine

import re

Our string

test = "The quick brown fox is fast!"

Substitute spaces with +

plus _ test = re.sub("\s+", "+", test)

print(plus _ test)

When we run the code, we’ll see this:

The+quick+brown+fox+is+fast!

The first argument for re.sub is the regex pattern to find. The second
argument is the character(s) to replace in the string when the regex
pattern is matched. Finally, we provide the string that will be used to
replace matches in the third argument. The function returns the modified
string (in this example, plus _ test).

For more regular expression symbols, please see the "Regular
Expression Cheat Sheet" included with your Digital Assets at
go.quickstartguides.com/python.

10-19.py

193Advanced Strings

To watch the Quick Clip, use the camera on your mobile phone
to scan the QR code or visit the link below.

www.quickclips.io/python-5or

String Formatting
We’ve been using print quite a lot, and it works great for strings. But

when we need to add numbers to the mix, we have to convert them via
str() and use the + symbol to combine elements of the data to be displayed.
While this technically works, it’s not very elegant and can make the lines of
code quite complex to follow if we need to sprinkle a lot of variable data in
our string.

Th e formatting system introduced in Python 3 is quite expansive, so let’s
start with its basic functionality and work up from there. In this fi rst example,
we’ll use curly brackets (i.e., { }) in the middle of a string to defi ne where we
want to insert another string.

Defi ne the name

name = "Robert"

Print a friendly message

print("Hello, {}!".format(name))

Th is produces:

Hello, Robert!

10-20.py

What made regular expressions click
for me.

194 PYTHON QUICKSTART GUIDE

In this example, the format method to the inline string "Hello, {}!"
substitutes the value in the name string at the location of the curly braces. This
isn’t a huge improvement over the previous + string concatenation we’ve
been using, but this approach becomes a lot more powerful with multiple
variables.

Define our greeting

greeting = "Hello, {name}! It's currently {temp} and the time is {time}."

Print the message

print(greeting.format(name = "Robert", temp = "54F", time = "3:42 PM"))

Here, we’re passing keyword arguments to the format method, providing
values for name, temp, and time. For now, we’re just using example values;
we’ll talk about getting the actual time in chapter 11.

We can even format digits, including floats, with the format method.

total = 6.95

message = "Your total is ${:.2f}."

print(message.format(total))

This code displays:

Your total is $6.95.

Inside the curly braces, we use the pattern :.2f, which is a bit arcane
but can be quite simply explained. Python has a set of formatting codes, or
shorthand, that allows us to define what the format method returns inline
between the braces. The colon tells format that a formatting code is being
used, and the f at the end denotes a floating-point value. The .2 portion of the
formatting code sets the float display to two decimal places. In this case, 6.95
is already formatted in that pattern, but let’s change things a bit.

total = 6.95333

message = "Your total is ${:.2f}."

print(message.format(total))

This code will still display:

10-21.py

10-22.py

195Advanced Strings

Your total is $6.95.

The :.2f pattern also instructs format to round the float to two decimal
places. We can change the 2 to another number to adjust the number of
decimal places to be displayed.

There are quite a few other patterns we can use. Figure 34 is a chart
displaying the most frequently used codes for the format method.

FREQUENTLY USED FORMATTING CODES

 CODE DESCRIPTION EXAMPLE DISPLAY

:n integer format
"There are {:n}
continents." There are 7 continents.

:f Floating point number
"Your total is

${:.2f}." Your total is $6.95.

:, Use comma-separators
"In 2020, the USA
had {:,} people"

In 2020, the USA had
329,500,000 people.

:% Percentage format

"Take an additional
{.0%} off today!"

(the 0 defines decimal places in
percentage display)

Take an additional 20%
off today!

:e Exponent (scientific) notion
"The speed of light

is {:e} m/s."
The speed of light is
3.000000e+08 m/s.

:E Exponent (scientific) notion
(Capital E)

"The speed of light
is {:E} m/s."

The speed of light is
3.000000E+08 m/s.

For more string formatting codes, please see "String Formatting
Codes" included with your Digital Assets at go.quickstartguides.com/
python.

F-Strings
You’re going to see traditional Python string formatting quite a bit in
existing code, but f-strings (short for formatted string literals) could be
used beginning with Python 3.6.

F-strings provide tremendous flexibility when we’re constructing strings
with inline variables.

first _ day = "Monday"

second _ day = "Wednesday"

print(f"We are closed this week from {first _ day} till {second _ day}.")

fig. 33

10-23.py

196 PYTHON QUICKSTART GUIDE

With f-strings, we can avoid the awkward plus signs and a call to
format().

We can also perform evaluations inside the curly brackets, like this:

print(f"Testing evaluations in f-strings: {3 * 9}")

When we run this code, we get the following:

Testing evaluations in f-strings: 27

Those evaluations aren’t limited to mathematics. You can call functions
inside the brackets.

word = "cool!"

print(f"Testing functions in f-strings: {word.upper()}")

This produces:

Testing functions in f-strings: COOL!

Consider using f-strings in the ClydeBank Coffee Shop Simulator game.

Python 3.6 was released on December 23, 2016. As of this printing,
that’s more than six years ago. It’s growing increasingly unlikely that
you’ll run into an installed version of Python that old. However, there
are versions of Linux, especially those running on servers, that will still
have older versions installed, so that could be something to consider
when using f-strings. If you do run your Python code on a server
with Python 3.5 or earlier, there’s an excellent case to be made for
upgrading. Nevertheless, you will still run into plenty of code written
before this time that doesn’t have f-strings.

Data Compression
Compression is a technique that reduces redundant data in strings,

causing the string to take up less space in memory or on the disk. The strings
we’ve been working with are quite small, but sometimes you’ll be working
with massive sets of data.

10-24.py

10-25.py

197Advanced Strings

You’ve likely heard of zip files—archives of files (and sometimes folders)
condensed into a single package. Zip files use compression to help minimize
space and transfer time.

Python has built-in methods for creating compressed files. You can easily
compress a string. To demonstrate this, we’ll need a rather large string. Let’s
create a multiline string with the triple-quote delimiter.

data = """To compress data, we'll need a long string.

Not a short string. No, that would be too small.

To get any meaningful benefit from compression,

you must use a decent length of data or else the

overhead of compression isn't worth the gains.

This will be enough data, containing enough redundant

patterns, to be compressible."""

Now that we have the string, we must import the zlib module to include
compression logic in our program.

import zlib

To be compressed, the string data must be encoded to UTF-8 format.
Recall that UTF-8 is a type of character encoding that vastly expands on
the traditional ASCII character set, which includes mostly numbers, English
letters, and a few symbols. UTF-8 has a wide assortment of non-Latin
characters, emojis, and other helpful symbols. Like most tasks, Python makes
this easy via encode.

encoded _ data = data.encode()

To compress the data, we simply call the compress function inside the
zlib module that we imported. Let’s put it all together, along with code to
show how many characters we saved.

Load the zlib module

import zlib

Define our data

data = """To compress data, we'll need a long string.

Not a short string. No, that would be too small.

To get any meaningful benefit from compression,

198 PYTHON QUICKSTART GUIDE

you must use a decent length of data or else the

overhead of compression isn't worth the gains.

This will be enough data, containing enough redundant

patterns, to be compressible."""

Compress the data

compressed _ data = zlib.compress(data.encode())

Display stats

data _ len = len(data)

compressed _ data _ len = len(compressed _ data)

print("Length of uncompressed data: " + str(data _ len))

print("Length of compressed data: " + str(compressed _ data _ len))

When we run this code, we see that the uncompressed data consists of
323 characters, and the compressed data 203 characters. Compression gave us
roughly 37% more space. That doesn’t sound like much, but if you needed to
compress gigabytes of data, it could provide an enormous amount of storage
and bandwidth.

Even though in this example we provided the string directly in the code,
you can compress any data you want with Python, including data you load
from and write to disk.

ClydeBank Coffee Shop: Inventory Woes
Two outstanding features need to be addressed: our inventory isn’t

properly managed, and we have no way for the player to quit. Let’s fix both.
I’m going to show only the updated files. The utilities module (utilities.
py) hasn’t changed.

You might find it odd that I used a prefix of t_ in front of some
variable names, like t_name and t_shop_name. I use this prefix for
variables that are intended to be temporary. This is a convention
I adopted quite early in my programming career and have kept
it ever since. When I see it in my own code, I immediately know
what I meant by it. I am not necessarily encouraging this particular
convention, only using it as an example. Over time, you’ll develop
your own habits and conventions. Pick what works best for you.

199Advanced Strings

main.py
ClydeBank Coffee Shop Simulator 4000

Copyright 2022 (C) ClydeBank Media, All Rights Reserved.

Import all functions from the utility module

from utilities import *

Import the game class from the coffee _ shop _ simulator module

from coffee _ shop _ simulator import CoffeeShopSimulator

Print welcome message

welcome()

Get name and store name

t _ name = prompt("What is your name?", True)

t _ shop _ name = prompt("What do you want to name your coffee shop?", True)

Create the game object

game = CoffeeShopSimulator(t _ name, t _ shop _ name)

Run the game

game.run()

Say goodbye!

print("\nThanks for playing. Have a great rest of your day!\n")

coffee_shop_simulator.py
Import needed modules

import random

import re

from utilities import *

class CoffeeShopSimulator:

 # Minimum and maximum temperatures

 TEMP _ MIN = 20

 TEMP _ MAX = 90

 def __ init __ (self, player _ name, shop _ name):

CCS-10.py

CCS-11.py

200 PYTHON QUICKSTART GUIDE

 # Set player and coffee shop names

 self.player _ name = player _ name

 self.shop _ name = shop _ name

 # Current day number

 self.day = 1

 # Cash on hand at start

 self.cash = 100.00

 # Inventory at start

 self.coffee _ inventory = 100

 # Sales list

 self.sales = []

 # Possible temperatures

 self.temps = self.make _ temp _ distribution()

 def run(self):

 print("\nOk, let's get started. Have fun!")

 # The main game loop

 running = True

 while running:

 # Display the day and add a "fancy" text effect

 self.day _ header()

 # Get the weather

 temperature = self.weather

 # Display the cash and weather

 self.daily _ stats(temperature)

 # Get price of a cup of coffee (but provide an escape hatch)

 response = prompt("What do you want to charge per cup of coffee? (type ↦

 ↪ exit to quit)")
 if re.search("^exit", response, re.IGNORECASE):

 running = False

 continue

201Advanced Strings

 else:

 cup _ price = int(response)

 # Do they want to buy more coffee inventory?

 response = prompt("Want to buy more coffee? (hit ENTER for none or ↦

 ↪ enter number)", False)

 if response:

 if not self.buy _ coffee(response):

 print("Could not buy additional coffee.")

 # Get advertising spend

 print("\nYou can buy advertising to help promote sales.")

 advertising = prompt("How much do you want to spend on advertising ↦

 ↪ (0 for none)?", False)

 # Convert advertising into a float

 advertising = convert _ to _ float(advertising)

 # Deduct advertising from cash on hand

 self.cash -= advertising

 # Simulate today's sales

 cups _ sold = self.simulate(temperature, advertising, cup _ price)

 gross _ profit = cups _ sold * cup _ price

 # Display the results

 print("You sold " + str(cups _ sold) + " cups of coffee today.")

 print("You made $" + str(gross _ profit) + ".")

 # Add the profit to our coffers

 self.cash += gross _ profit

 # Subtract inventory

 self.coffee _ inventory -= cups _ sold

 if self.cash < 0:

 print("\n:(GAME OVER! You ran out of cash.")

 running = False

 continue

202 PYTHON QUICKSTART GUIDE

 # Before we loop around, add a day

 self.increment _ day()

 def simulate(self, temperature, advertising, cup _ price):

 # Find out how many cups were sold

 cups _ sold = self.daily _ sales(temperature, advertising)

 # Save the sales data for today

 self.sales.append({

 "day": self.day,

 "coffee _ inv": self.coffee _ inventory,

 "advertising": advertising,

 "temp": temperature,

 "cup _ price": cup _ price,

 "cups _ sold": cups _ sold

 })

 # We technically don't need this, but why make the next step

 # read from the sales list when we have the data right here

 return cups _ sold

 def buy _ coffee(self, amount):

 try:

 i _ amount = int(amount)

 except ValueError:

 return False

 if i _ amount <= self.cash:

 self.coffee _ inventory += i _ amount

 self.cash -= i _ amount

 return True

 else:

 return False

 def make _ temp _ distribution(self):

 # This is not a good bell curve, but it will do for now

 # until we get to more advanced mathematics

 temps = []

 # First, find the average between TEMP _ MIN and TEMP _ MAX

 avg = (self.TEMP _ MIN + self.TEMP _ MAX) / 2

203Advanced Strings

 # Find the distance between TEMP _ MAX and the average

 max _ dist _ from _ avg = self.TEMP _ MAX - avg

 # Loop through all possible temperatures

 for i in range(self.TEMP _ MIN, self.TEMP _ MAX):

 # How far away is the temperature from average?

 # abs() gives us the absolute value

 dist _ from _ avg = abs(avg - i)

 # How far away is the dist _ from _ avg from the maximum?

 # This will be lower for temps at the extremes

 dist _ from _ max _ dist = max _ dist _ from _ avg - dist _ from _ avg

 # If the value is zero, make it one

 if dist _ from _ max _ dist == 0:

 dist _ from _ max _ dist = 1

 # Append the output of x _ of _ y to temps

 for t in x _ of _ y(int(dist _ from _ max _ dist), i):

 temps.append(t)

 return temps

 def increment _ day(self):

 self.day += 1

 def daily _ stats(self, temperature):

 print("You have $" + str(self.cash) + " cash on hand and the temperature is " ↦

 ↪ + str(temperature) + ".")
 print("You have enough coffee on hand to make " + str(self.coffee _ inventory) + ↦

 ↪ " cups.\n")

 def day _ header(self):

 print("\n-----| Day " + str(self.day) + " @ " + self.shop _ name + " |-----")

 def daily _ sales(self, temperature, advertising):

 sales = int((self.TEMP _ MAX - temperature) * (advertising * 0.5))

 if sales > self.coffee _ inventory:

 sales = self.coffee _ inventory

 print("You would have sold more coffee but you ran out. Be sure to buy ↦

 ↪ additional inventory.")

 @property

 def weather(self):

204 PYTHON QUICKSTART GUIDE

 # Generate a random temperature between 20 and 90

 # We'll consider seasons later on, but this is good enough for now

 return random.choice(self.temps)

We’ve added several improvements. First, there’s a check each time the
player is asked to provide a price for the coffee: the word exit. This uses a
regular expression and re.IGNORECASE to allow for the possibility of their
using capital letters in the word. If it matches, it sets running to False and
then uses continue to skip to the next iteration of the loop, which will exit
because running is no longer True. The newly added print message after the
game.run() line tells them the game has ended and thanks them for playing.

Next we add a method called buy _ coffee() that does the heavy lifting
of purchasing coffee by subtracting money from our cash and adding it to
the coffee _ inventory. It includes checks to make sure the player has
enough money to buy the coffee and an exception handler to ensure that the
conversion to int is successful.

The amount of coffee sold is now subtracted from coffee _ inventory,
and checks were added to prevent buying coffee with money we don’t have or
selling coffee with inventory that doesn’t exist. And finally, there’s a check to
make sure the player isn’t negative in cash. If so, the game is over.

The game is in a lot better shape now, but if you play it for a while, you’ll
notice that it’s quite easy to ensure a successful sales day. I won’t specifically
mention the bug here, but if you examine the code closely and play for a few
days, you might see a pattern.

In any event, we’ll clear that up and provide a more realistic gameplay
experience in the coming chapters.

Chapter Recap

 » Python’s standard string offers extensive functionality for finding,
replacing, and processing text.

 » Regular expressions are a unique and powerful tool for
manipulating text. They go beyond basic find and replace operations
to spotting and iterating over complex patterns.

 » Data compression can save substantial amounts of disk and memory
resources by reducing redundancies in data.

205Math in Python

| 11 |
Math in Python

Chapter Overview
 » Python is frequently used for math, science, and statistics
 » Python primarily works in integer and floating-point math
 » Python provides excellent statistical and time/date functionality

Python is capable of some incredibly complex math. But if math isn’t
your thing, don’t worry. We’re not going to dive into differential calculus.
Remember, I said I wouldn’t use the A-word again in this book, and I intend
to keep my promise. We’ll take an in-depth look at the math functionality
you’re likely to use in general-purpose and business programming, and I’ll
show some quick examples of the higher-level stuff that the brilliant minds
at NASA and leading laboratories use, in case you ever need to calculate the
phases of the moon.

Integer Math
Most math performed by computers is based on integers. This functionality

is generally called integer math. We’ve covered basic math operations in our
discussion up to this point, but in this section we’ll expand our knowledge to
include multiplication, exponents, and more.

Addition, Subtraction, Multiplication, and Division
Python can easily take care of the third R in the “reading, writing, and
’rithmetic” trifecta. Arithmetic is performed using the symbols shown in
figure 34.

If we divide a number by another number, we’ll get a floating-point
number (called a float) as the quotient, even if there is no remainder.
Otherwise, adding, subtracting, multiplying, and calculating exponents
with integers will produce integers as the result.

206 PYTHON QUICKSTART GUIDE

OPERATION SYMBOL EXAMPLE

Addition + 3 + 5 + 8

Subtraction – 5 - 2 = 3

Multiplication * 5 * 5 = 25

Division / 6 / 3 = 2

Exponent ** 3 ** 3 = 27

The basic symbols involved in Python math.

Order of Operations
In Python, just as in eighth-grade math class, you still must Please
Excuse My Dear Aunt Sally. Depending on where in the world you
went to school, you may be more familiar with the BODMAS order of
operations (figure 35).

ORDER OF OPERATIONS

P
(Parentheses)

E
(Exponent)

M
(Multiply)

D
(Divide)

A
(Add)

S
(Subtract)

B
(Brackets)

O
(Order)

D
(Divide)

M
(Multiply)

A
(Add)

S
(Subtract)

() √x or x2 ÷ or x + or –

The order of operations in Python.

 Let’s look at an example that covers each of these operations.

PEMDAS

result = (5 * 4) / 6 - (1 + 2) + 3 ** 2

print(result)

 results in:

9.333333333333334

fig. 34

fig. 35

207Math in Python

The Math Module
Python has a standard module named math that adds a lot of math
functionality to the language. Let’s explore some examples.

Import the math module

import math

Ask user for a number

number = input("Please enter a number: ")

Convert to int

number = int(number)

Calculate result

result = math.sqrt(number)

Display result

print("The square root of {:n} is {:.6f}".format(number, result))

In this example, I’ve used several techniques that are worth discussing
beyond the new sqrt function, which calculates square roots of numbers.
Once we get the input from the user, we convert it to an integer right
away (as input returns a string). We could have done this inline on the
“calculate result” line of code, but I chose to do it separately because we
use the number twice—once to calculate the result and the second time
to display the original number in the results.

If we’re going to use a calculation or conversion multiple times, we should
perform whatever action we need to do with that variable, or else we’ll
have to duplicate our work each time we need it. This is not only an
inefficient use of our time but also makes the program slower. Granted,
in this example, we wouldn’t have noticed the performance loss if we had
converted number twice, but if we’re in a loop with millions of iterations
it can make a huge difference.

Additionally, rather than create a separate value to store the integer
conversion of number, I set number to equal the new int result. This is
fine if we don’t need the original value, and in this case we don’t because
when we display it in the last line, the format function takes care of
converting the integer back into a string for use in print.

11-01.py

208 PYTHON QUICKSTART GUIDE

Now to the star of the show, the sqrt function. We can provide any
integer or float to the function, and it returns the square root of that
value (if it’s not negative). Then the last line displays the original number
and the square root in floating-point form with 6 decimal places via the
{:.6f} format code.

 There are many other functions in the math module. A few of the
more common ones are shown in figure 36.

COMMON MATH STANDARD MODULE FUNCTIONS

FUNCTION DESCRIPTION EXAMPLE

floor(n) Find largest integer
less than or equal to n

print(str(math.floor(5.9)))

Result: 5

ceil(n) Find smallest integer
greater or equal to n

print(str(math.ceil(4.9)))

Result: 5

fabs(n) Return the absolute value
of n as float

print(str(math.fabs(-5)))

Result: 5.0

fmod(x, y) Return remainder from x / y
print(str(math.fmod(3, 2)))

Result: 1.0

cos(n) Find cosine of n
print(str(math.cos(1)))

Result: 0.5403023058681398

sin(n) Find sine of n
print(str(math.sin(1)))

Result: 0.8414709848078965

tan(n) Find tangent of n
print(str(math.tan(1)))

Result: 1.5574077246549023

pi Return the value of pi
print(math.pi))

Result: 3.141592653589793

For more math functionality, please see https://docs.python.org/3/
library/math.html.

Floating-Point Math
Floating-point math involves operations that either use or produce non-

integer numbers. Before we get too far into this topic, let’s quickly review the
basics of floating-point operation.

fig. 36

209Math in Python

Convert integer to floating-point

number = 5

floating _ number = float(number)

Display both

print(number)

print(floating _ number)

When we run this code, we get this:

5

5.0

We can round floats to their nearest whole number with the round
function.

Some floats to round

a = 1.2

b = 1.49

c = 1.51

Displaying results

print(round(a))

print(round(b))

print(round(c))

This code produces:

1

1

2

If you supply an integer to the round function, it will simply return
the same integer, so the round function is safe to use on both
integers and floats.

Floating-Point Precision
Using floating-point numbers can be a bit tricky in all programming
languages, Python included. You might think this should be simple
for a computer, but by default Python stores floating-point numbers in

11-02.py

11-03.py

210 PYTHON QUICKSTART GUIDE

memory using a method that favors speed over accuracy. To witness
this quirk firsthand, fire up the Python interpreter (or input this in your
scratch.py file) and enter the following:

n = 0.2 + 0.2 + 0.2

You would expect the answer to be 0.6, right? Well, it is.

Display n with 2 decimal precision

print("The total is {:.2f}".format(n))

Until you take a closer look.

Display n with 30 decimal precision

print("The total is {:.30f}".format(n))

What in the world is this nonsense?

0.600000000000000088817841970013

No, the laws of space and time haven’t collapsed around you. Internally,
Python stores floating-point values as fractions. When it needs to display
them, it converts them back into decimals, and this conversion isn’t always
as precise as you might think. Fortunately, there’s a standard module that
helps deal with that issue.

Import the Decimal class from the decimal module

from decimal import Decimal

Define some numbers

a = Decimal("0.2")

b = Decimal("0.2")

c = Decimal("0.2")

Add them together

result = a + b + c

Display the result as a string

print(str(result))

11-04.py

11-05.py

211Math in Python

This code yields:

0.6

The float logic built into Python is usually fine for simple tasks, but as you
can see, when precision matters, the decimal module helps considerably.

The decimal module contains more functionality to help us process
complex decimal math. For more information, please see https://docs.
python.org/3/library/decimal.html.

Percentages
Python, like most programming languages, doesn’t have a dedicated

feature set for percentages, but we can easily convert floats into a percentage
by multiplying them by 100.

Float value

value = 0.34

Percent value

p _ value = value * 100

Display both

print(value, p _ value)

When we run this code, we’ll see this:

0.34 34.0

By the way, this demonstrates an interesting aspect of the print function.
We can send it multiple arguments, in fact as many as we want.

print(1, 2, 3, 4, 5, 6, 7, 8, 9)

This code produces:

1 2 3 4 5 6 7 8 9

print accepts an arbitrary number of arguments. Internally, it iterates
through the multiple variables we send it and displays them all.

11-06.py

212 PYTHON QUICKSTART GUIDE

If you use percentages more than once or twice in your program,
defining a function to handle them will likely be a big timesaver.

def percent(n):

 return(str(n * 100) + "%")

Now, anytime you want to use it:

print(percent(0.42))

and it will produce:

42.0%

Remember, if you catch yourself doing something more than once or
twice, it’s probably time for a function. Don’t repeat yourself!

Statistical Math
Statistics is a very popular field in Python, as the language is favored by

the scientific community. Most of this functionality is in separate modules,
but the standard library includes a statistics module that offers most of the
statistical functionality you’ll likely need for general and business use. Let’s
go over some of the essential statistics functionality.

Import statistics module

import statistics

Define a list of numbers

numbers = [1, 4, 17, 62, 12, 84, 5, 8, 21]

Calculate mean

mean = statistics.mean(numbers)

Calculate median

median = statistics.median(numbers)

Calculate mode

mode = statistics.mode(numbers)

11-07.py

11-08.py

213Math in Python

Calculate standard deviation

stdev = statistics.stdev(numbers)

Print the results

print("Mean: {:f}".format(mean))

print("Median: {:f}".format(median))

print("Mode: {:f}".format(mode))

print("Standard Deviation: {:f}".format(stdev))

For a complete list of in-depth statistics functionality, please see https://
docs.python.org/3/library/statistics.html.

Date and Time
The datetime standard module contains functionality to process dates

and times in Python. If you write a scheduling, reporting, or business
application, this may be the most frequent standard module you’ll use.

I recall writing a program for a service that required scheduling time
slots, and at first I felt this would be an easy task. As I started to dig into
the nuts and bolts of finding available time slots, scheduling provider breaks
and availability, finding the optimum time for both client and provider, and
addressing shifting schedules throughout the day, I realized that the task
was excruciatingly complex. Fortunately, the standard library did a lot of the
heavy lifting, but the project still required careful planning.

Let’s examine some of the datetime module’s features. First, let’s get the
current time.

Import datetime

import datetime

Get the current time and date

now = datetime.datetime.now()

Display it

print(now)

When we run this code, we’ll see the current date and time. While this
displays the entire date and time, we can obtain only certain parts if we like.

Import datetime

import datetime

11-09.py

214 PYTHON QUICKSTART GUIDE

Get the current time and date

now = datetime.datetime.now()

Display the year

print(now.year)

Display the month

print(now.month)

The datetime.datetime.now() line isn’t a typo. We must repeat
"datetime" because of the way the datetime module is organized.

In addition to year and month, we can also use the properties day, hour,
minute, second, and microsecond.

We can format the date and time however we like with the strftime
function.

Import datetime

import datetime

Get the current time and date

now = datetime.datetime.now()

Display date and time in a custom format

print(now.strftime("%A, %B %d, %Y at %I:%M %p"))

Running this on my machine displays the exact time that I’m writing it:

Monday, April 04, 2022 at 09:31 PM

The secret is out—you discovered I’m a night owl!

But what are those strange codes supplied as the arguments for strftime?
Well, one of them, the word "at," isn’t a code at all. And the colon character
serves as the hour and minute separator. But the rest are codes that tell the
function what to display (figure 37).

To calculate differences in time, we can use the timedelta logic from
datetime. I used this module extensively when writing the scheduling app
mentioned previously. The timedelta function lets us do time arithmetic or, in
other words, find the delta, the change in value between one time and another.

11-10.py

215Math in Python

CODE DESCRIPTION RESULTS

%a Abbreviated weekday Sun, Mon, Tue, etc.

%A Weekday full name Sunday, Monday, etc.

%w Weekday as number (i.e., day of the week) Sunday is 0, Saturday is 6

%d Day of the month 01 through 31

%b Abbreviated month Jan, Feb, Mar, etc.

%B Month full name January, February, etc.

%m Month number 01 through 12

%y 2-digit year 00 through 99

%Y 4-digit year 0001 through 9999

%H Hour (24-hour clock) 00 through 23

%I Hour (12-hour clock) 00 through 12

%p AM or PM AM, PM

%M Minute 00 through 59

%S Second 00 through 59

%f Microsecond 000000 through 999999

%z UTC offset (empty), +0000, -0100, etc.

%Z Time zone (empty), UTC, GMT, etc.

%j Day of the year
001 through 366 (366 is

possible in leap year)

%U Week number of the year 00 through 53

%W Week (Mon as first day) number of the year 00 through 53

%c Locale's date and time representation Mon Apr 4 21:31:00 2022

%x Locale's date representation 04/04/2022

%X Locale's time representation 21:31:00

%% A literal '%' character %

Possible strftime format codes. These values are adjusted to meet the standards of
the locale selected on the computer. For example, if the selected country typically

lists year first, %c and %x will reflect this.

This is no simple matter. Sure, it’s easy to take 50 seconds and subtract
12 seconds or go back 2 hours from 9 o’clock to 7 o’clock. But subtracting
minutes that straddle midnight, therefore going back a day, or adding weeks
when you must consider a leap year, gets insanely complex.

fig. 37

216 PYTHON QUICKSTART GUIDE

Don’t worry, though—timedelta will do all the work for us.

Import datetime

import datetime

Get the current time and date

now = datetime.datetime.now()

Create a delta of 18 hours and 49 minutes

delta = datetime.timedelta(hours = 18, minutes = 49)

Subtract delta and store in previous _ time

previous _ time = now - delta

Display time and time minus the delta

print(now)

print(previous _ time)

The delta variable contains an object representing a time difference,
which can then be added or subtracted from a time (in this case, now, the
current time) and the time difference it represents (in this case, 18 hours and
49 minutes).

The datetime standard module is packed with temporal goodness that
will make your programming life a lot simpler. And the broader lesson from
this and previous chapters is that the Python standard library is an expansive
collection of functionalities that will aid you immensely with your programs.
We’ll cover more of it as we progress in future chapters.

Counting the Days
How many days is it until your birthday? Until Christmas? New Year’s?

Perhaps, like me, you can’t wait until the first day of fall. Rather than asking
Google, let’s ask Python to help.

Use the code in the previous section to determine how long it is until a
day you’re looking forward to this year. To do this, you’ll need to know one
additional thing—how to create an arbitrary datetime object that isn’t now.

future = datetime.datetime(2023, 12, 25, 0, 0)

Now the future object contains a reference to Christmas in the year 2023.
The trailing zeros at the end are the hour and minute and can be omitted.

11-11.py

217Math in Python

Armed with this knowledge, you can now create a few lines of code to
find out how long it is until a day you’re looking forward to in the future.

Try this exercise on your own, but if you get stuck, you can find a solution
in the appendix.

HINT: You can subtract datetime objects to find the difference
in time between them. Additionally, if you decide to use the
print function to display a string alongside your time difference
(or perhaps even include the future date for reference), then you
need to cast the datetime object as a string with str(now) and
str(future).

ClydeBank Coffee Shop: A More Accurate Simulation
Our simulation is predictable. Advertising has the same effect no matter

what day it is, temperature always has the same effect, and an expensive cup of
coffee sells just as well as one that’s practically free. Moreover, the temperature
generator method, make _ temp _ distribution, can be simplified.

With this round of changes, only the coffee _ shop _ simulator
module was modified.

coffee_shop_simulator.py
Import needed modules

import random

import re

import numpy

from utilities import *

class CoffeeShopSimulator:

 # Minimum and maximum temperatures

 TEMP _ MIN = 20

 TEMP _ MAX = 90

 # Length of temperature list

 # (higher produces more realistic curve)

 SERIES _ DENSITY = 300

 def __ init __ (self, player _ name, shop _ name):

CCS-12.py

218 PYTHON QUICKSTART GUIDE

 # Set player and coffee shop names

 self.player _ name = player _ name

 self.shop _ name = shop _ name

 # Current day number

 self.day = 1

 # Cash on hand at start

 self.cash = 100.00

 # Inventory at start

 self.coffee _ inventory = 100

 # Sales list

 self.sales = []

 # Possible temperatures

 self.temps = self.make _ temp _ distribution()

 def run(self):

 print("\nOk, let's get started. Have fun!")

 # The main game loop

 running = True

 while running:

 # Display the day and add a "fancy" text effect

 self.day _ header()

 # Get the weather

 temperature = self.weather

 # Display the cash and weather

 self.daily _ stats(temperature)

 # Get price of a cup of coffee (but provide an escape hatch)

 response = prompt("What do you want to charge per cup of coffee? ↦

 ↪ (type exit to quit)")
 if re.search("^exit", response, re.IGNORECASE):

 running = False

 continue

219Math in Python

 else:

 cup _ price = int(response)

 # Do they want to buy more coffee inventory?

 print("\nIt costs $1 for the necessary inventory to make a cup of coffee.")

 response = prompt("Want to buy more so you can make more coffee? ↦

 ↪ (ENTER for none or enter number)", False)

 if response:

 if not self.buy _ coffee(response):

 print("Could not buy additional coffee.")

 # Get price of a cup of coffee

 print("\nYou can buy advertising to help promote sales.")

 advertising = prompt("How much do you want to spend on advertising ↦

 ↪ (0 for none)?", False)

 # Convert advertising into a float

 advertising = convert _ to _ float(advertising)

 # Deduct advertising from cash on hand

 self.cash -= advertising

 # Simulate today's sales

 cups _ sold = self.simulate(temperature, advertising, cup _ price)

 gross _ profit = cups _ sold * cup _ price

 # Display the results

 print("\nYou sold " + str(cups _ sold) + " cups of coffee today.")

 print("You made $" + str(gross _ profit) + ".")

 # Add the profit to our coffers

 self.cash += gross _ profit

 # Subtract inventory

 self.coffee _ inventory -= cups _ sold

 if self.cash < 0:

 print("\n:(GAME OVER! You ran out of cash.")

 running = False

 continue

220 PYTHON QUICKSTART GUIDE

 # Before we loop around, add a day

 self.increment _ day()

 def simulate(self, temperature, advertising, cup _ price):

 # Find out how many cups were sold

 cups _ sold = self.daily _ sales(temperature, advertising, cup _ price)

 # Save the sales data for today

 self.sales.append({

 "day": self.day,

 "coffee _ inv": self.coffee _ inventory,

 "advertising": advertising,

 "temp": temperature,

 "cup _ price": cup _ price,

 "cups _ sold": cups _ sold

 })

 # We technically don't need this, but why make the next step

 # read from the sales list when we have the data right here

 return cups _ sold

 def buy _ coffee(self, amount):

 try:

 i _ amount = int(amount)

 except ValueError:

 return False

 if i _ amount <= self.cash:

 self.coffee _ inventory += i _ amount

 self.cash -= i _ amount

 return True

 else:

 return False

 def make _ temp _ distribution(self):

 # Create series of numbers between TEMP _ MIN and TEMP _ MAX

 series = numpy.linspace(self.TEMP _ MIN, self.TEMP _ MAX, self.SERIES _ DENSITY)

 # Obtain mean and standard deviation from the series

 mean = numpy.mean(series)

221Math in Python

 std _ dev = numpy.std(series)

 # Calculate probability density and return the list it creates

 return (numpy.pi * std _ dev) * numpy.exp(-0.5 * ((series - mean) / std _ dev) ** 2)

 def increment _ day(self):

 self.day += 1

 def daily _ stats(self, temperature):

 print("You have $" + str(self.cash) + " cash on hand and the temperature is ↦

 ↪ " + str(temperature) + ".")
 print("You have enough coffee on hand to make " + str(self.coffee _ inventory) ↦

 ↪ + " cups.\n")

 def day _ header(self):

 print("\n-----| Day " + str(self.day) + " @ " + self.shop _ name + " |-----")

 def daily _ sales(self, temperature, advertising, cup _ price):

 # Randomize advertising effectiveness

 adv _ coefficient = random.randint(20, 80) / 100

 # Higher priced coffee doesn't sell as well

 price _ coefficient = int((cup _ price * (random.randint(50, 250) / 100)))

 # Run the sales figures!

 sales = int((self.TEMP _ MAX - temperature) * (advertising * adv _ coefficient))

 # If price is too high, we don't sell anything

 if price _ coefficient > sales:

 sales = 0

 else:

 sales -= price _ coefficient

 if sales > self.coffee _ inventory:

 sales = self.coffee _ inventory

 print("You would have sold more coffee but you ran out. Be sure to buy ↦

 ↪ additional inventory.")
 return sales

 @property

 def weather(self):

222 PYTHON QUICKSTART GUIDE

 # Generate a random temperature between 20 and 90

 # We'll consider seasons later on, but this is good enough for now

 return int(random.choice(self.temps))

Let’s walk through the modifications individually. First, I improved the
temperature generator by using the numpy module. This module isn’t included
in Python by default, so you’ll need to install it to use this code. To do so,
simply open a console or terminal window and run the following:

pip3 install numpy

If that fails on Windows, it’s probably because Python isn’t in the system
path. In that case, try running the command in the terminal window of
Visual Studio Code.

numpy has no external dependencies, so it should install fine on any
system with Python. In this code, I used the linspace, mean, std, and exp
functions. linspace provides a list of evenly spaced numbers, mean provides
the mean, std provides the standard deviation, and exp gives us an exponent.
Using this, I generated a curve that is far more realistic and uses fewer lines
of code.

For more reasonable sales figures, I created a price coefficient that punishes
higher-priced coffees with fewer sales. But the coefficient isn’t necessarily
applied evenly—there is a random element to it to keep the player guessing.
I did the same with advertising, giving a random element to the effect it has
on sales.

There are some small changes to text that provide the user with a better
experience and a bit of help along the way. I’ve also added a fair number of
comments to better explain functionality. I encourage you to play a few rounds
and see if you can spot the differences. As always, feel free to experiment with
different multipliers on the coefficients. I found the values that seem to match
what I thought was best in terms of sales, advertising, and price performance,
but you could easily derive better results with some more experimentation.

223Math in Python

Chapter Recap

 » Python follows the standard order of operations.

 » Python provides built-in floating-point math functionality, but for
maximum precision and capability, use the decimal module.

 » Python has a wide range of statistical functions via the statistics
module.

 » The datetime module allows for date/time math. The strftime
function allows the formatting of dates and times in an incredibly
customized way.

225Input and Output

| 12 |
Input and Output

Chapter Overview
 » Computers accept input, process data, and generate output
 » Python can write and read to the disk in multiple modes and

encoding schemes
 » Serialization lets us save an object to disk for later recreation

Computers do a tremendous amount of complex work, but each task can be
essentially broken down into three parts: collecting input, processing those
data, and outputting results. We’ve already covered some simple input and
output commands and the processing of various kinds of data, but in this
chapter we’ll learn how to read from, and write to, files on disk.

The phrase “input and output” is frequently abbreviated as I/O. Input
is defined as data that are provided to the computer, either by the user via a
keyboard, mouse, or similar device, or read from a disk or network. Output
is the result of computation and can be displayed on the screen, sent over a
network, or saved to disk.

A wide variety of input and output devices. Some serve both roles.

fig. 38

226 PYTHON QUICKSTART GUIDE

While most devices serve a well-defined purpose on the input-output
spectrum, some, like disks, accept both input (reading files) and output
(writing files). See figure 38 for some examples. In this chapter, we’ll focus
on disk I/O.

Disk I/O
There are many times when we want to load data from files and save the

results to disk. Most every activity performed on a modern computer involves
using the disk—including booting the operating system, starting a program,
and loading a document. Despite this wide range of disk activity, most
users are concerned with loading and saving their data, be it a spreadsheet, a
presentation, or the next great novel.

In this section, we’re going to focus on reading and writing text files.
Text files are simply files filled with string data—that is, human-readable
characters. In this example, we’ll write a text file and then read it.

String to write

data = "The lazy red fox slept instead of jumping over a dog."

Write the data

with open("fox.txt", mode = "w", encoding = "utf-8") as f:

 f.write(data)

Read the file

with open("fox.txt", mode = "r", encoding = "utf-8") as f:

 read _ data = f.read()

Display the results

print("Original : " + data)

print("From disk : " + read _ data)

When we run this program, here’s what we’ll see:

Original : The lazy red fox slept instead of jumping over a dog.

From disk : The lazy red fox slept instead of jumping over a dog.

First, we create one line of sample data, then use the with statement
paired with open to open a file (in this case, fox.txt), for writing (i.e., mode
= "w") with an encoding of UTF-8.

12-01.py

227Input and Output

Before we proceed, let’s unpack that a bit. When we open the file,
we haven’t written anything to it yet; we’re simply asking the operating
system to create the file and return a handle, or reference to a file (which is
represented as the f object). The mode, in this case "w", means that we will
be writing to the file.

The encoding is the type of system used to represent the text. For many
years, computers used ASCII to store text. The ASCII encoding format had
127 characters that consisted of the numbers, English letters, punctuation
marks, and various symbols commonly found on a computer keyboard.
This standard is still used in some computer operations, but computers now
store data with UTF-8 encoding, a format that allows for just over a million
characters. Operating systems and programs have gradually shifted to this
standard to accommodate non-Latin letters, additional symbols, and emojis.

Inside the with block, the object f, which represents the file, is accessible.
We call the method write on the file, and for the argument we pass the data
string. This writes the file to the fox.txt file. When the with block ends,
the file is closed. By closing a file, we are signifying to the operating system
that we aren’t going to access the file in that mode (write, or "w", in the first
operation) for the time being. This allows other programs to use the file.

In the next open statement, we use the same arguments except for the
mode, which in this case we specify as "r" for read. When we open a file for
reading, it is read-only to us. It's possible to tie up the file system by keeping
a file open, preventing it from being used in other programs. Because of this,
it’s a good practice to open a file for writing only when we’re going to write to
it and to close it when we’re done.

I'm sure you've encountered the frustrating situation of trying to
delete or move a file and receiving an error message saying the file is
open or is otherwise in use. This indicates that some program on your
computer has the file open and hasn't closed it yet, and to prevent
data corruption or error, the operating system blocks the request.

 When we read the file, we place the contents from the read operation in
the read _ data variable. Leaving the second block closes the file, and then we
display both variables so we can see what was written to, and read from, the disk.

This file was created in the same directory in which you stored your
program, so you can navigate to this file in your file manager and open it with
any text editor—either Visual Studio Code or another editor like Notepad
on Windows, TextEdit on macOS, or gedit on Linux. Once the program
has finished, feel free to delete the file—or keep it as a souvenir of your first
program written to the disk!

228 PYTHON QUICKSTART GUIDE

Reading Part of a File
We can also read part of a file, rather than its entire contents, into a
string. This is especially useful if we’re dealing with a large file, for several
reasons. First, if the file is (or could possibly be) large, this could consume
an enormous amount of memory—possibly more than is available on
the system. Second, the read time could be considerable, especially on a
slower system. Let’s modify our example to read just 16 characters.

String to write

data = "The lazy red fox slept instead of jumping over a dog."

Write the data

with open("fox.txt", mode = "w", encoding = "utf-8") as f:

 f.write(data)

Read the file

with open("fox.txt", mode = "r", encoding = "utf-8") as f:

 read _ data = f.read(16)

Display the results

print("Original : " + data)

print("From disk : " + read _ data)

When we run this program, we’ll see this:

Original : The lazy red fox slept instead of jumping over a dog.

From disk : The lazy red fox

In this case, we passed the number 16 to read and received only the
first 16 characters. With a string this small, you won’t notice the speed
difference, even on an extremely slow computer, but if we were dealing
with an enormous file, this could be a tremendous timesaver.

When working with large files, it can often be advantageous to read
them in small chunks, processing one chunk of data and then proceeding
to the next. Reading files like this is usually done with the binary mode
(i.e., "rb").

with open("fox.txt", mode = "rb") as f:

 while (c := f.read(32)):

 # Do something with data in c

12-02.py

229Input and Output

This loop iterates over the file, reading up to 32 bytes at a time. What
makes it unique is the := operator (sometimes called the “walrus operator”
because it’s reminiscent of a walrus lying on its side), which tells Python
to assign the return value from f.read to the variable c and return True
if successful, thus satisfying the while loop condition. Once it reaches
the end of the file (or is otherwise unable to read again), the comparison
becomes False, and the loop is exited.

Working with Multiple Lines
Working with binary mode is not for the faint of heart. Did you notice
that in the example in the previous section I didn’t specify the encoding?
That’s because binary mode doesn’t support encoding. Generally, binary
mode is best used for binary files (files that contain machine code rather
than text). If you’re using text files, which is our focus in this chapter,
and you want to read a large text file in chunks, the readlines method
is extremely useful.

with open("fox.txt", mode = "r") as f:

 while (l := f.readline()):

 # Do something with the line in l

This works just like the previous loop except it reads an entire line at once
and puts it in the variable named l, returning True if it was able to read
the line. If it wasn’t, it evaluates to False and exits the loop. Reading text
one line at a time is more efficient for larger files and causes Python to
consume fewer resources while running, as it only needs to keep one line
at a time in memory.

The readlines() (note the plural spelling) is another variation of read
that reads all the lines of the file into a list.

String to write

data = """The lazy red fox slept instead of jumping over a dog.

 The lazy dog ignored the fox and slept as well."""

Write the data

with open("fox2.txt", mode = "w", encoding = "utf-8") as f:

 f.write(data)

Read the file

12-03.py

230 PYTHON QUICKSTART GUIDE

with open("fox2.txt", mode = "r", encoding = "utf-8") as f:

 read _ data = f.readlines()

Display the results

print("Original : " + data)

print("From disk : " + str(read _ data))

When we run this example, we get this:

Original : The lazy red fox slept instead of jumping over a dog.

The lazy dog ignored the fox and slept as well.

From disk : ['The lazy red fox slept instead of jumping over a

dog.\n', 'The lazy dog ignored the fox and slept as well.']

The read _ data in this example is no longer a string; it’s a list, and we
must use str with the last print statement to convert it into a string
(inline, not permanently).

Standard I/O
You’ve already outputted text to the screen, which is generally called

standard out, or stdout for short, and received input from the keyboard,
which is generally called standard in, or stdin for short. When you do this,
you’re essentially inputting and outputting from and to special files, and the
operating system is translating those reads and writes into requesting input
from the keyboard and displaying text on the screen.

However, we can explicitly read and write to standard input and output,
which, by default, reads from the keyboard and writes to the screen. The user
(or other programs) can then redirect those standard input and output devices
to their own input and output, much like a telephone operator from the early
1900s would connect the output of a caller to the input of the number they
wanted to reach.

Let’s take a quick look at reading from standard in and then outputting
to standard out. Afterward, we’ll walk through a quick example on how to
make use of this functionality. Start a new file in Visual Studio Code and call
it inout.py.

Import sys module

import sys

12-04.py

231Input and Output

Read stdin into data _ in

data _ in = sys.stdin.read()

Write to stdout

bytes _ written = sys.stdout.write(data _ in)

Display stats

print("Wrote {} bytes to stdout.".format(bytes _ written))

When you run this code, you’ll need to provide some input via the
keyboard. Just type "Hello" or anything else you wish, hit ENTER for a
blank line, then hit CTRL+D on macOS and Linux or CTRL+Z followed
by ENTER on Windows. The CTRL+D or CTRL+Z keyboard combination
tells the read function that the data input is finished.

Once you finish with the input, it will display what you typed and how
many bytes it wrote to standard output.

Testing, 123!

Testing, 123!

Wrote 14 bytes to stdout.

Now let’s make use of standard out via the terminal. Click on the Terminal
tab (where the results are displayed) and type the following:

python3 inout.py > inout.txt

The python3 command might not work on Windows. If it doesn’t,
run the command python inout.py > inout.txt

You’ll again need to enter some input. Type some text, hit ENTER,
then CTRL+D (or CTRL+Z followed by ENTER on Windows). When the
program finishes, its standard output will be redirected (via the > symbol on
the command line) into a file called inout.txt. You can open the text file in
Visual Studio Code or another text editor to verify that the contents match
what you entered.

You can also use the < symbol on the command line to read data from a
file into the standard input device. In fact, both < and > can be used on the
same command if you wish.

The benefits of standard in and out are perhaps greatest not for your
program but for your users. Being able to redirect the output from the screen
to a file can be especially useful for power users and system administrators.

232 PYTHON QUICKSTART GUIDE

Serialization with Pickle
Serialization is the process of describing every detail of an object in a text

format that is stored in a string (and then often written to disk). This process
makes it easy to save complex patterns of data without having to format it
yourself before writing it.

In addition to saving an object, we can load a serialized object and bring
it to life. This is a very common design pattern found in any program that
needs to save structured data.

Import the pickle module

import pickle

Our data

customer _ names = ["Jim Smith", "Amber Dobson", "Al James"]

Write to disk

with open("customers.dat", mode = "wb") as f:

 pickle.dump(customer _ names, f)

Load the data

with open("customers.dat", mode = "rb") as f:

 loaded _ data = pickle.load(f)

print("Original data : " + str(customer _ names))

print("Loaded data : " + str(loaded _ data))

When we run this program, we’ll see this:

Original data : ['Jim Smith', 'Amber Dobson', 'Al James']

Loaded data : ['Jim Smith', 'Amber Dobson', 'Al James']

There are several things to note about this example. First, we open the
file for writing with the "wb" flag, meaning we’re writing binary data. This
is why I named the file customers.dat rather than customers.txt. I could
have used customers.txt, but .dat is a generic file extension for binary
data. The same binary mode, except with reading specified ("rb" for reading
binary), is used to load the data. Once the data is loaded with pickle.load,
the loaded _ data variable now becomes a list with the exact same contents.

12-05.py

233Input and Output

Data serialized with pickle can be insecure. A hacker can create
a serialized data stream that matches an object you wish to
recreate and fill it with malicious data. While a simple video game
is probably not a substantial target for this kind of attack, any
internet-based application or website that loads data supplied to it
by users must do so extremely carefully to avoid security problems.

ClydeBank Coffee Shop: Saving Your Game
It would be nice if our users could save their game mid-progress and

restore it whenever they wanted to. Before we get into the code to do just that,
you should know that I removed the utilities.py file. I wanted to move
the game into the CoffeeShopSimulator class for easier pickling. Also, this
makes the code simpler to read.

In any event, let’s first look at the code, then dive into the walk-through.

main.py
ClydeBank Coffee Shop Simulator 4000

Copyright 2022 (C) ClydeBank Media, All Rights Reserved.

import pickle

import re

from pathlib import Path

Import the game class from the coffee _ shop _ simulator module

from coffee _ shop _ simulator import CoffeeShopSimulator

print("ClydeBank Coffee Shop Simulator 4000, Version 1.00")

print("Copyright (C) 2022 ClydeBank Media, All Rights Reserved.\n")

If save file exists, see if the player wants to load it

run _ game = True

if Path(CoffeeShopSimulator.SAVE _ FILE).is _ file():

 # Save game exists, do they want to load it?

 response = CoffeeShopSimulator.prompt("There's a saved game. Do you want to load ↦

 ↪ it? (Y/N)", True)
 if re.search("y", response, re.IGNORECASE):

 # Load the game and run!

 with open(CoffeeShopSimulator.SAVE _ FILE, mode="rb") as f:

 game = pickle.load(f)

 game.run()

CCS-13.py

234 PYTHON QUICKSTART GUIDE

 # We don't need to run the game again

 run _ game = False

 else:

 print("HINT: If you don't want to see this prompt again, remove the " + ↦

 ↪ CoffeeShopSimulator.SAVE _ FILE + " file.\n")

if run _ game:

 # Create the game object and run it!

 game = CoffeeShopSimulator()

 game.run()

Say goodbye!

print("\nThanks for playing. Have a great rest of your day!\n")

coffee_shop_simulator.py
import pickle

import random

import re

import numpy

class CoffeeShopSimulator:

 # Minimum and maximum temperatures

 TEMP _ MIN = 20

 TEMP _ MAX = 90

 # Length of temperature list

 # (higher produces more realistic curve)

 SERIES _ DENSITY = 300

 # Save game file

 SAVE _ FILE = "savegame.dat"

 def __ init __ (self):

 # Get name and store name

 print("Let's collect some information before we start the game.\n")

 self.player _ name = self.prompt("What is your name?", True)

 self.shop _ name = self.prompt("What do you want to name your coffee shop?", True)

CCS-14.py

235Input and Output

 # Current day number

 self.day = 1

 # Cash on hand at start

 self.cash = 100.00

 # Inventory at start

 self.coffee _ inventory = 100

 # Sales list

 self.sales = []

 # Possible temperatures

 self.temps = self.make _ temp _ distribution()

 def run(self):

 print("\nOk, let's get started. Have fun!")

 # The main game loop

 running = True

 while running:

 # Display the day and add a "fancy" text effect

 self.day _ header()

 # Get the weather

 temperature = self.weather

 # Display the cash and weather

 self.daily _ stats(temperature)

 # Get price of a cup of coffee (but provide an escape hatch)

 response = self.prompt("What do you want to charge per cup of coffee? ↦
 ↪ (type exit to quit)")
 if re.search("^exit", response, re.IGNORECASE):

 running = False

 continue

 else:

 cup _ price = int(response)

236 PYTHON QUICKSTART GUIDE

 # Do they want to buy more coffee inventory?

 print("\nIt costs $1 for the necessary inventory to make a cup of coffee.")

 response = self.prompt("Want to buy more so you can make more coffee? ↦

 ↪ (ENTER for none or enter number)", False)

 if response:

 if not self.buy _ coffee(response):

 print("Could not buy additional coffee.")

 # Get price of a cup of coffee

 print("\nYou can buy advertising to help promote sales.")

 advertising = self.prompt("How much do you want to spend on advertising ↦

 ↪ (0 for none)?", False)

 # Convert advertising into a float

 advertising = self.convert _ to _ float(advertising)

 # Deduct advertising from cash on hand

 self.cash -= advertising

 # Simulate today's sales

 cups _ sold = self.simulate(temperature, advertising, cup _ price)

 gross _ profit = cups _ sold * cup _ price

 # Display the results

 print("\nYou sold " + str(cups _ sold) + " cups of coffee today.")

 print("You made $" + str(gross _ profit) + ".")

 # Add the profit to our coffers

 self.cash += gross _ profit

 # Subtract inventory

 self.coffee _ inventory -= cups _ sold

 if self.cash < 0:

 print("\n:(GAME OVER! You ran out of cash.")

 running = False

 continue

 # Before we loop around, add a day

 self.increment _ day()

237Input and Output

 # Save the game

 with open(self.SAVE _ FILE, mode="wb") as f:

 pickle.dump(self, f)

 def simulate(self, temperature, advertising, cup _ price):

 # Find out how many cups were sold

 cups _ sold = self.daily _ sales(temperature, advertising, cup _ price)

 # Save the sales data for today

 self.sales.append({

 "day": self.day,

 "coffee _ inv": self.coffee _ inventory,

 "advertising": advertising,

 "temp": temperature,

 "cup _ price": cup _ price,

 "cups _ sold": cups _ sold

 })

 # We technically don't need this, but why make the next step

 # read from the sales list when we have the data right here

 return cups _ sold

 def buy _ coffee(self, amount):

 try:

 i _ amount = int(amount)

 except ValueError:

 return False

 if i _ amount <= self.cash:

 self.coffee _ inventory += i _ amount

 self.cash -= i _ amount

 return True

 else:

 return False

 def make _ temp _ distribution(self):

 # Create series of numbers between TEMP _ MIN and TEMP _ MAX

 series = numpy.linspace(self.TEMP _ MIN, self.TEMP _ MAX, self.SERIES _ DENSITY)

 # Obtain mean and standard deviation from the series

 mean = numpy.mean(series)

238 PYTHON QUICKSTART GUIDE

 std _ dev = numpy.std(series)

 # Calculate probability density and return the list it creates

 return (numpy.pi * std _ dev) * numpy.exp(-0.5 * ((series - mean) / std _ dev) ** 2)

 def increment _ day(self):

 self.day += 1

 def daily _ stats(self, temperature):

 print("You have $" + str(self.cash) + " cash on hand and the temperature is ↦

 ↪ " + str(temperature) + ".")
 print("You have enough coffee on hand to make " + str(self.coffee _ inventory) ↦

 ↪ + " cups.\n")

 def day _ header(self):

 print("\n-----| Day " + str(self.day) + " @ " + self.shop _ name + " |-----")

 def daily _ sales(self, temperature, advertising, cup _ price):

 # Randomize advertising effectiveness

 adv _ coefficient = random.randint(20, 80) / 100

 # Higher priced coffee doesn't sell as well

 price _ coefficient = int((cup _ price * (random.randint(50, 250) / 100)))

 # Run the sales figures!

 sales = int((self.TEMP _ MAX - temperature) * (advertising * adv _ coefficient))

 # If price is too high, we don't sell anything

 if price _ coefficient > sales:

 sales = 0

 else:

 sales -= price _ coefficient

 if sales > self.coffee _ inventory:

 sales = self.coffee _ inventory

 print("You would have sold more coffee but you ran out. Be sure to buy ↦

 ↪ additional inventory.")

 return sales

239Input and Output

 @property

 def weather(self):

 # Generate a random temperature between 20 and 90

 # We'll consider seasons later on, but this is good enough for now

 return int(random.choice(self.temps))

 @staticmethod

 def prompt(display="Please input a string", require=True):

 if require:

 s = False

 while not s:

 s = input(display + " ")

 else:

 s = input(display + " ")

 return s

 @staticmethod

 def convert _ to _ float(s):

 # If conversion fails, assign it to 0

 try:

 f = float(s)

 except ValueError:

 f = 0

 return f

 @staticmethod

 def x _ of _ y(x, y):

 num _ list = []

 # Return a list of x numbers of y

 for i in range(x):

 num _ list.append(y)

 return num _ list

This is quite a refactor! At first, it might seem that I’ve undone some of
the previous refactors. That’s correct, but there are several reasons. I want to
make it clear that sometimes there is no perfect or right way to do something
in programming. There’s my way, your way, and perhaps a few dozen other
methods that work just as well. Other programmers may not like your
approach. You very well may not like your approach after putting away the
code for a few days or weeks. But in this case, a fresh set of eyes helps.

240 PYTHON QUICKSTART GUIDE

While writing this book I realized that the utility module certainly
served a purpose, but now that the game has been encapsulated into a
single class, it’s largely unneeded. To move some of these general-purpose
functions into the class, I needed to use the @staticmethod decorator. This
tells Python not to send a copy of self (the reference to the class) as the
first argument and allows these methods to be used without first creating a
copy of the class in object form. This lets us call our prompt function now
as CoffeeShopSimulator.prompt() without using the object. That said,
you can still use the object if you want, and even reference those functions
within the class.

This wouldn’t be ideal if we were interacting with multiple classes via this
method. For example, if we had more than just a game object and we needed
a function to make use of both (or multiple) objects, a utility function outside
the scope of those classes would certainly be preferred. But that isn’t the case
here, and to make things simple and encapsulated, I moved the functions into
the CoffeeShopSimulator class and decorated them with @staticmethod.

As for saving the game, this is done via pickle right before the loop
cycles to the next day. Since everything is contained in the game object, we
simply dump it to the savegame.dat file. When the game loads in main.py, it
checks for the existence of this file via if Path(CoffeeShopSimulator.SAVE _

FILE).is _ file() and then uses the pickled content from that file to recreate
the game object and execute run() to jump back into action. Since the loop
starts at the beginning (and skips __ init __), the variables that govern the
game’s progress won’t be overwritten but instead will be loaded as though
they were there all along.

Before each day ends, the game is saved via pickle, allowing the
player to quit anytime and pick up wherever they left off in their previous
gaming session.

241Input and Output

Chapter Recap

 » Computers accept input from devices that interface with either
humans (via keyboard and/or mouse), disks (e.g., hard drives, USB
sticks), or the network. Data can be output to monitors, disks,
sound devices, networks, and more.

 » Reading and writing data can be done directly from/to the disk or
via standard I/O.

 » Python’s pickle module allows us to serialize an object and save it
for later re-creation.

243The Internet

| 13 |
The Internet

Chapter Overview
 » Python has a wide assortment of modules for internet functionality
 » The urllib module makes it easy to interact with web pages
 » You can send email with Python’s SMTP support

Python isn’t confined to your computer. Armed with the power of the
standard library, you have an assortment of tools to retrieve web pages,
send and receive email, and even communicate with computers directly over
the network.

Fetching a Web Page
Before we get into downloading a web page, we should first cover the terms

we’ll use in this section. When you enter a URL (Uniform Resource Locator)
or web address, the browser first makes a connection to the site and then
performs a GET request. A GET request tells the web server that the browser
would like the contents of a page. The request is then filled by the server.

Let’s grab the front page of the Python website at www.python.org using
Python’s standard requests module.

Import the urllib module

import urllib.request

URL to GET

url = "https://www.python.org"

Get the page content

req = urllib.request.Request(url)

with urllib.request.urlopen(req) as response:

 page _ content = response.read()

13-01.py

244 PYTHON QUICKSTART GUIDE

In this example, we first import urllib.request. The URL is in a
separate variable so that it can easily be changed, but we can also specify it
inline on the actual request in the next line. In the request, the req object
is defined by the return value of urllib.request.Request, which creates a
type of virtual file that can be read() to return the page content—which we
store in page _ content.

Since page _ content is now a string filled with the HTML from the
site, we can search that string (using either find or regular expressions) to
fetch data we can use. Let’s use the Wikipedia API (application programming
interface—a mechanism for retrieving data with a program) to retrieve a page
on Mount Tambora.

Import urlopen from the urllib module

from urllib.request import urlopen

Import regular expression functionality

import re

Import unescape from HTML

from html import unescape

URL to GET

url ="https://en.wikipedia.org/w/api.php?action=parse&prop=wikitext&fo ↦
↪ rmat=json&page=Mount _ Tambora"

Request the page

response = urlopen(url)

Get the page content

page _ content = str(response.read())

Unescape the page

page _ content = unescape(page _ content)

Use this regex to find the elevation of Mt. Tambora

regex = r"elevation\ _ m\s=\s(\d*)"

Perform the search

result = re.search(regex, page _ content)

13-02.py

245The Internet

Fetch the second element of the match (which is the elevation)

elevation = result[1]

Print the elevation

print("The elevation of Mt. Tambora is " + str(elevation) + ".")

If you run into any issues while running this code, especially any error
regarding SSL certificates, you can implement the following fix. In
our testing, some installations of Python used a different certificate
authority store, which caused problems with retrieving the data from
Wikipedia’s API.

Add this to the top of the code

import ssl

ctx = ssl.create _ default _ context()

ctx.check _ hostname = False

ctx.verify _ mode = ssl.CERT _ NONE

Then change: response = urlopen(url)

to the following code:

urlopen(url, context=ctx)

This fix forces the urlopen function to avoid validating the SSL
certificate. While this is perfectly acceptable to do with a non-sensitive
site like Wikipedia, this fix would be unadvisable when sending secure
data like credit card numbers or personally identifiable information. In
that situation, fully uninstalling and then reinstalling Python should
fix the issue.

We’re doing a few new things in this code sample, so let’s step through
them. First, we’re importing the unescape function from the html library.
This prevents any special characters from interfering in our search. Then,
after we fetch the content, we unescape the page _ content string.

Next, we prepare a regular expression that matches a number (up to
unlimited digits via the *) after elevation _ m (and a space, equals sign, and
a space). After that, we use re.search to search through the page _ content
variable and return our matches. This is the first element of the match result:

elevation _ m = 2850

246 PYTHON QUICKSTART GUIDE

But we want the second (at index 1), which is this:

2850

It’s all downhill from that point. We print the result, and the user is now
informed as to the height of Mount Tambora.

This functionality assumes that the Wikimedia (the software powering
Wikipedia) API hasn’t changed. This is the most current version as
of this printing. It’s remarkably stable, but if you find it has changed,
you can consult www.mediawiki.org/wiki/API:Main_page for updated
details. Generally, any change will merely involve modifying one of
the parts of the API URL.

Saving a Web Page
We can retrieve a web page and then save the contents of that string to

a file with the html file extension, which saves the page for offline viewing.

Import the urllib module

import urllib.request

URL to GET

url = "https://www.python.org"

Get the page content

req = urllib.request.Request(url)

with urllib.request.urlopen(req) as response:

 page _ content = response.read()

Save to python.html, writing in binary mode

to preserve encoding defined by web server

with open("python.html", mode = "wb") as f:

 f.write(page _ content)

Notice that we open the file for writing in binary mode. This is done to
preserve the encoding method from the HTML that we download from the
web server. Not every web page uses UTF-8, especially those written in non-
Latin languages.

13-03.py

247The Internet

Sending an Email
Sending an email in Python is easy, but email in general has become

complex and error-prone. Most of this new complexity is well-intentioned
(e.g., fighting spam, adding functionality to email that was never intended to
be part of the standard, etc.), but the result is that it’s difficult to guarantee
that the code I’m about to show you will even work in your situation.

Nevertheless, the concepts in this example are important to learn, and if
you’re working on a server, this code will very likely work. Unfortunately, due
to the nature of your internet service provider’s or email provider’s security
settings, it may be difficult to find the mix of parameters that works for you.

The purpose of this code is not to give you an exact guide on
working with your email, but rather a general overview of the flow
you can use to send mail with most web providers.

You will need to consult your email provider’s SMTP settings to get the
values for your SMTP port and the SMTP server (Simple Mail Transfer
Protocol, or outbound mail server). And, depending on your security
settings, you may need to generate an SMTP password (Google calls this
an “Application Password”). This code assumes you’re using SSL (Secure
Sockets Layer; when paired with SMTP this is sometimes called SMTPS),
which is almost exclusively the default configuration now for mail servers.

Import smtplib and ssl modules

import smtplib, ssl

Define message parameters

from _ email = "your@email.com"

to _ email = "their@email.com"

subject = "Test email from Python"

message = "This is a test email from Python."

Add subject to top of message

message = "Subject: " + subject + "\n\n" + message

Define mail server parameters

smtp _ server = "your.mail.server"

smtp _ port = 465

Get your email password

smtp _ pass = input("Please enter your SMTP password: ")

13-04.py

248 PYTHON QUICKSTART GUIDE

Create an SSL context

context = ssl.create _ default _ context()

Send the mail

try:

 with smtplib.SMTP _ SSL(smtp _ server, smtp _ port, context = context) as smtp _ srv:

 smtp _ srv.login(from _ email, smtp _ pass)

 smtp _ srv.sendmail(from _ email, to _ email, message)

except Exception as e:

 # Display details about any error that occurred

 print(e)

There’s a lot going on in this code, so let’s break it down into manageable
pieces. First, we import the smtplib and ssl modules. Next we assign some
necessary parameters about the message. The message variable is then modified
to have the subject inserted at the top, which the SMTP server expects.

After defining the server hostname and port, the code prompts the user
for the SMTP server password. Technically, we could assign the password
to the smtp _ pass variable right in the code, but it’s bad practice to include
passwords in your code. If our source code were ever to become public, our
email password would also be visible, creating a huge security problem.

Next, we set up SSL support and start a with block that establishes an
object called smtp _ srv that interfaces directly with the SMTP server. The
login method of smtp _ srv sets the credentials for the mail server, and
the actual mail sending is done via the sendmail method. If any exceptions
occur, they are displayed.

As I said before, sending email is a tricky subject and you may have to
adjust this to work with your mail provider. It’s impossible to cover all the
variations and issues—in fact, the subject of email could possibly fill an entire
book. But these are the general principles of interacting with a mail server.

249The Internet

Chapter Recap

 » Python’s urllib module allows us to download pages and interact
with web servers.

 » Once we have downloaded the contents of a page, we can extract
data from our requests.

 » Emails can be sent with Python using SMTP. The ISP or hosting
provider needs to be consulted for SMTP hostname and credentials.

251Debugging Python Code

| 14 |
Debugging Python Code

Chapter Overview
 » Debugging is the art of finding and fixing problems in code
 » Logging is very useful for finding bugs
 » Visual Studio Code can be a huge help in debugging

Even though we hold incredible power in our hands as they execute the
code we’ve crafted through blood, sweat, and tears, we as programmers feel
powerless at times over the smallest of bugs that creep into our code.

It’s extremely helpful to have all the information you can possibly
assemble about a problem when trying to solve it. Sometimes it’s a simple
typo. In fact, typos have been some of the hardest problems for me to find.
Visual Studio Code and other development environments will point out if
you’ve made a mistake with indentation or misspelling a function name,
but those aren’t exactly the typos I’m talking about. I’m talking about the
perfectly valid code—complete with a swapped variable, a plus instead of a
minus, a greater than instead of a less than, or some off-by-one index error—
that has made me question my ability to program and, deep into the night
right before a deadline, life in general.

As I’ve said several times before, things will go wrong. No matter how
careful you are or how many exception handlers you use, your program will
fail or, worse, produce incorrect results. That’s where the art (notice I didn’t
say science) of debugging comes into play.

Logging
If I could choose only one debugging tool, it would be logging. Logging

is the process of writing diagnostic data (oftentimes the value of variables at
different stages of execution) to the screen or to disk. I can’t think of any more
effective and accessible technique for getting an internal view of what’s going
in inside a program.

252 PYTHON QUICKSTART GUIDE

Many programmers associate logging with log files written to disk.
While this is certainly a common and useful method of logging data, we can
also display it to the screen (under certain circumstances) or send it over the
network to another system. We’re going to discuss the first two methods in
detail, as you’ll use them the most in your Python programming work.

Displaying Data on the Screen
One of the easiest and most often used techniques in debugging is
to print out the values of variables before, during, and after whatever
misbehaving function calls them.

x = input("What is x? ")

print("x = " + x)

y = input("What is y? ")

print("y = " + y)

if (x > y):

 print("x > y")

else:

 print("x < y")

If I was having problems with the comparison, the print statements
after each input would show me what was collected each time, and then
I could use this to help troubleshoot the comparison. This is, of course,
a trivial example, but it highlights the usefulness of displaying variables
as we go.

In other cases, we can use statements like this:

print("Reached first function call.")

or …

print("Inside for loop.")

… to see if execution reaches certain points in our code. I’ve done this
countless times when something I expected to function didn’t run.

14-01.py

253Debugging Python Code

Knowing that we at least got to that part of the code, or made it into the
loop, can help us figure out what’s going wrong.

This technique of displaying messages to the screen is extremely useful
while we’re developing the program, but it has several disadvantages.
First, it can get a bit messy. When I write these temporary values to
screen, I tend to comment them out (to put comments in front of the lines
of code) when I’m done with them but leave the print line there in case
I need it again. Too many commented-out print functions in code can
start to pile up and hurt readability.

But we don’t necessarily have to get rid of all our temporary print
statements to make things more readable. We can create a function that
displays the data we want to show only if a variable named debug is set
to True.

Define this in the main program

debug = True

def debug _ msg(msg):

 if (debug):

 print(msg)

We can now call debug _ msg whenever we want to show something on
the screen, but only if the debug variable in the main scope is set to True.
When we’re ready to release our program to the public or no longer need
the debugging feature, we can set debug = False in the top of our code
to prevent the debug _ msg function from printing anything to screen.

This is a primitive form of logging. We are “logging” the data in that we
are displaying it for debugging use. That said, if we don’t happen to see
the debugging message (i.e., it scrolls by too fast), it doesn’t do us much
good. In that case, we may want to consider logging to a file.

Logging to Disk
Logging to disk is a bit more work than writing to the screen, but it’s more
durable and provides a better record of more complex events. Rather than
hoping to catch certain messages on the display before they scroll away,
we create and append to the log file that will have everything we need to
find the problem in our code.

14-02.py

254 PYTHON QUICKSTART GUIDE

Fortunately, Python has a built-in module to help with that.

Import the logging module

import logging

Configure the module

logging.basicConfig(

 filename = "test.log",

 encoding = "utf-8",

 level = logging.DEBUG)

 With this, I’ve imported the logging module and configured it with
the following features:

 » The log file is defined as test.log
 » The encoding is UTF-8 (styled utf-8 in Python)
 » The log level is DEBUG, defined in the logging module, so we

access it with logging.DEBUG

The logging level is the level at which we want to receive messages.
Anything below the level of priority we specify doesn’t get logged, and
the level we supply in the level argument and above does get logged
(figure 39).

LEVEL PRIORITY DESCRIPTION

logging.DEBUG 10
Provides the most detail.

Useful for diving deep into problems.

logging.INFO 20 Used for basic information about execution.

logging.WARNING 30
Used for important warnings about

potential hazards.

logging.ERROR 40 Used for events that could stop the program.

logging.CRITICAL 50 Reserved for the most serious problems.

Using this scheme, DEBUG will give us every log entry, and CRITICAL
would skip everything except CRITICAL.

14-03.py

fig. 39

255Debugging Python Code

The logging.DEBUG value is uppercase to imply that it is a constant—
that is, a value that is immutable (read-only) and used as a reference for
other code. Technically, though, it’s not immutable. In this case, it’s just
another variable. We can (though we really shouldn’t) change logging.
DEBUG to be any value we wish, not just 10.

To specify a log level, use these functions:

Log a DEBUG message

logging.debug("This is a debug message.")

Log an INFO message

logging.info("This is an info message.")

Log a WARNING message

logging.warning("This is a warning message.")

Log an ERROR message

logging.error("This is an error.")

Log a CRITICAL message

logging.critical("Something major went wrong!")

Let’s try a sample program, this time specifying WARNING as the level.

Import the logging module

import logging

Configure the module

logging.basicConfig(

 filename = "test.log",

 encoding = "utf-8",

 level = logging.WARNING)

Log several messages

logging.debug("This is a debug message.")

logging.info("This is an info message.")

logging.warning("This is a warning message.")

logging.error("This is an error.")

logging.critical("Something major went wrong!")

14-04.py

256 PYTHON QUICKSTART GUIDE

When you run this code, you’ll find a file called test.log in the same
directory as your program. If you examine the file in Visual Studio Code
or with any text editor, you’ll see only this:

WARNING:root:This is a warning message.

ERROR:root:This is an error.

CRITICAL:root:Something major went wrong!

The log entries are added to the test.log file, and if a file already exists,
they are appended so that the log file isn’t overwritten. By default, the
entries follow a colon-delimited format, where the first entry denotes the
severity level (in this case, WARNING, ERROR, and CRITICAL are the only
ones shown due to our log level being set to logging.WARNING).

The second entry is the name of the logger, and the third entry is the
message.

Regarding the logger name, we can choose to use multiple loggers and
give each a separate name. This is useful if we need to create multiple logs
at once.

web _ logger = logging.getLogger("jobs")

This would create two separate loggers named web _ logger and
backend _ logger that we could use separately. We would use web _

logger.basicConfig(…) to configure the first one and backend _

logger.basicConfig(…) to configure the second, and subsequently call
methods like web _ logger.warning("Web warning goes here!") and
backend _ logger.warning("Backend warning goes here!").

We can change the message format to show the time. We just need to
provide the format argument to basicConfig.

logging.basicConfig(

 filename = "test.log",

 encoding = "utf-8",

 format = "%(asctime)s - %(message)s",

 level = logging.WARNING)

With this configuration, we’ll only see the time, followed by a dash and
the message we supply.

14-05.py

257Debugging Python Code

2022-04-21 00:45:43,639 - Something REALLY bad happened!

We can also change the date and time format by supplying a datefmt
argument to basicConfig. It accepts the strftime formatting codes
found in chapter 11.

Now that you know how to use Python’s logging to help debug, consider
adding logging in the ClydeBank Coffee Shop Simulator game. This will
be especially helpful if you decide to expand the game’s features.

You can include a lot of helpful things such as the line number
and function name. For a full list of logging formats, please see
"Logging Formats" included with your Digital Assets at
go.quickstartguides.com/python.

Debugging in Visual Studio Code
Visual Studio Code has some great tools for helping you debug your code.

I’ll cover some of them here, but I didn’t include this section until the end of
the debugging chapter because you may not always have Visual Studio Code
(or any particular piece of software) in your environment.

 For example, I often connect to remote machines via SSH (Secure Shell)
and edit Python code files with Vim, a console-based text editor. While Vim
is an excellent editor, it doesn’t have the debugging features of Visual Studio
Code or other Python development environments. In those situations, I must
use other debugging methods, like logging, to figure out what’s going on
with the code.

So feel free to make use of these tools. But knowing how to survive
without them—much like a digital form of survival bushcraft—is an excellent
skill to have.

Let’s start with debugging a sample program. It’s quite simple, and it
suffers from only one fatal flaw—it has an infinite loop. We set running
to True at the beginning and it’s never set to False, so the while loop
continues forever.

Import the time module so we can use sleep

import time

running = True

a = 014-06.py

258 PYTHON QUICKSTART GUIDE

while running:

 print("Hello, World!")

 print("a is " + str(a))

 a += 1

 # Pause execution for 1 second

 time.sleep(1)

When we run this program, we’ll see something like this:

Hello, World!

a is 0

Hello, World!

a is 1

While it’s running, Visual Studio Code is in debugging mode. You’ll
notice in the Run menu it says Start Debugging, not just Start. Technically,
we’ve been launching the debugger all this time. But our programs up to this
point have not had an ongoing process—they’ve executed and then fi nished.

To stop the program, click the Run menu and click Stop Debugging. If
you're running it in the terminal, you can press CTRL+C.

Now that we’re in debugging mode and the Hello, World! messages are
ticking away, let’s look at what it has to off er. First, let’s pause execution. We
can do that by clicking the pause button on the fl oating debug toolbar near
the top right of the screen (fi gure 40).

Th e debug toolbar bar that appears whenever a program is run in Visual Studio Code.
Th e pause button is the fi rst icon on the left (the two vertical lines).

When we click the pause button, it will temporarily halt execution and
highlight the line it was currently running. Th e debug toolbar changes when
we’re in pause mode (fi gure 41).

fi g. 40

259Debugging Python Code

Th e fi rst icon resumes execution. Th e second steps over the current line. Th e third steps into
the next function call or loop and pauses at the fi rst line. Th e fourth steps out of the current
function by fi nishing it, then pausing at the line of code that called it. Th e next icon restarts

execution, and the square icon (stop) ends all execution.

Let’s click the step over icon, which is the second in the debug bar.
When we do so, the variables pane in the top left corner shows our variables
(fi gure 42).

In some cases, after clicking the step over icon, you may need to
click Run and Debug.

Th e variables pane of our sample debugging program.

Th is gives us a view of the current state of our variables, including a and
running. If we double-click on one of them, a, for example, and change
the value, it will edit the variable directly in our program’s memory. When
we resume execution by pressing the play button (the fi rst button in the
debug bar), we see that the variable named a has increased dramatically!
If we double-click on the running variable and enter False, then resume
execution, it will continue the current iteration of the while loop and then
exit because running will no longer be True.

fi g. 41

fi g. 42

260 PYTHON QUICKSTART GUIDE

Th is example is simple, but it gives us a lot of insight into our program.
Not only can we see the value of variables at certain points, but we can adjust
them, playing what-if games to see where conditionals and loops are failing.

Th e next debugging feature I’d like to show you is the breakpoint. A
breakpoint is an instruction to the debugger to break (pause) execution on
that line. If we want to pause execution at a certain point in our program
automatically (rather than having to press pause and simply hope we hit the
right line), we hover with our mouse just to the left of the line numbers and
click the red circle that appears. A small symbol will appear indicating that a
breakpoint has been set at that line (fi gure 43).

 A breakpoint has been set on line 8.

To watch the Quick Clip, use the camera on your mobile phone
to scan the QR code or visit the link below.

www.quickclips.io/python-6or

fi g. 43

Takes from the debugging crypts, or
how I survived the worst bugs of my
programming career.

261Debugging Python Code

If we resume execution, Visual Studio Code will automatically pause
when our program reaches that line, letting us examine and modify variables.
If we click the play button, execution will resume but will stop again when it
reaches this point. To clear the breakpoint when we’re done with it, we right-
click on the symbol next to the line number and select Remove Breakpoint.

Chapter Recap

 » Debugging is more of an art than a science. Programs will have
errors, and we can’t expect them to always be immediately obvious.
Developing debugging skills is essential.

 » Logging is perhaps the single most important tool for finding bugs.
If we’re having problems spotting a bug, we should log everything
that happens in our program (or at least the important parts) and
examine the results.

 » Visual Studio Code can be a huge help in debugging, with its
variable view and breakpoint features. However, we should be
prepared to fall back on other methods, such as logging, as we may
not always have Visual Studio Code.

PART IV
ADVANCED PYTHON

265Developing Websites

| 15 |
Developing Websites

Chapter Overview
 » Python excels at website development
 » Popular lightweight frameworks include web.py and Flask
 » Django offers a fully featured website development stack

Python isn’t limited to running programs on your computer. You can also use
it to power websites and mobile application backends. Running a website with
Python is not only completely feasible but highly desirable. Many sites you
probably visit at least weekly are powered by Python; big players, including
Google, Spotify, Netflix, YouTube, Dropbox, and many more, use Python in
at least some capacity.

Even when Python isn’t used to serve the actual website content, it’s
often found in the backend of servers, generating reports, sending emails,
and running background tasks. While web development isn’t the focus of this
book, I’d nevertheless like to show you some common web frameworks and
development workflows in Python.

I’ll use a bit of HTML in the examples and explain that along the way,
but I will warn you up front that any serious web development will utilize,
if not require, at least basic knowledge of HTML, CSS, and perhaps some
JavaScript. If you aren’t familiar with HTML or JavaScript, or have no desire
to develop websites with Python, I still encourage you to read through this
chapter and follow along with the examples, because I’ll be introducing new
Python concepts as we go.

web.py
Let’s dust off our old friend “Hello, World!” In this case, we’ll use the

web.py framework to host a simple website that displays nothing but our
warm, familiar greeting. To do this, we’ll first need to install web.py.

266 PYTHON QUICKSTART GUIDE

On macOS or Linux, open the terminal and run:

pip3 install web.py

If you’re on Windows, run the console and run the same command. If
that fails on Windows, it’s probably because Python isn’t in the system path.
In that case, try running the command in the terminal window of Visual
Studio Code.

You should see some download and installation messages scroll by as it
proceeds. We’ll get into pip a bit later, but for now, know that it manages our
Python code dependencies, allowing us to request the install of a particular
module (i.e., web.py).

Once web.py is installed, we can write our example (a lightly modified
take on the featured example at webpy.org):

Import web.py

import web

Define the routes web.py will respond to

routes = (

"/(.*)", "home"

)

Create app object, providing routes and globals as arguments

app = web.application(routes, globals())

Define the home class which will respond to our default route

class home:

 # Method to respond to GET requests

 def GET(self, name):

 # Tell the browser we are sending HTML

 web.header("Content-Type", "text/html")

 # Set name to "World" if name not set

 if not name:

 name = "World"

 # Return string to display in browser

 return "<h1>Hello, " + name + "!</h1>"

Make sure we're in the main program scope, then run!

if __ name __ == " __ main __ ":

 app.run()

15-01.py

267Developing Websites

When we run this code, we’ll be presented with a URL that looks
something like this:

http://0.0.0.0:8080

If this doesn’t work, try http://127.0.0.1:8080/

Before we dive into precisely what this code is doing, let’s talk a bit about
this URL. The 0.0.0.0 is an IP address. An IP address, or internet protocol
address, is an identifier used to differentiate devices on a network. You can
think of an IP address much like a street address, in that it helps others find
a location.

Most sites have a routable address—that is, an address that can be
routed, or delivered, to different networks to serve the request. However,
the 0.0.0.0 address, in our situation, refers to any IP address on our local
computer. When web.py listens to this address for requests from browsers,
it’s essentially saying “listen to any address on this computer and respond to
it.” This will work regardless of what internet connection we have, or even if
we’re not connected at all, because it will treat it as a local address.

The 8080 portion of the address, which is separated from the IP by a
colon, is the port. A port is even more specific than an IP address, providing a
unique point at which to communicate with a particular application—in this
case, our Python program. If IP addresses are like street addresses, then ports
are much like room or suite numbers, or perhaps even individuals residing at
that address.

To summarize, the URL http://0.0.0.0:8080 lets a client (in this case,
our web browser) know that it needs to make a connection to IP address
0.0.0.0 (that is, any local address) on port 8080. Copy and paste this URL
into your browser (while your Python code is still running) and view the
glorious result. You should see "Hello, World!"

How does this work? Let’s get into the particulars of the code. First, we
import the web module, which is web.py. Then we define a tuple that can
contain multiple URL patterns and the class that handles them. In our case,
we simply define that every URL (i.e., via the regex /(.*), which matches /
and all URLs) should be handled by the home class. If we wanted to handle
a list of specific URLs, we’d add multiple pairs to the tuple, the first being
the URL pattern regex, and the second the Python class name that handles
it. We can specify URL patterns that aren’t regular expressions. For example,
"/hello" would respond to a URL like http://0.0.0.0/hello.

Then we create the app object via the web.application method. This
method takes two arguments: the tuple with the URL patterns and matching

268 PYTHON QUICKSTART GUIDE

class names, and a list of global variables. A global variable is a variable that
is within the scope of the main program. In our case, we just called inline
the globals() function, which returns a dictionary of all variables, objects,
classes, etc., in the global (i.e., main program) scope.

Next, we define the class home, which has one method: GET. In the past
we’ve used method names that are lowercase, but in this situation, GET, the
HTTP operation to "get" a web page from the server, is always styled in
capital letters because that’s the actual string sent to the web server. The
method GET has self and name as arguments, but if name is not set to a value,
the string name is set to “World”.

We then use web.header to set the Content-Type header, that is, a
key:value pair sent to the browser before the content of the page is sent,
telling the web browser how to interpret the content it will receive. If we had
specified text/plain instead of text/html, or even left out the web.header
call, it would have rendered plain text and not HTML.

This if not name comparison is simply an inversion of if name,
meaning that if the name variable isn’t set and thus doesn’t evaluate to True,
the comparison will succeed, and its code block will be processed. This is
helpful for when we want to see if a value isn’t True, and in this case we
do. In any event, we return “Hello, ” and then the name variable, then an
exclamation point.

In the return text, I’ve included the HTML tags <h1> and </h1> (opening
the heading 1 tag and closing the heading 1 tag) to make sure the Hello,
World! content is displayed in big bold heading type. We’ll get to how to set
the name variable in a moment.

Then, outside the hello class and back in the main program, we check
to see if we’re in the main scope (i.e., in the main program and not inside
a module). When Python starts, it sets the __ name __ global variable to
__ main __ . When execution occurs inside of module code, the __ name __
variable inside of that module is the name of the module. So, by running this
comparison, we can make sure that we’re in the main program rather than
being imported by another file.

When we run app.run(), the web.py server code launches, listens to the
IP 0.0.0.0 and port 8080, and displays the URL for us so we know how
to access it. When we go to that URL in the browser, the GET method is
executed in the home class, which returns the text to display.

The name variable doesn’t have to be empty. How do we set it? In your
browser, try going to the following URL (replacing “You” with your first
name, no spaces).

269Developing Websites

http://0.0.0.0:8080/You

When I go there, I see this:

Hello, Robert!

This works because of our regular expression in the routes tuple. Recall
from chapter 10 that parentheses in regular expressions match a value and
return that value. In our route /(.*) we are saying “match anything after the
forward slash” (i.e., the site root URL), so when we go to /Robert (in my
case), the Robert portion is matched and set as the argument after self in
the GET method. In GET, our comparison fails because name has a value, thus
it’s not changed to “World” and we see our name in the browser.

To stop web.py, click the Run menu and click Stop Debugging. If
you're running it in the terminal, you can press CTRL+C.

The web.py framework is simple and lightweight, but we’ve only
scratched the surface of its capabilities. To learn more about web.py, please
visit https://webpy.org.

Flask
Flask is another popular Python web framework. It has more active

development than web.py, offers improved performance, and has extensive
documentation. Even though Flask supports more modern features, it isn’t
necessarily the best choice for all web applications written in Python. Both
web.py and Flask offer a lightweight system to power your website, so I don’t
believe there’s necessarily a wrong choice.

Let’s look at an example Hello World site in Flask. But first, we’ll need
to install it. On macOS or Linux, open the terminal (or open the console in
Windows) and run the following:

pip3 install flask

If you're having trouble using pip3 on Windows, try running the
command in the terminal window of Visual Studio Code.

Once it’s installed, create a new example file and name it hello-flask.py.

270 PYTHON QUICKSTART GUIDE

Import Flask

from flask import Flask

Create the app object

app = Flask(__ name __)

Define the hello function, with route decorator

@app.route("/")

def hello():

 return "<h1>Hello, World!</h1>"

Now, go to the Run menu in Visual Studio Code and click Add
Configuration. When prompted, pick Python, then Flask, then enter hello-
flask.py as the file name. If you gave your sample code a different file name,
you’ll need to enter that instead. Hit ENTER, and when you do, a new file
called launch.json will appear.

{

 // Use IntelliSense to learn about possible attributes.

 // Hover to view descriptions of existing attributes.

 // For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387

 "version": "0.2.0",

 "configurations": [

 {

 "name": "Python: Flask",

 "type": "python",

 "request": "launch",

 "module": "flask",

 "env": {

 "FLASK _ APP": "hello-flask.py",

 "FLASK _ ENV": "development"

 },

 "args": [

 "run",

 "--no-debugger"

],

 "jinja": true,

 "justMyCode": true

 }

]

}

15-02.py

271Developing Websites

Visual Studio Code generated this file for you and placed it in .vscode/
launch.json. This file tells Flask how to run your application and sets
important environment variables like FLASK _ APP and FLASK _ ENV. An
environment variable is a variable set outside of the program (and outside of
Python itself) that can be accessed inside your Python program. We’ll talk
more about environment variables in chapter 19, but for now, the main point
is that they’re useful for setting variables outside your program.

Go ahead and run the program. When you do, you’ll see this:

* Serving Flask app 'hello-flask.py' (lazy loading)

* Environment: development

* Debug mode: on

* Running on http://127.0.0.1:5000 (Press CTRL+C to quit)

* Restarting with stat

In this case, the URL we need to open in our browser is
http://127.0.0.1:5000. The 127.0.0.1 IP references the local machine, and
the value after the colon references port 5000. When you visit the page, you
should see Hello, World! in big bold letters.

Before we delve more into how VS Code launches our Python program
via the launch.json file, let’s examine the code example. First, we import the
flask module. Then we create a new object named app via Flask and pass the
__ name __ global to it. This gives Flask the name of the module that created
the object (__ main __ in this case).

Once the app object is up and running, functions are defined that
determine what data to return. Rather than set up a predefined list of routes,
in Flask we merely use a decorator, such as @app.route("/"), before the
function that defines the behavior we want to perform when responding to
that URL. Inside the hello function we merely return our favorite greeting.
And that’s what we see in our browser.

As for the launch.json file, the configuration file automatically created
for us by Visual Studio Code is in JSON, or JavaScript Object Notation, a
format that can be used to reconstruct objects in the JavaScript programming
language—much like Pickle format can be used to reconstruct Python
objects. We’ll discuss JSON a little later in this chapter.

The launch.json file, in addition to setting some environment variables,
also tells Flask about our application and sets some parameters it needs to
properly run it. Granted, there isn’t much configuration to do for our Hello,
World! application, and the defaults in the file are fine for our purposes, but
this gives us a lot of flexibility in how we launch Flask.

272 PYTHON QUICKSTART GUIDE

To stop Flask, click the Run menu and click Stop Debugging. If you're
running it in the terminal, you can press CTRL+C.

This is just a taste of what Flask has to offer. It has an extensive set of
features and can handle websites both large and small. To learn more about
Flask, visit https://palletsprojects.com/p/flask.

Connecting to a Database
Python can be used to interface with nearly any database server. But before

we get into that, we should discuss what databases do and how we interact
with them. Databases store data. I know that’s an incredibly simplistic and
almost tautological definition, but that’s essentially what they do. The magic
of databases is in how they store the data.

Previously, we wrote text files to disk. This is a perfectly fine way to
store data, but it’s not easily scalable, meaning that it doesn’t grow well
with increased usage and complexity. Of course, we can store data on a disk
with great efficiency and performance, but it’s hard. Writing data in a linear
fashion is easy, but modifying it in place—including saving enough space
for anticipated data—can be incredibly tricky. Database programmers have
spent decades optimizing these routines, taking a lot of the hard work off
your back. Unless you have a good reason to avoid it, using a database to store
anything but the most trivial data is strongly recommended.

There are two common types of databases—relational and document.
In a relational database, data is stored in tables, much like a spreadsheet,
with columns defining the fields of data and each row containing a new item
to be stored. Relational databases are usually queried, or read from, using
SQL (Structured Query Language). SQL allows us to pose questions to the
database with a wide assortment of conditions, sort options, pagination, etc.,
and to receive spreadsheet-like answers with columns delineating separate
rows of data.

A document storage database, a kind of “NoSQL” database, stores data
in collections of documents (often in a JSON-like format) rather than
using the table/column/row paradigm (figure 44). Unlike with relational
databases, we don’t have to define the columns up front; they can be added
on the fly. Document storage databases aren’t as fast at retrieving large
numbers of records, but they can be faster at creating or updating large
numbers of records.

273Developing Websites

Whichever you choose to use, Python has you covered. Python can

connect to pretty much every kind of database server, including MySQL,
PostgreSQL, Microsoft SQL, Oracle, MongoDB, and more. Small
applications can even use lightweight solutions like SQLite. Since SQLite is
simple to set up and ideal for local development.

In the following example, we’re going to demonstrate connecting to
MySQL. However, setting up a database server is beyond the scope of this
book, so we’ll assume here that the database has already been set up for you.

You will need the mysql-connector-python package, and you can
install it with this:

pip3 install mysql-connector-python

Your installation may fail if you don’t have MySQL installed, so if you
receive an error, you can go to https://dev.mysql.com and install it.

Installing a database server on your computer can take up memory and
CPU time that you might not have to spare—especially if you have an
older computer. You can install MySQL and choose to run it only when
you're programming, then stop it. Or you can run MySQL on a cloud-
based server and connect to it remotely. For more information on
starting and stopping MySQL, please see https://dev.mysql.com/doc/
mysql-startstop-excerpt/8.0/en.

fig. 44

274 PYTHON QUICKSTART GUIDE

Once you have the package installed, you can run the following code:

Import mysql-connector-python

import mysql.connector

db = mysql.connector.connect(

 host = "localhost",

 user = "dbuser",

 password = "dbpass",

 database = "dbname"

)

You’ll need to replace localhost, dbuser, dbpass, and dbname with
the correct values, and they will vary. If you’ve just installed it on your
computer, the hostname will almost certainly be localhost and the user
is probably root. If you haven’t set a password on the database server, you
can probably leave that blank, but I highly recommend running the mysql-
secure-installation tool (on the console/terminal) to set a root password
and otherwise optimize the security of your installation. On Windows, the
install wizard prompts you to do this, but on macOS and Linux, you may
need to take this additional step.

The dbname parameter is the name of the database to use. Database
servers like MySQL can host multiple databases, so specifying the name
helps the server scope the queries to the tables and rows inside that database.

Once this code executes, you’ll have a db object that is your gateway to
the database server. Now let’s query some data with SQL.

Import mysql-connector-python

import mysql.connector

Connect to the database

db = mysql.connector.connect(

 host = "localhost",

 user = "dbuser",

 password = "dbpass",

 database = "dbname"

)

Grab a cursor object from the database connector

cursor = db.cursor()

15-03.py

15-04.py

275Developing Websites

Run an SQL query to get all columns from the orders table

cursor.execute("SELECT * FROM orders")

Return all results from the query

orders = cursor.fetchall()

Step through orders and display order details

for order in orders:

 print(order)

In this example, we connect, then obtain a cursor context that allows us to
execute queries on the database. Then we run SELECT * FROM orders, which
means “select all columns from the orders table.” The cursor.fetchall()
method will obtain the results from the query and put them in an object
named orders, which we can iterate over in the for loop.

This code won't work on an empty database, because the table
orders would have to exist first. If the orders table exists but
is empty, the for loop will have nothing to iterate through, and
execution will continue to the next line.

This example is specific to MySQL, but other relational databases, such
as PostgreSQL, are similar. For more information, please see the Python
section of the documentation for your database server.

Django
The two frameworks we’ve discussed so far, web.py and Flask, are very

thin web development frameworks. Django, on the other hand, contains a
full stack of features, including an out-of-the-box admin interface for your
data, search engine optimization (SEO), built-in web security, web content
caching and content delivery network (CDN) integration, and an object
relational mapping (ORM) layer for easy database integration.

I’ve thrown out a lot of web development industry buzzwords, so let’s step
through them one by one and define them.

 » Search engine optimization is the science (and art) of optimizing
web pages so that they rank well in search engine results.

276 PYTHON QUICKSTART GUIDE

 » Caching in general is the process of preloading frequently accessed
content from a slower storage mechanism (i.e., a database or disk)
and keeping it in memory for fast retrieval. In the context of the
web, this generally means loading it from a database and keeping it
in memory.

 » Content delivery networks are globally distributed media servers
that distribute images and other website assets much more quickly
than a normal web server. When we request a site using a CDN, the
assets are retrieved from the CDN servers closest to us, accelerating
the page load.

 » An object relational mapping is an interface to the database that
abstracts tables as classes and the rows of data as objects. The
properties of the object are the columns of the row (figure 45).
ORMs make it easier to interact with SQL databases.

Now that you know its features, let’s discuss Django in a bit more detail.

I’d like to go over some of the data modeling and routing in Django that both
set it apart from other Python-based web frameworks and illustrate more in-
depth features of Python.

First, let’s look at the folder structure of a basic Django site. In this
example, I’ve called the site “coffeeshop.”

fig. 45

277Developing Websites

coffeeshop/

 manage.py

 coffeeshop/

 __ init __ .py

 settings.py

 urls.py

 asgi.py

 wsgi.py

This structure may look familiar to you, because it contains a Python
package. The coffeeshop folder is the main folder for the website. The
manage.py file is a module that allows for command-line administration of
the site. The coffeeshop folder inside this folder is the root of the Python
package, and the __ init __ .py file defines the coffeeshop folder as a
package. The settings.py file contains, as you might expect, settings that are
specific to the website. The urls.py file contains the routing info to connect
various URLs to functionality within the Django application. The asgi.py
and wsgi.py files are there to interface with web servers.

Django uses a model–view–controller (MVC) architecture. The models
are just classes that define the relationship to the data; in other words, the
Orders class has order objects, where the table name is orders and each
row represents a single order. The model can also handle interactions with
other models and actions to perform upon certain events (like updating an
updated _ at column in the table whenever the row is updated).

The controllers normally contain the bulk of the business logic—that is,
the code that performs the bulk of an application’s unique workload. The
controllers serve as the glue between models (which represent and process
the data) and views.

Views are what the user sees. They can be pages to read or forms to fill out
and POST back to the web server. The views are derived from the controller,
and when a view page has a form to send back to the web server via a POST
request, it is done through the controller.

Many benefits are conferred by this separation of concerns between the
parts of the application the user can interact with and the internal logic and
data handling; these benefits include a potential increase in security and
performance. Most importantly, MVC makes it easier for you and others
to work on your code. It encourages, by default, the don’t repeat yourself
(DRY) principle.

278 PYTHON QUICKSTART GUIDE

There are varying interpretations of the MVC paradigm. For
example, Django calls the controller the view and the view the
template. The theory behind this, as stated in the Django FAQs,
is that the view is what gets presented to the user. Since the
controller in the MVC pattern is responsible for this, Django
considers it the view. And the Django template is the appearance
of how that data is presented.

In my view, there isn’t a particular right or wrong way to label the
individual components of the paradigm. The key takeaway of MVC
is the separation of concerns between data models, business logic,
and presentation of data to the user.

A simple “Hello, World!” page could be rendered like this (in coffeeshop/
views.py):

from django.http import HttpResponse

def index(request):

 return HttpResponse("Hello, World!")

And the urls.py that connects this view to the index would look like this:

from django.urls import path

from . import views

urlpatterns = [

 path('', views.index, name='index'),

]

A data model for the Customer class (stored in the customers table)
would be similar to this:

from django.db import models

class Customer(models.Model):

 first _ name = models.CharField(max _ length=64)

 last _ name = models.CharField(max _ length=64)

279Developing Websites

Objects derived from the Customer model would represent a row in the
customers table and contain properties like first _ name, last _ name, and
any others we added. This would let us access and update the data in these
objects without having to write SQL or directly interact with the database.

This has been an extremely brief, whirlwind tour of Django. There are
many more features I’d love to show you, but this would quickly become a
book on Django if I did. Hopefully I’ve whetted your appetite for more, and
if you’re interested in writing web applications, I highly recommend you give
the tutorial a try. You can learn more at https://docs.djangoproject.com.

JSON
JSON, or JavaScript Object Notation, is a way to serialize data structures

(much like Pickle) for use with other programs or systems. While JSON was
born from JavaScript, Python has functionality to import and export data
using this format.

JSON is very popular, and most web APIs support it. Furthermore, when
writing web applications, we can communicate directly with JavaScript code
by using JSON.

Import the json module

import json

Create a menu dictionary

menu = {"name": "Hot Chocolate", "price": 3.99}

Convert to JSON

menu _ json = json.dumps(menu)

Display JSON

print(menu _ json)

When we run this code, we’ll see that the JSON object looks identical
to the Python dictionary. In this simple example, they are interchangeable;
however, this isn’t always the case, as JavaScript Object Notation is quite
different in many respects from Python data structures. That said, the
Python json module contains the logic necessary to convert Python data to
JSON and convert JSON to Python data. As long as the Python object is a
dictionary, tuple, list, string, integer, float, True/False, or None, json can
handle it. To load JSON, simply use the json.loads function.

15-05.py

280 PYTHON QUICKSTART GUIDE

Import the json module

import json

Sample JSON retrieved via API POST (note the single quotes)

sample _ json = '{"name": "Hot Chocolate", "price": 3.99}'

Convert from JSON into Python dictionary

menu = json.loads(sample _ json)

Display menu dictionary

print(menu)

You might be interested to know that with just the json module and a
thin web framework like web.py or Flask, you can build an API server to
respond to requests from a mobile app. In fact, I’ve built interfaces just like
this. Pair it with a database server and you have the basic Python programming
knowledge required to write the next great app!

Write out the sales data to a JSON file when the user quits the
ClydeBank Coffee Shop Simulator game. Then you can use one of the
web frameworks we’ve mentioned to make a website that reads this data
and displays stats about the sales totals.

Chapter Recap

 » For simple website projects, it’s hard to beat the simplicity of web.py
or Flask. These frameworks are often used for API servers or simple
websites.

 » Django is a better choice for more complex sites, especially if you
need extensive, out-of-the-box functionality. The administration
pages alone can save you a lot of time.

 » Python can connect to many different relational and document-
based databases.

 » Python can read and write JSON, or JavaScript Object Notation,
for interaction with JavaScript.

15-06.py

281Interfacing with SQLite

| 16 |
Interfacing with SQLite

Chapter Overview
 » SQLite is a simple, cross-platform database engine
 » A table is like a spreadsheet with columns and rows
 » SQL statements can SELECT (read), INSERT (add), UPDATE,

and DELETE data

SQLite is a lightweight, cross-platform SQL database that is self-contained,
meaning it doesn’t need a separate server process like most other database
engines. For learning and demonstration purposes, this is ideal because we
can avoid the complex setup, security, and reliability concerns that are often
related to database servers. However, just because SQLite is lightweight
and easy to use doesn’t mean it’s a slouch. Its ability to be embedded into
other software is one of the reasons it’s the most used database engine in
the world.

The sTunes Database
To demonstrate SQLite and Python’s connections to it, we’ll use a sample

database from the SQL QuickStart Guide by Walter Shields, published by
ClydeBank Media. You don’t need the book to work through this example,
but if you want a deep dive into SQLite, consider checking out this marvelous
SQL tutorial.

Visit the Digital Asset URL to download the sTunes.db file.

Installation
Installing SQLite is simple, but the instructions differ depending on your

operating system.

282 PYTHON QUICKSTART GUIDE

Windows
Navigate to the SQLite download page (www.sqlite.org/download.html)
and download the SQLite tools bundle (titled sqlite-tools-win32-x86
with a version number after it) under the “Precompiled Binaries for
Windows” section.

If you’re running Windows Subsystem for Linux (WSL or WSL2),
the instructions to install SQLite will differ based on which Linux
distribution you’re using inside the WSL terminal. Follow the
instructions below for the Linux distribution of your choosing.

This ZIP file will contain several binary programs. The one we’re after is
sqlite3.exe. It doesn’t really matter where you put these files, but where
you put them will impact how the program is run.

If you put them in your Source folder, as described in the introduction,
then the full path will be similar to this:

C:\Users\You\Source\sqlite3.exe

In this case, You will be replaced with your username. And Windows
provides an environment variable to easily reference your home directory,
so the path will look like this:

%USERPROFILE%\Source\sqlite3.exe

If you choose to put SQLite3 binaries (especially sqlite3.exe) in another
folder, you’ll need to adjust the command to match that location.

macOS
SQLite (available as the sqlite3 program via the terminal) is preinstalled
on modern macOS systems.

Linux
SQLite is probably preinstalled on your distribution, but if not, try
running these commands:

Debian, Ubuntu, Linux Mint, and other Debian-based distros

apt install sqlite3

283Interfacing with SQLite

Fedora, Red Hat Enterprise Linux, and related distros

yum install sqlite

Arch, Manjaro, and other Arch-based distros

pacman -S sqlite

Running SQLite
On macOS, Linux, and Windows with WSL, simply run …

sqlite3

… on the terminal / command line. To use sqlite3.exe on Windows, run:

%USERPROFILE%\Source\sqlite3.exe

If you put your binary elsewhere, you’ll need to modify this location as
discussed in the installation section of the chapter.

If you type the name of the database you want to open at the end of the
command (followed by a space), you’ll open that database, which will allow
you to run SQL queries on that data. For example, if our database is named
sTunes.db and we’re running the command from the same folder, we’ll see
this:

sqlite3 sTunes.db

While fully exploring the database is beyond the scope of this chapter,
we can use a few simple commands to browse the structure of the sTunes
database. When we start SQLite, we’ll see this:

sqlite3 sTunes.db

SQLite version 3.37.0 2021-12-09 01:34:53

Enter ".help" for usage hints.

sqlite>

The sqlite> is our prompt for commands.

The sqlite> prompt is a command loop. Let’s imagine that we’re writing
it. In Python, it might look something like this:

284 PYTHON QUICKSTART GUIDE

running = True

while running:

 cmd = input("sqlite> ")

 # Use regular expressions to parse cmd

 # Check for matches against defined commands

 if cmd == ".quit":

 running = False

If we run this in Python, we’ll notice that it asks for input over and over
until we finally type .quit, which is the same command used to exit
sqlite3.

The actual command loop of sqlite3 is quite a bit more complicated, but I
wanted to show you the overall concept in Python.

If you were going to write something similar, what kind of code would
you use to check for various commands?

A Brief Tour of sTunes
First, let’s look at the tables, the structures that store rows of data. Think

of tables like spreadsheets—collections of data rows separated by columns.
To see a list of the tables, type …

.tables

… and hit ENTER.
If we want to see the structure of a table—that is, the definition of

columns within the table—we can use the .schema command.

.schema tracks

In this example, tracks is the name of the table we want to see. When
we run this, we’ll see the following:

CREATE TABLE IF NOT EXISTS "tracks"

(

 [TrackId] INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,

 [Name] NVARCHAR(200) NOT NULL,

 [AlbumId] INTEGER,

285Interfacing with SQLite

 [MediaTypeId] INTEGER NOT NULL,

 [GenreId] INTEGER,

 [Composer] NVARCHAR(220),

 [Milliseconds] INTEGER NOT NULL,

 [Bytes] INTEGER,

 [UnitPrice] NUMERIC(10,2) NOT NULL,

 FOREIGN KEY ([AlbumId]) REFERENCES "albums" ([AlbumId])

 ON DELETE NO ACTION ON UPDATE NO ACTION,

 FOREIGN KEY ([GenreId]) REFERENCES "genres" ([GenreId])

 ON DELETE NO ACTION ON UPDATE NO ACTION,

 FOREIGN KEY ([MediaTypeId]) REFERENCES "media _ types" ([MediaTypeId])

 ON DELETE NO ACTION ON UPDATE NO ACTION

);

CREATE INDEX [IFK _ TrackAlbumId] ON "tracks" ([AlbumId]);

CREATE INDEX [IFK _ TrackGenreId] ON "tracks" ([GenreId]);

CREATE INDEX [IFK _ TrackMediaTypeId] ON "tracks" ([MediaTypeId]);

Here we have the SQL statements necessary to generate the table
structure for tracks. And, as we look through the output, we can see the
names of the columns, like TrackId, Name, AlbumId, MediaTypeId, GenreId,
Composer, Milliseconds, Bytes, and UnitPrice.

The FOREIGN KEYs basically tell SQLite that the AlbumId, GenreId,
and MediaTypeId are references to other tables. This is where the term
“relational database” comes from; these tables have columns that carry
references to related data.

Now let’s run an SQL query, which differs from a command like .table
or .schema in that we’re going to actually ask the database for data—in this
case, the contents of the tracks table.

select * from tracks;

We put a semicolon at the end of our SQL commands in SQLite so the
prompt knows we’ve finished entering data. When we run this command, a
full listing of the tracks is displayed. The tracks table is too much to show
here, so let's look at the first five rows of the albums table.

select * from albums limit 5;

1|For Those About To Rock We Salute You|1

2|Balls to the Wall|2

286 PYTHON QUICKSTART GUIDE

3|Restless and Wild|2

4|Let There Be Rock|1

5|Big Ones|3

These are the first five rows in the albums table, with each column
separated by a pipe symbol (the key above the backslash on your keyboard). If
you’d like a more user-friendly view, you can set the mode to “table.”

.mode table

Then when you rerun the query, it will be displayed in an attractive
format.

+--------------+---+-----------+

| AlbumId | Title | ArtistId |

+-------------+--+----------+

| 1 | For Those About To Rock We Salute You | 1 |

| 2 | Balls to the Wall | 2 |

| 3 | Restless and Wild | 2 |

| 4 | Let There Be Rock | 1 |

| 5 | Big Ones | 3 |

+--------------+--+----------+

More SQL: Beyond SELECT
We can do more than view data, of course. By using INSERT and UPDATE

SQL statements, we can add data, and with the DELETE statement we can
delete rows. There are many other commands, including the CREATE TABLE
command, but here’s an overview of the basics.

Insert
To insert data into a table, run the following:

insert into table (column1, column2, column3) values (X, Y, Z);

In this example, replace table with the name of the table (e.g., tracks),
columns 1 through 3 with column names (e.g., AlbumId, Title, and
ArtistId), and X, Y, and Z with the appropriate data to add.

287Interfacing with SQLite

Update
 To update an existing row:

update table set column1 = value1, column2 = value2 where id = X;

In the previous example, table is the name of the table, column1 and
column2 are column names, value1 and value2 are the data to set, and
id is the column to check for the value of X to limit the update to that
particular row. We can specify a condition that will match multiple
rows, and we can update as many columns at once as we like (separated
by commas).

Be careful when running UPDATE statements. If you don’t add a
conditional, it will update every row in the table with the values
you specify for each column. This could be disastrous on a live
production database. There’s no need to ask how I know this, but
you can safely assume I had to immediately restore from backup
after this unfortunate incident.

Delete
 To delete an existing row, run this:

delete from table where id = X;

In the previous example, table is the name of the table, and id is the
column to check for the value of X to limit the deletion to that row. We
can specify a condition that will match multiple rows, and we can update
as many columns at once as we like (separated by commas).

Be especially careful when running DELETE statements. If you
don’t add a conditional, it will delete every row in the table. This
could be disastrous on a live production database. I haven’t done
this (thank goodness!) because the update snafu that I may or may
not have been part of certainly drilled into my head the importance
of triple-checking UPDATE and DELETE statements.

Querying Data with Python
Python includes SQLite support in its standard modules. Before we delve

into an example, though, be sure you have sTunes.db downloaded and you

288 PYTHON QUICKSTART GUIDE

know where it is located on your disk. For this code, I recommend creating a
new folder in your Source folder called sqlite, and if you take this approach,
you can put your sTunes.db file in that folder—keeping everything simple
for this exercise. If you want to have your database in another location, that’s
fine, but you’ll have to add the full path to its location to the name of the file.

Import the sqlite3 module

import sqlite3

Create a db object by connecting to the sTunes.db database

db = sqlite3.connect("sTunes.db")

Run a SELECT query, then loop through

the results and display the row data

query = "select * from tracks"

for row in db.execute(query):

 print(row)

In this example, we import the sqlite3 module and create a connection
object named db that is returned from the sqlite3.connect function. This
db object has an execute method that can process our SQL statements
(specified in the query string). In this case, we can iterate over the results,
placing the data in row so we can print it inside the loop. When we run this
code, we’ll see a listing of all the tracks stored in the database.

Use the sqlite3 .tables command to see a list of the tables, then modify
your query string to select the contents from other tables.

Modifying Data with Python
We can run other statements, too, like INSERT, UPDATE, and even DELETE.

If we run those commands, we don’t need to iterate over the results.

Don’t run this unless you really want

to see how a delete query works

query = "delete from tracks where TrackId = 3500”

db.execute(query)

16-01.py

289Interfacing with SQLite

If we execute this code, it will delete the row matching TrackId with the
number 3500. Goodbye, Franz Schubert’s string quartet!

Further Ideas
This is just a small sample of what you can do with SQLite and Python.

To get a better feel for the capabilities of SQLite, I recommend querying other
tables, inserting your own songs, or perhaps even using a web framework like
web.py or Flask to view the data. The possibilities are endless!

Chapter Recap

 » SQLite is a lightweight, cross-platform database engine that can
store a database in a single file. We can administer the data with
the sqlite3 executable program and interface with the database in
Python via the standard sqlite3 module.

 » Databases are made up of one or more tables, and each table is much
like a spreadsheet with columns (fields) and rows (entries) of data.

 » Using SQL, we can SELECT (read), INSERT (add), UPDATE,
and DELETE data. We can perform other SQL commands as well
to modify the table and other database operations.

291Test-Driven Development

| 17 |
Test-Driven Development

Chapter Overview
 » Test-driven development makes for better code
 » Unit testing ensures proper operation of foundational components
 » Strive for good test coverage

Test-driven development is a paradigm in programming that encourages
developers to write a test first to make sure their code does what it is supposed
to do, then write the function and run the test. They know when their code
is working as intended when their test passes, and if they modify that code
in the future, they’ll be able to rerun the test to make sure their changes still
provide the desired functionality.

By designing tests like this ahead of time—even before we write the
original function—we know when the code is successfully run. Testing also
detects regression, which occurs when code that was previously working
breaks. When we add new features in our programs, we don’t always think to
test items that were already there. Testing each time we make a substantive
change or a release of our code to the public ensures that everything is
working properly.

Getting Started with Unit Testing
If your application is simple, it might be easy to construct a test that covers

the entire application’s purpose. For example, in our distance calculation
code, simply feeding a question into the class’s methods and testing against a
known answer is sufficient for basic minimal testing. But in a more complex
application, it is likely impossible to encompass all the functionality of the
program in one long test.

This is where unit testing comes into play. Unit tests are individual checks
on specific methods, functions, and other well-defined code blocks that
ensure that the application is working as expected. I’ve worked on programs
that had no tests at all (which is far from ideal, especially on big projects) and

292 PYTHON QUICKSTART GUIDE

on code bases featuring thousands of tests. In all that time, I’ve never thought
that there were too many tests. In fact, it’s always been the opposite.

Let’s construct a simple module (i.e., a Python program file) with a single
function, then construct a test for the function. This will involve two different
Python files, so let’s first write the code for the main program. Let’s call it
greeting.py.

def say _ greeting(name = "World"):

 return("Hello, " + name + "!")

Simple enough, right? Now let’s construct a test for it. Call this file
greeting _ tests.py.

Import the unittest module

import unittest

Import our greeting module

import greeting

class GreetingTests(unittest.TestCase):

 def test _ greeting _ without _ name(self):

 # Test without an argument

 self.assertEqual(greeting.say _ greeting(), "Hello, World!")

 def test _ greeting _ with _ name(self):

 # Test with an argument

 self.assertEqual(greeting.say _ greeting("Robert"), "Hello, Robert!")

if __ name __ == ' __ main __ ':

 unittest.main()

If we run this code (that is, the greeting _ tests.py program), we’ll see
the following output:

..

Ran 2 tests in 0.001s

OK

The exact timing may vary, but see the two dots above the line? Those
dots indicate that the two tests we created (test _ greeting _ without _

name and test _ greeting _ with _ name) both passed. Before we dig into

17-01.py

17-02.py

293Test-Driven Development

the test code itself, let’s make one small tweak to greeting.py and run the
code again.

def say _ greeting(name = "World"):

 return("Well hello, " + name + "!")

Now switch back to greeting _ tests.py and run it. The output will
change.

FF

==

FAIL: test _ greeting _ with _ name (__ main __ .GreetingTests)

--

Traceback (most recent call last):

 File "/Users/rwoliver2/Source/python-book/greeting _ tests.py", line 13, ↦

 ↪ in test _ greeting _ with _ name

 self.assertEqual(greeting.say _ greeting("Robert"), "Hello, Robert!")

AssertionError: 'Well hello, Robert!' != 'Hello, Robert!'

- Well hello, Robert!

? ^^^^^^

+ Hello, Robert!

? ^

==

FAIL: test _ greeting _ without _ name (__ main __ .GreetingTests)

--

Traceback (most recent call last):

 File "/Users/rwoliver2/Source/python-book/greeting _ tests.py", line 10, ↦

 ↪ in test _ greeting _ without _ name

 self.assertEqual(greeting.say _ greeting(), "Hello, World!")

AssertionError: 'Well hello, World!' != 'Hello, World!'

- Well hello, World!

? ^^^^^^

+ Hello, World!

? ^

--

Ran 2 tests in 0.000s

FAILED (failures=2)

294 PYTHON QUICKSTART GUIDE

At the top of the tests, you’ll see FF where the two dots were previously.
That means both tests failed. If just one had failed, it would have said F. (or .F,
depending on which test failed). Additionally, for each test that fails, details
are shown about what went wrong. The key line is the AssertionError line:

AssertionError: 'Well hello, World!' != 'Hello, World!'

Here we see that it was expecting “Hello, World!” (and “Hello, Robert!”
for the second test), but we modified it to say “Well hello” in the first part of
the return value, so that fails.

You can add as many tests as you like. Every method with a name
beginning with test is executed in the GreetingTests class by this code:

if __ name __ == ' __ main __ ':

 unittest.main()

You don’t specifically have to name the class GreetingTests, but I find it
a handy format. I use ModuleTests, where Module is replaced with the name
of the module that I’m testing. The built-in behavior of this class comes from
its parent class, unittest.TestCase. This provides the main() method that
triggers our tests contained within the class.

Assertions
In our example test, we made two assertions, each in its own test method.

self.assertEqual(greeting.say _ greeting(), "Hello, World!")

self.assertEqual(greeting.say _ greeting("Robert"), "Hello, Robert!")

An assertion lets us test the output of our code (usually the return value
of one of our functions or methods) against a known value. Individual tests
can have more than one assertion, but it’s better to break apart our code into
its smallest testable components. This ensures that we follow the unit testing
methodology.

In our previous example, the assertEqual method checks to see if the
first value is equal to the second. This works much like an if comparison
except that it comes bundled with all the test logic that produces the pass/fail
and detailed testing displays.

That’s not the only assertion, though. Let’s step through a few of the most
commonly used methods.

295Test-Driven Development

assertEqual
The assertEqual method checks whether the supplied values are equal.

If greeting.say _ greeting() returns "Hello, World!", it passes.

 self.assertEqual(greeting.say _ greeting(), "Hello, World!")

assertNotEqual
The assertNotEqual method checks whether the supplied values are
not equal.

If greeting.say _ greeting() returns "Hello, World!", it fails.

 self.assertNotEqual(greeting.say _ greeting(), "Hello, World!")

assertTrue
The assertTrue method checks to see if the statement is True.

These assertions pass

self.assertTrue(True)

self.assertTrue(1 == 1)

These fail

self.assertTrue(False)

self.assertTrue(1 == 2)

This passes because it will return True

self.assertTrue(greeting.say _ greeting())

assertFalse
The assertFalse method checks to see if the statement is False.

These pass

self.assertFalse(False)

self.assertFalse(1 == 2)

These assertions fail

self.assertFalse(True)

self.assertFalse(1 == 1)

This fails because it will return True

self.assertTrue(greeting.say _ greeting())

296 PYTHON QUICKSTART GUIDE

Test Driven Design
Most of the time, I use assertEqual and assertTrue. When designing

your tests, you may run into two common problems, both of which underscore
design issues in your code that need addressing.

The most common issue uncovered by test-driven development is the
lack of units within a program. Dividing your code into reusable building
blocks with functions, classes, and methods will make it easier to read and
easier to test. Rather than having a long collection of lines of code that do a
complicated task, break it down into simpler functions.

Another common issue is that functions do not return values that are
meaningful, or, at the least, a test on them wouldn’t produce a correct pass or
fail. If your functions do work but don’t return values, or they return values
that don’t correlate with the success of the code inside that function (i.e.,
you just return True even if the code fails), you probably need to rework the
function so that it checks the return values of the work you are performing.

def write _ file(data, filename):

 # Write the file

 return True

In the previous example, the function could return True even if something
went wrong. Here’s a better way to structure it:

def write _ file(data, filename):

 try:

 # Write the file

 except Exception as e:

 # Handle the exception, then return False

 return False

 # If we made it this far, it was successful, return True

 return True

In this case, the function returns False if an exception is raised.
Otherwise, True is returned. You can then use assertTrue to make sure it
works properly.

self.assertTrue(write _ file("Hello", "test.txt"))

297Test-Driven Development

Test Coverage
 When I first learned of test-driven development, I tended to go a bit

overboard with my tests. My test coverage, that is, how much of the total code
is covered by tests (usually expressed in a ratio or percentage), was quite high.
It is possible to spend more time writing your tests than writing your actual
program code. In that case, excessive testing can be a productivity time sink.

So how much testing is appropriate? There’s no easy answer. If you’re
writing a simple program for your own use, you may be able to get away
with no testing, or just a handful of tests covering critical functionality. But
if you’re writing for work—that is, people are paying you to code, or your
business or job depends on your program operating correctly, higher test
coverage not only makes sense but helps you sleep better at night.

Don't get too wrapped up in your test coverage percentages, especially
if you feel you have adequate testing for your needs. In many cases,
especially in business, time spent writing tests is never wasted. Worrying
about whether you have too many tests is a good problem to have.
If you write a test for most, if not all, of the functions or methods
you use, your coverage is excellent. On the other hand, if you find
regressions happening on a regular basis and you must do extensive
manual checking to make sure your program worked as intended, you
probably need to increase your test coverage by writing more tests.

ClydeBank Coffee Shop: Test-Driven Coffee Serving
Testing functionality in our coffee shop game would be incredibly

useful—especially if we wanted to enhance the game in the future. By adding
tests to certain key functions, we can ensure that if we do make modifications
down the road, we won’t break any of the core logic.

As an example, I’ve added a few simple tests to ensure that our static
methods are functioning correctly.

coffee_shop_simulator_tests.py
import unittest

from coffee _ shop _ simulator import CoffeeShopSimulator

class CoffeeShopSimulatorTests(unittest.TestCase):

 def test _ convert _ to _ float(self):

 # Test a string conversion to float

 test _ float = 1.23

 test _ string = "1.23"

CCS-15.py

298 PYTHON QUICKSTART GUIDE

self.assertEqual(CoffeeShopSimulator.convert _ to _ float(test _ string), test _ float)

 def test _ x _ of _ y _ with _ numbers(self):

 # Test that x _ of _ y returns a list of x copies of a number y

 number _ list = [1, 1, 1, 1, 1]

 self.assertEqual(CoffeeShopSimulator.x _ of _ y(5, 1), number _ list)

 def test _ x _ of _ y _ with _ strings(self):

 # Test that x _ of _ y returns a list of x copies of a string y

 string _ list = ["a", "a", "a", "a"]

 self.assertEqual(CoffeeShopSimulator.x _ of _ y(4, "a"), string _ list)

if __ name __ == ' __ main __ ':

 unittest.main()

If you run these tests, you’ll note that all three of them pass. And you
might notice three other things about them. First, in testing a class, I use the
from x import y construction.

from coffee _ shop _ simulator import CoffeeShopSimulator

This ensures that we have a version of the class for testing and lets
me type CoffeeShopSimulator instead of the clunkier coffee _ shop _

simulator.CoffeeShopSimulator. Second, we test x _ of _ y in two ways:
with numbers and with strings. We didn’t design it to be used with strings,
but I wanted to demonstrate that we can run multiple tests on a method
or function—even testing it in ways that aren’t currently used in the code.
Either way, we know the code works as intended with these two tests, and we
know that it’s flexible enough to take different types of input.

Finally, you may have recalled that we removed the use of x _ of _ y
entirely when we switched to numpy for weather generation. I’d love to tell
you that I planned to leave this method in here to see if your now-keen
programmer’s eye would spot it. Or as a lesson in removing such vestigial
code. Unfortunately, I can’t make such a claim. I simply forgot to remove it.
So I added two tests for code we don’t even use in the game!

This will happen to you as you refactor. While removing unnecessary
code is generally a good idea, in this case there isn’t any harm in leaving it,
because it isn’t used and is a very simple function that doesn’t take much

299Test-Driven Development

code space. If you want to remove it, feel free, but if you do so, you’ll need to
remove the tests related to it or they’ll fail.

Now that you know how to create tests, why not test other game
functionality? I added a few tests to get you started, but nothing is stopping
you from testing the entire game from start to finish. If you choose to go
down this road, you’ll need to know two things. First, you must instantiate
a game object to test using the construction game = CoffeeShopSimulator.
Second, parts of the game start a loop and ask for input, and when they do,
your code will be playing the game, not running tests. To avoid this issue, you
can test individual parts of the CoffeeShopSimulator class and avoid using
the run method.

Chapter Recap

 » Test-driven development helps us write better code and detect
regressions.

 » Unit testing involves testing individual parts of a program, usually
testing the return value of functions or methods.

 » We must ensure that functions and methods return meaningful
results (e.g., returning False if something went wrong and True if
everything was fine).

 » It’s difficult to write too many tests, but we should be mindful of
our time and productivity by focusing on the essential functionality
of the program.

301Managing Your Code with Git

| 18 |
Managing Your Code with Git

Chapter Overview
 » Source code management eases collaboration
 » Git is a popular source code management system
 » GitHub is a popular Git repository hosting service

Until this point, our programs have simply existed as text files on our
computer. Anytime we make a change, our previous content is overwritten.
This doesn’t sound like a problem until we make a change to a working
program and break it at eleven o’clock at night, bringing down a website
without a simple way to restore it. This may or may not be the voice of
experience—but it is preventable.

Version tracking gives us a log of all the changes we make to our program,
giving us the ability to reference or restore a previous version at any time. It
also serves as a backup—provided we have synced with a remote location or
provider. This process of tracking source code file versions and synchronizing
for collaboration purposes is called source code management.

Before I was introduced to source code management, anytime I worked
on a program with others I would make sure to work only on files that others
weren’t editing. That strategy was a Band-Aid at best, because eventually
more than one person would want to work on the same file. Back in the
Macromedia (now Adobe) Dreamweaver days of web development, you could
check in and check out files, and this would advise other developers that you
had that file and were making changes to it. But that system had numerous
flaws and didn’t carry over well to modern development methodologies.

In this chapter, we’ll specifically be discussing the Git source code
management system. Git was developed by Linus Torvalds and released
to the public in 2005. Since its release it has enjoyed massive success, in
part due to its excellent branching support and the ease of merging those
branches. Branching is the process of copying code to a new, separate version
in a software project. Unique branches move forward with new versions in

302 PYTHON QUICKSTART GUIDE

parallel, and merging brings those versions back together, integrating the
changes into a unified copy.

Software projects are stored in Git repositories. A repository is the
container that stores source code. On a computer, a Git repository is simply
a folder of code (and possibly subfolders) with a .git folder in the main
folder. This .git folder stores the history of the changes to the code. A Git
repository can be pushed to a remote copy of the repository for collaboration
and backup purposes.

GitHub, GitLab, and Bitbucket are popular Git repository hosting
companies, but anyone can host a repository themselves, because Git is open-
source. This guide will focus on local repositories and syncing with GitHub,
but the techniques used here should be compatible with other Git hosting.

Installing Git
Before you can use Git, you will need to install it on your computer. Visit

https://git-scm.com and click the Downloads button to see instructions for
your platform. Windows users will need to download the installer and run
it. On macOS, you can install Homebrew (see https://brew.sh) to install Git.
Once you’ve installed Homebrew, run brew install git to install Git.

Debian/Ubuntu/Linux Mint users need to run apt install git, and
Linux Arch-based distributions such as Arch and Manjaro need to run
pacman -S git. Red Hat-based distributions would run yum install git.

Once Git is installed, you should be able to open a terminal or console
and run …

git version

… and you’ll see the version of Git installed. If you get a message like
"command not found," Git isn’t installed properly, so you’ll need to check the
download/install instructions for your platform and try again.

Windows and macOS users can also install GitHub Desktop from
https://desktop.github.com. It’s an excellent Git management tool that allows
you to graphically manage Git repositories. While it can be very useful, I am
not covering it in this chapter because it isn’t available for all platforms, and
you may not have it on the system you’re on—or on a remote system you’ve
connected to. It’s good to know how to use Git without it, but if you are
running Windows or macOS and would prefer a graphical solution, it might
be a good fit for you.

303Managing Your Code with Git

Visual Studio Code also has Git support, but in the interest of
providing you the most portable and widespread coverage of
knowledge, we’ll focus on the command-line version of Git.

Forking and Cloning the ClydeBank Coffee Shop Game
Th e fi rst step in making use of existing code on GitHub is to fork it

to our own account. Forking a Git repository copies it to our account and
lets us work with the code, including making changes of our own, without
interfering with the original copy. We can later ask, via a pull request, that
the changes we made be integrated into the original project. A pull request
asks the maintainer(s) of the original project for permission to merge our
changes into the main project. Th ey can review and ultimately accept or deny
the merge.

Before you can fork the project, you’ll need to make a free account on
GitHub. Navigate to https://github.com and create the account, then go to
https://github.com/clydebankmedia/Python-Coff eeShopSimulator and click
the fork button at the top right of the screen. Th is will put a copy of the
repository in your account. You can then clone, or download, the repository to
your computer, where you’ll have access to the fi les.

When you click on the green Code button (fi gure 46) above the code
listing in GitHub, you will see the commands for cloning the repository. I
recommend using the HTTPS variant, as it is the simplest, but if you know
how to use SSH keys, you can add your public SSH key to GitHub and use
the command given in the SSH tab. Copy the HTTPS command to your
clipboard and have it at the ready for your console or terminal. But fi rst, we
need to change into our source directory.

I make a folder called Source in my home directory, and I change into it
with this on my Mac:

cd ~/Source

Th is works on Linux, too. Th e tilde (~) is short for home directory. If
you’re a Windows user, run this:

fi g. 46

304 PYTHON QUICKSTART GUIDE

cd %HOMEPATH%\Source

If you're running Windows Subsystem for Linux then you can run
the Linux commands in this section. The cd %HOMEPATH% command
works only on the Windows command prompt or PowerShell
prompt and not the Bash terminal.

Now that you’ve changed directory (i.e., cd) into your Source directory,
type git clone, press the spacebar, and then paste the command from the
HTTPS tab of the Code pane in GitHub into the terminal and run it. The
completed command will look something like this:

git clone https://github.com/rwoliver2/Python-CoffeeShopSimulator.git

When you fork a repository, a copy of it will be in your GitHub account.
The previous command represents the repository name in my account
(note the rwoliver2). Your command will have the rwoliver2
substituted with your GitHub username, so be sure to use that copy
instead of the exact link I have listed.

If all has gone well, you now have Python-CoffeeShopSimulator in ~/
Source, so the full path should be ~/Source/Python-CoffeeShopSimulator.

You can now launch Visual Studio Code and open that folder to view and
edit the code.

Committing Changes to Your Repository
If you make changes to the code and want to commit them to your fork,

run this:

git add filename.py

In this case, substitute filename.py with the name of the file you want
to add (e.g., main.py). By adding the file, you are basically staging it to be
committed. You can run this command on any number of files you wish
(including entire directories), or you can run …

git add .

… to add all the files (and files in folders within the current dictionary)
to be staged for commit. You can run …

305Managing Your Code with Git

git status

… to see what changes are staged to be committed. If you run git status
on a repository with no changes, you’ll see this:

On branch main

Your branch is up to date with 'origin/main'.

nothing to commit, working tree clean

If you modify a file—say you add something to main.py and then run
git status—you’ll see this:

On branch main

Your branch is up to date with 'origin/main'.

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

 modified: main.py

no changes added to commit (use "git add" and/or "git commit -a")

In this case, we can see that main.py has been modified.
To commit this change to your local repository, you would first stage

(add) the file (as seen above), then run the following:

git commit -m "A note about your changes."

The message, specified by the -m argument (in this case, “A note about
your changes.”) can be any message, but it’s helpful (to your future self and
others) to be specific about what you changed.

You can commit multiple files at once, or you can tell Git to commit all
modified files (skipping the need to add them) via:

git commit -a -m "A note about your changes."

The -a argument specifies “all,” meaning all changed files should be
included in the commit.

306 PYTHON QUICKSTART GUIDE

Use care when specifying the -a flag with git commit. You may
include files that you aren’t quite ready to commit.

Pushing to Remote
The commit command commits the changes to your local copy of Git, but

to sync them to GitHub, you’ll need to run this:

git push origin main

Let’s dissect this command to see what each part does. First, git push
is the actual command, telling Git we want to push our work to a remote
repository. The origin part tells Git where to push the changes. If we clone a
repository from GitHub, the origin will be set to GitHub, so it knows where
to push these changes. The main portion indicates which branch to push.

Using Branches
Using branches is a way to separate sets of changes. For example, if you

wanted to work on adding a particular feature, you could create a new branch
for that.

git checkout -b branch _ name

This new branch (named whatever you put in the previous command for
branch _ name) will now receive any changes you commit. If you want to
push that branch, run the following:

git push origin branch _ name

This keeps the changes separate from the main branch. To switch
branches, use this:

git checkout branch _ name

In the previous command, put the name of the branch you want to switch
to in place of branch _ name. For example, if you wanted to switch back to
the main branch, you would use git checkout main.

If you want to create (and change to) a new branch, use the -b argument,
as described in the original command git checkout -b branch _ name.

307Managing Your Code with Git

Branches are independent sets of changes (i.e., commits), so the changes
you make in one branch won’t automatically carry over to the other.

Viewing Changes
To view the changes, or the differences between your current set of files

and the last commit, run this:

git diff

This will show a diff, or difference summary, of the pending changes.
For example, if I edit the main.py file and change the year 2023 to 2024 on
the copyright line, the diff will reflect that.

diff --git a/main.py b/main.py

index df53dae..41f762b 100644

--- a/main.py

+++ b/main.py

@@ -1,5 +1,5 @@

 # ClydeBank Coffee Shop Simulator 4000

-# Copyright (C) 2023 ClydeBank Media, All Rights Reserved.

+# Copyright (C) 2024 ClydeBank Media, All Rights Reserved.

In this listing, you can see a minus sign in front of the line that was
deleted and a plus sign in front of the line that was added. The line to be
deleted will be shown in red, and the line added in green.

You can press the Q key to exit the diff viewer.

Viewing Your Commit Log
As your Git repository grows with changes, you can use …

git log

… to see a listing of all the commits you’ve made. The results will look
something like this:

commit 6dd258b5273bc4a13eee201fd6304efc61baef5a (HEAD -> main, origin/main, origin/HEAD)

Author: Robert W. Oliver II <118407+rwoliver2@users.noreply.github.com>

Date: Sun Jul 3 23:11:07 2022 -0500

308 PYTHON QUICKSTART GUIDE

 Update README.md

commit a2af786f19023bd2ac2d023ce8b2f2ed664f733b

Author: Robert W. Oliver II <118407+rwoliver2@users.noreply.github.com>

Date: Sun Jul 3 23:07:07 2022 -0500

 Initial commit.

As with the diff command, you can press Q to exit the viewer. If there
are few commits, the results will be displayed, and you will be returned to the
command prompt.

Alternatively, you can view a list of the commits that have been pushed to
GitHub by navigating to the repository and clicking the “commits” icon (preceded
by a clock icon and the number of commits) at the top of the file display.

Pull Requests
Now that you’ve committed changes to your repository and pushed them

to your fork on GitHub, you can request that those changes be pulled into
the official repository (i.e., https://github.com/clydebankmedia/Python-
CoffeeShopSimulator) with a pull request.

To create a pull request, go to GitHub and navigate to your fork of the
repository. Click the Pull Requests tab at the top and then click the green New
Pull Request button. In the “comparing changes” section, you can specify the
repository and branch to pull from (listed on the right), and the destination
is listed on the left.

Once you select the destination and source branches and repositories,
you’ll be prompted to enter a note describing the request. Submitting the
request doesn’t automatically merge the changes—the maintainer of the
official repository will have to make that decision.

Syncing with the Official Repository
Over time, your fork of the repository may (and likely will) differ from

the official repository. It’s a good idea to put them in sync as often as possible
to prevent the two code bases from drifting so far apart that merging them
requires manual intervention.

To do this, go to your fork of the repository in GitHub and click Fetch
Upstream, then if it says it’s behind, click Fetch and Merge. If all goes well, your
repository will be automatically updated with changes from the official copy.

309Managing Your Code with Git

If you have altered your repository signifi cantly, an automatic update may
not be possible. In that case, you’ll have to complete further steps—possibly
including the manual editing of certain fi les to include changes that diff er
signifi cantly from what you have added.

To watch the Quick Clip, use the camera on your mobile phone
to scan the QR code or visit the link below.

www.quickclips.io/python-7or

Chapter Recap

» A Git repository is a collection of fi les that includes the changes
made to those fi les over their lifetime in the repository.

» Forking a repository you plan to use is common practice, especially
if you plan to make changes to its code. Optionally, you can
create a pull request to ask the maintainer of the offi cial project to
incorporate your changes.

» Branches are independent sets of changes to the fi les in a repository.
You can switch branches at any time and commit changes to those
branches. You can also sync those branches with the repository
hosted on GitHub via the push command.

Watch over my shoulder as I clone
the Python QuickStart Guide source
code.

311The Junk Drawer

| 19 |
The Junk Drawer

Chapter Overview
 » Python has a built-in help system
 » Environment variables and command line arguments can be used to

pass data to a program
 » Threading lets us do multiple tasks at once

Every culture across our beautiful blue planet shares three things in
common—death, taxes, and a junk drawer. It’s usually located in the kitchen
(or dining room, in my case) and contains various power adapters to things we
no longer own, several instruction manuals, various rubber bands and paper
clips, an assortment of markers or crayons, a few clothespins (even if the nearest
clothesline is several hundred miles away), and a spoon, ruler, or other such
tool that keeps the drawer from opening all the way (but only sometimes).

This chapter is like a Python junk drawer. Except, rather than being a
collection of things you’ll never use, it contains things you will indeed use on
a regular basis in Python—they just aren’t big enough topics to warrant their
own chapter.

Getting Help Inside Python
If you’re inside the Python interpreter (executed via the command

python3 on the terminal or console), you can get instant help. To access the
help system, simply run this:

help()

You’ll enter an interactive help system that will allow you to access
documentation on many different topics. For example, if you type for at the
help> prompt, you’ll get guidance on using for loops (figure 47). When viewing
this help, use the arrow keys on your keyboard to navigate multipage content,
and press the Q key to exit the help document and return to the help> prompt.

312 PYTHON QUICKSTART GUIDE

Th e help documentation for the for statement.

To return to the main interpreter prompt, press CTRL+D (CTRL+Z on
Windows).

As an added benefi t, this help system is active even if you’re not connected
to the internet. I’ve been in situations where my internet access was down,
or I wasn’t near a hotspot and needed to quickly reference something. Just as
we fl ip on light switches when our power goes out, I’ve instinctively reached
for my web browser, assuming it would be there. In these cases, offl ine help
is extremely useful.

Sorting Lists and Dictionaries
Sorting a list or dictionary in Python couldn’t be simpler. Let’s start

with lists.

Create a shopping list

shopping _ list = ["Eggs", "Butter", "Milk", "Sausage", "Apples"]

Sort it

shopping _ list.sort()

Display the results

print(shopping _ list)

fi g. 47

313The Junk Drawer

When you run this code, you’ll see this:

['Apples', 'Butter', 'Eggs', 'Milk', 'Sausage']

It’s important to note that sort replaces the contents of the list with the
sorted version. However, if you want to leave the original list unsorted and
create a new, sorted list, use the sorted function.

Create a shopping list

shopping _ list = ["Eggs", "Butter", "Milk", "Sausage", "Apples"]

Sort it and store result in sorted _ list

sorted _ list = sorted(shopping _ list)

Display the results

print(sorted _ list)

You can sort in reverse order by setting the reverse argument to True.

Create a shopping list

shopping _ list = ["Eggs", "Butter", "Milk", "Sausage", "Apples"]

Sort it in reverse

shopping _ list.sort(reverse = True)

Display the results

print(shopping _ list)

When you run the code, you’ll see this:

['Sausage', 'Milk', 'Eggs', 'Butter', 'Apples']

Sorting dictionaries works much the same way, but you need to supply
an index to sort.

Import pretty print

import pprint

Create a menu dictionary

menu = [

 {"name": "Hot Chocolate", "price": 3.99},

19-01.py

19-02.py

314 PYTHON QUICKSTART GUIDE

 {"name": "Coffee", "price": 3.50},

 {"name": "Tea", "price": 2.99},

 {"name": "Orange Juice", "price": 1.99},

 {"name": "Soda", "price": 1.75},

]

Create sort function

def sort _ by(s):

 return s["name"]

Sort by function

menu.sort(key = sort _ by)

Display results

pprint.pprint(menu)

This code displays:

[{'name': 'Coffee', 'price': 3.5},

 {'name': 'Hot Chocolate', 'price': 3.99},

 {'name': 'Orange Juice', 'price': 1.99},

 {'name': 'Soda', 'price': 1.75},

 {'name': 'Tea', 'price': 2.99}]

Environment Variables
We briefly touched on environment variables in chapter 15 when working

with Flask, so let’s expand on them a bit. Environment variables are useful
for exchanging information (especially short strings) between the operating
system and a program.

Sometimes environment variables directly control the behavior of the
console shell or terminal. For example, the PROMPT variable controls the format
of the prompt of some consoles or terminals. The username can be accessed
on Windows with the USERNAME variable, while on macOS and Linux that
information is stored in USER. Windows stores the home directory for the
user in USERPROFILE, and macOS and Linux keep this location in HOME.

While there is some variation between operating systems, the behavior of
environment variables is largely the same. When you’re in bash or zsh, common
shells (interactive command-line environments) on macOS and Linux, you
can see a list of environment variables with the env command. In Windows, at
the command prompt, the set command will display environment variables.

315The Junk Drawer

You can specify an environment variable on the command line when
running a Python program (or any program).

VAR="Hello" python3 myprogram.py

Windows users will need to set the environment variable and then
call Python. For example: set VAR="Hello" (new line) python3
myprogram.py.

In this example, the environment variable VAR will be set to Hello and
the Python interpreter will be loaded with the myprogram.py program
running. Using this method, the variable VAR is only available while the
Python interpreter is running. You can access environment variables from
within Python via the os.environ dictionary.

Import the os module

import os

Iterate over environment variables and display the variable and its

value

for k, v in os.environ.items():

 print(k + " = " + v)

What displays with this code depends on your operating environment,
but you should get a list of all the environment variables presently defined in
your system. If you want to retrieve just one value, use this:

os.environ["VAR _ NAME"]

In the previous code, replace VAR _ NAME with the desired environment
variable name. You can set an environment variable in the same manner,
except that you specify a new value:

os.environ["VAR _ NAME"] = "Hello"

In this code, you would set VAR _ NAME to the value "Hello".

Using Command Line Arguments
Command line arguments are variables that are passed to the program

on start-up. As the name suggests, they are supplied to our program via the

19-03.py

316 PYTHON QUICKSTART GUIDE

command line and they’re accessible via a list named sys.argv (or, more
specifically, the list argv from the sys module).

Before we look at how to read them, let’s discuss how to supply them
to your program. If you’ve been using Visual Studio Code, clicking Run
executes something like this:

python3 yourprogram.py

Behind the scenes, it’s a bit more complicated than that. It really runs
something more like this:

/usr/bin/env /opt/homebrew/bin/python3

/Users/rwoliver2/.vscode/extensions/ms-python.python-

2022.4.1/pythonFiles/lib/python/debugpy/launcher 61829 --

/Users/rwoliver2/Source/python-book/yourprogram.py

Visual Studio Code adds all this fluff so that it can debug your Python
program. It’s handy to have, but it does make the command line absurd. Now
you see why I simplified it. In any event, if you wanted to pass a command
line argument, you would run your program like this:

python3 yourprogram.py help

In this case, “help” is the first argument. We can provide additional
arguments, too.

python3 yourprogram.py infile.csv outfile.csv

Individual command line arguments are separated with a space.
Fortunately, Python puts these arguments in a list and they’re easy to access.

If there is a space within your argument, you can surround the
argument with quotes.

Import the sys module

import sys

input _ file = sys.argv[1]

output _ file = sys.argv[2]19-04.py

317The Junk Drawer

print("Input file: " + input _ file)

print("Output file: " + output _ file)

If we save this file as cmdlinetest.py and run it like this in the terminal …

python3 cmdlinetest.py infile.csv outfile.csv

… we’ll see this:

Input file: infile.csv

Output file: outfile.csv

Did you notice something strange, though? Our sys.argv list begins at
index 1. That’s not quite right. Let’s try it again, but this time display what’s
in the zero index position.

Import the sys module

import sys

input _ file = sys.argv[1]

output _ file = sys.argv[2]

print("Input file: " + input _ file)

print("Output file: " + output _ file)

print("Zero index position: " + sys.argv[0])

Running this program like this …

python3 infile.csv outfile.csv

… gives this:

Input file: infile.csv

Output file: outfile.csv

Zero index position: cmdlinetest.py

As you can see, indexes still start at 0. The Python law of indexes is
still intact! The zero position stores the file name of the program, and actual
command line arguments start at 1.

318 PYTHON QUICKSTART GUIDE

Actually, this is more of an embarrassing fact than a fun fact. While
writing this sample program, I put 0 and 1 for the input_file and
output_file command line argument positions, and the results
looked like you might expect:

Input file: cmdlinetest.py

Output file: infile.csv

Only then did I realize I had forgotten that the name of the
program is stored at the zero index. Enjoy this bit of trivia as you
laugh at my silly mistake.

Lambda Expressions
A lambda expression is a short, nameless (sometimes called anonymous)

inline function that is commonly used in sorting routines. The simplest way
to explain a lambda is to see it in action.

A very simple lambda

greet = lambda name: "Hello, " + name + "!"

The lambda statement tells Python that what follows is a lambda
expression and, in this case, takes one argument, name. Then the value it
returns is defined, in this case, "Hello, " + name + "!". To use the lambda,
we call it like any other function.

greet("Robert")

produces:

Hello, Robert!

I understand it’s hard to tell the difference between a lambda expression
and a regular function. They are anonymous, meaning they aren’t formally
defined as a function with def. They are best used when we need to define a
quick, one-line function or for applying logic to a sorting routine.

Let’s examine how you can use lambdas to define your own sorting logic.
First, let’s revisit the sort() method.

319The Junk Drawer

A simple customer list

customers = ["Robert", "Bryan", "John", "Jo", "Brittney"]

Sort list alphabetically

customers.sort()

Display results

print(customers)

In this example, we’ll see our customer list sorted as you might expect.
But what if we want to sort by the last letter of the name instead of the first?
An odd request, for sure, but lambdas to the rescue!

A simple customer list

customers = ["Robert", "Bryan", "John", "Jo", "Brittney"]

Sort by last letter in name

customers.sort(key = lambda name: list(name)[-1])

Display the results

print(customers)

When we run this code, we get this:

['Bryan', 'John', 'Jo', 'Robert', 'Brittney']

Let’s step through this line by line. First, we define the customer list,
just as before. When we sort, though, we provide a key. The key argument’s
default value is the first character of every entry in the list, but with this
lambda, we use the list function to break apart the name into a list of
individual letters, then reference the -1 index, which returns the last letter in
the list (which is also the last letter in each name). Armed with this key, the
sort method can then sort by last letter.

By the way, lambdas can take more than one argument. Here’s a simple
example:

a = lambda x, y, z: x + y + z

print(a(1, 2, 3))

19-05.py

320 PYTHON QUICKSTART GUIDE

This code displays:

6

You don’t have to give the lambda a name (like a in this case). I didn’t in
our sorting example. I did it in this example to demonstrate the concept more
succinctly and clearly.

You may not use lambdas often in your Python programming, but they’re
incredibly useful for quick inline logic.

Threading
Python can walk and chew gum at the same time. Almost all computers

today have multiple processor cores, so why not put them to good use? Doing
multiple things at once not only improves performance but also provides a
better user experience. Why have the user wait when you can process whatever
you need to do in the background?

Import threading, datetime, and time modules

import threading

import datetime

import time

Define the function for threading

def thread _ loop(name):

 # Loop 10 times

 for i in range(10):

 # Get a string with the current time in ISO 8601 format

 now = datetime.datetime.now().isoformat()

 # Display the time

 print(name + " - current time: " + now)

 # Sleep 1 second

 time.sleep(1)

Create several threads

thread1 = threading.Thread(target = thread _ loop, args = ("thread1",))

thread2 = threading.Thread(target = thread _ loop, args = ("thread2",))

thread3 = threading.Thread(target = thread _ loop, args = ("thread3",))

Start each thread

thread1.start()

19-06.py

321The Junk Drawer

thread2.start()

thread3.start()

Wait for threads to finish before exiting

thread3.join()

thread2.join()

thread1.join()

In this code, we start off by importing the threading module, which
contains the logic necessary to process threads. We also import datetime
and time: datetime to print the date, and time to sleep for 1 second. Then
we define the function thread _ loop. This is the function that will be the
thread that executes in the background.

Inside the function, we loop ten times and grab the current date, using
the ISO (International Organization for Standardization) 8601 standard for
convenience. Next, we print the time and then sleep for 1 second, pausing
execution before returning to the top of the loop again.

Back in the main execution of the program, we create three threads,
thread1, thread2, and thread3. The threading.Thread call is given two
arguments: the target, which in this case is the function thread _ loop, and
args, which are the arguments to supply to the function thread _ loop. In
our thread _ loop function, it takes one argument, name, but args accepts a
tuple and iterates over it, so to prevent it from separating out each individual
letter of the name and passing that as a single variable, we use ("thread1",),
creating an empty second entry, thus making the first (and only) argument
sent to our function the name of the thread.

Once the threads are created, we start each one. The threads will loop
and do their work, and the join method on each at the end will wait until
the thread is finished before exiting the program. If we didn’t use join, the
threads would barely get started before the program ended.

If you use threading in your program, make sure that each thread
is eventually joined. Otherwise, the thread can be inadvertently
terminated when your program ends.

When you see the resulting display, you’ll note that sometimes one thread
starts to print in the middle of another one, or before the thread has a chance
to enter a new line. This effect will vary depending on many factors, mainly
the speed of your computer and what else is running on your machine at the
time you run the program.

322 PYTHON QUICKSTART GUIDE

When you are threading, it is important to make sure that you don’t have
a race condition. Informally, a race condition is a situation when one or more
thread performs a task (updating a variable, displaying results to the screen,
etc.) at the same time as another thread (or the main program) in a way that
was unintended or is potentially harmful to the execution of the program.
Race conditions are notoriously hard to debug, so when you use threads, be
careful when modifying variables outside the function or performing tasks
that can affect the entire program.

To help prevent race conditions, you can obtain a lock and use it around
critical segments of code to prevent multiple threads from accessing the same
variable, running the same function, or otherwise performing actions that
would be problematic if they were run while other threads were doing the
same thing.

lock = threading.Lock()

with lock:

 self.critical _ variable += 1

Using this technique, we can be sure that only one thread at a time will
run the code within the with block. When using locks, be sure to lock only
the lines of code that require synchronization with other threads, or else you
will tie up your other threads and potentially reduce or defeat the benefits of
using multiple threads.

I don’t want to give you the impression that that’s all there is to threads.
Multithreaded applications are inherently more complex, and thoughts
and details on their design could easily fill a book. For more details, please
reference the Python threading documentation located at https://docs.
python.org/3/library/threading.html.

Cryptographic Hashing
Cryptographic hashing is the process of taking a string of any size and

generating a fixed-length, shorter code that represents the original data.
Unlike with compression, the hash cannot be used to recreate the original data.
Instead, the hash code is used to compare two strings (or, more commonly,
files—which are just long strings of data). You can also use the hash of a
string to ensure that the provided data matches the original data (figure 48).

323The Junk Drawer

Hashing can validate the contents of two sets of data. The hash function is run on both sets of

data (the original and the new) and if the hashes match, the data are equal.

Technically, two pieces of data can be completely different and
have the same hash. This is extremely unlikely and, mathematically,
a near impossibility, but it could happen. Nevertheless, for our
purposes—and in virtually all situations you will run across—you
can assume they are equal if they have the same hash.

Python makes hashing quite simple. Let’s generate a hash of two strings
and compare.

Import the hashlib module

import hashlib

Define two sets of data

original _ data = "The quick brown fox jumped over the lazy red dog."

new _ data = "The quick brown fox leaped over the spry orange cat."

Hash them both

original _ hash = hashlib.sha256(original _ data.encode()).hexdigest()

new _ hash = hashlib.sha256(new _ data.encode()).hexdigest()

Display the results

print("Original SHA256 hash: " + original _ hash)

print("New SHA256 hash: " + new _ hash)

When you run this code, you should get the following:
Original SHA256 hash: eba3f65217714021800aeae3c651cd4132800711078648dc117abc0a1b956fbc

New SHA256 hash: 407fa327c98cfdf8b42003bd4f7702b58f546239d33dd9c836df374da7054691

fig. 48

19-07.py

324 PYTHON QUICKSTART GUIDE

The hashlib.sha256 does the heavy lifting, but first we encode the
original _ data string in UTF-8, which is the default when using the
encode() method on a string. Additionally, the hash is returned as an object,
so to get the printable hash value, we use the hexdigest() method on the
hash result to obtain a usable value. A hex digest is a text string of printable
characters that represents the hash.

You might wonder why we bother to hash both strings when we could
have just compared them via the == comparison operator. Well, for a value
this short—just a simple sentence—we could have. But hashing is typically
performed on data that are quite large. Rather than hash it each time, a hash
is performed once on the data and the result can be used to check whether
one data set compares with another without having to rehash every single
file involved.

When we download software, especially security-related software, the
hash of the software download is often displayed as a string on the web page
where we get the file. We can then compare that hash against the downloaded
file. To generate the hash of a file, we can use the following console/terminal
commands (in each example, replace FILE with the name of the file).

 » Windows: certutil -hashfile FILE SHA256
 » macOS: openssl dgst -sha256 FILE
 » Linux: sha256sum FILE

Hashing lies at the heart of cryptocurrency and blockchain technology.
Essentially, the concept of blockchain is the hashing of each transaction
and the previous transactions to form a chain of verification (figure 49).

fig. 49

325The Junk Drawer

Working with CSV Files
Humans have invented a lot of diff erent data exchange formats, yet few

are as commonly used as comma-separated values fi les, or CSVs.
A data exchange format is a specifi ed way of saving data to a fi le so that

other programs can read them. Of course, plain text is readable by pretty much
any program, but plain text isn’t suffi cient to store some nuanced data structures.
So common formats were created to help diff erent programs import and
export data. JSON is now becoming a popular data exchange format over the
web, but many programs have a CSV import and export function.

A comma-separated values (CSV) fi le is simply a text fi le in which the
pieces of data are separated (delimited) by commas. Each “row” of data,
that is, a line, can have one or more comma-separated values. CSV fi les are
commonly used to import and export data to and from spreadsheets. Let’s
look at a simple sales report spreadsheet and then compare it to its CSV
export (fi gure 50).

A simple sales report spreadsheet with delicious beverages.

A CSV export of this data would look like this:

Month,Coffee,Tea,Hot Chocolate,Espresso

Jan,523,301,507,332

Feb,621,339,501,339

Mar,512,218,497,401

Apr,511,401,324,385

As you can see, each row of the spreadsheet, including the header, is on
its own line, and all the columns are separated by commas. Now let’s read this
CSV fi le in Python. If you want to run this example code, save the previous
content as sales.csv.

Import the csv module

import csv

fi g. 50

19-08.py

326 PYTHON QUICKSTART GUIDE

Import the pprint module

from pprint import pprint

Create empty list

sales _ data = []

with open("sales.csv", newline="") as csvfile:

 reader = csv.reader(csvfile)

 for row in reader:

 sales _ data.append(row)

pprint(sales _ data)

If the sales.csv file is in the same directory as this program, you’ll see
this:

[['Month', 'Coffee', 'Tea', 'Hot Chocolate', 'Espresso'],

 ['Jan', '523', '301', '507', '332'],

 ['Feb', '621', '339', '501', '339'],

 ['Mar', '512', '218', '497', '401'],

 ['Apr', '511', '401', '324', '385']]

I used the pprint module, called “pretty print”, to better display the
multidimensional list. But, ideally, I would like to see it this way:

[

 ['Month', 'Coffee', 'Tea', 'Hot Chocolate', 'Espresso'],

 ['Jan', '523', '301', '507', '332'],

 ['Feb', '621', '339', '501', '339'],

 ['Mar', '512', '218', '497', '401'],

 ['Apr', '511', '401', '324', '385']

]

In my mind, this makes the most sense, but the pprint version is nearly
as illustrative. The csv.reader and subsequent for loop read each line as a
comma-separated value line and append it as a list to the sales _ data list,
which is why the result is a multidimensional list—each row is its own list.
This method makes it easier to access the data.

For example, if we want the third column of the second row, we use:

sales _ data[1][2]

327The Junk Drawer

Indexes start at zero, not one.

The result would be '301'.
To write this data as a CSV, it’s just as simple.

Import the csv module

import csv

Generate the data

sales _ data = [

 ['Month', 'Coffee', 'Tea', 'Hot Chocolate', 'Espresso'],

 ['Jan', '523', '301', '507', '332'],

 ['Feb', '621', '339', '501', '339'],

 ['Mar', '512', '218', '497', '401'],

 ['Apr', '511', '401', '324', '385']

]

with open("sales-write.csv", "w", newline= '') as csvfile:

 writer = csv.writer(csvfile)

 for row in sales _ data:

 writer.writerow(row)

When we run this code, the for loop will iterate over the writer, defining
a temporary row list that writer.writerow uses to write to the sales-write.
csv file. The newline argument serves to prevent a possible issue on Windows
that might generate additional blank lines. We can examine the file and see
that it looks like the original CSV file.

If you double-click on the sales-write.csv file, your operating
system may try to open it in a spreadsheet program like Microsoft®
Excel. If you want to see the actual CSV file contents, open it in a text
editor instead. However, if you do open it in a spreadsheet program,
you'll notice it will look much like our spreadsheet screenshot at the
start of this section (figure 50).

Pip
Pip, which stands for “Pip Installs Packages” according to its creator, Ian

Bicking, is a convenient tool for installing, managing, and updating Python

19-09.py

328 PYTHON QUICKSTART GUIDE

packages. It allows us to utilize any package in the Python Package Index, or
in other third-party repositories if they’re compatibly confi gured.

To install a Python package, simply run the following:

pip install PACKAGE

Where PACKAGE is the name of the package you want to install. You
can use the Python Package Index to search for Python packages. For more
information on using it, please see chapter 21.

Compiled Modules

Th e original km-miles.py fi le.

Th e bytecode km-miles.pyc fi le.

fi g. 51

fi g. 52

329The Junk Drawer

When Python imports a module in a Python program, it converts it to
bytecode, an intermediate binary format that is closer to the type of code your
computer executes behind the scenes. You will likely see a distance.pyc in
your source code folder from when we made the Distance class into its own
module. In figures 51 and 52, you can see the original .py file (our kilometers
to meters example) and .pyc bytecode.

Bytecode isn’t readable by humans, but that’s fine because we don’t edit
it—instead we create and edit .py files. Bytecode is faster to load and is
generally faster to execute. The resulting compiled file is saved in the same
directory using the same file name but with a .pyc file extension.

You can force Python to bytecode compile any .py file by going into the
interpreter (or writing a simple Python program) and using the following code:

import py _ compile

py _ compile.compile("file.py")

Replace file.py with the name of the file to import, and you’ll see
something like this:

' __ pycache __ /file.cpython-39.pyc'

Bytecode isn’t readable by humans, but that’s fine because we don’t edit
it—instead we create and edit .py files. Bytecode is faster to load and is
generally faster to execute. The resulting compiled file is saved in the same
directory using the same file name but with a .pyc file extension.

You can force Python to bytecode compile any .py file by going into the
interpreter (or writing a simple Python program) and using the following code:

import py _ compile

py _ compile.compile("file.py")

Replace file.py with the name of the file to import, and you’ll see
something like this:

' __ pycache __ /file.cpython-39.pyc'

This creates a folder called __ pycache __ and places the file.cpython-39.
pyc file within it. The 39 will vary based on your version of Python.

You can also compile all .py files in a directory by changing to that
directory in your console or terminal (with the cd directory command,
where directory is the name of the directory in question) and running this:

330 PYTHON QUICKSTART GUIDE

python -m compileall

If you’re wanting to distribute a commercial program in bytecode (i.e.,
.pyc files), keep in mind that Python bytecode is easily reversed into Python
source code (although the resulting file won’t have comments). So you can’t
achieve total obfuscation—that is, the hiding of your source code—from the
public with bytecode alone.

Chapter Recap

 » We can access Python’s built-in help system by typing help() at the
interactive Python prompt and then entering the topic we’d like to
reference at the help> prompt.

 » Environment variables and command line arguments allow us to
access data from the operating environment and command shell.

 » Python’s threading capability lets us do multiple things at once.
It’s important to join the threads at the end and to be careful of
race conditions.

331Optimizing Python

| 20 |
Optimizing Python

Chapter Overview
 » The first optimization step is to profile your code
 » Apparent speed is sometimes more important than actual speed
 » Cache results and avoid doing the same thing twice

Much has been discussed, written, and shared about optimizing programs.
And everyone has an opinion about how it should be done. Rather than strike
out with some controversial or radical take on this, I think it best to distill
down the common guidance I’ve been given (and have discovered) over the
years into a concise checklist of things to do when your code is running slowly
or using too many resources.

The entire Super Mario Bros game for the Nintendo Entertainment
System fit within the memory space of a 32 kilobyte (256 kilobit)
cartridge. That’s 32,000 characters. Back then, programmers were
faced with enormous hardware limitations and yet still performed
some amazing feats of engineering! How’s that for inspiration for
keeping your program’s resource usage to a minimum?

Python may not be known as the fastest programming language, but
it’s certainly one of the most versatile. Nevertheless, the Python developers
have spent a lot of time optimizing Python’s performance, so you can expect
generally good performance from the interpreter. Still, there are things you
can do to help ensure your code runs as fast as possible.

These tips are in no specific order, and some may work better for you in
some situations than others. However, you first need to know where to focus
your efforts.

332 PYTHON QUICKSTART GUIDE

Profiling
The most effective way to optimize a program is to spend your time

optimizing the slowest or most resource-consuming part. And profiling the
application shows you what that part is, so it should be done first.

Python includes the cProfile module, which gives you a breakdown of
the time spent in each part of a function or line of code.

import cProfile

import math

def myfunction(x):

 a = math.cos(x)

 b = math.pi

 c = math.e

 print(abs(a + b / c))

cProfile.run("for i in range(50000): myfunction(i)")

The run function takes a string containing the code to run (in this case, it
executes myfunction 50,000 times). It also runs everything on one line, so the
block that the for statement runs is actually after the colon and not indented.

200003 function calls in 0.161 seconds

Ordered by: standard name

Ncalls tottime percall cumtime percall filename:lineno(function)

50000 0.015 0.000 0.155 0.000 <stdin>:1(myfunction)

1 0.006 0.006 0.161 0.161 <string>:1(<module>)

50000 0.002 0.000 0.002 0.000 {built-in method builtins.abs}

1 0.000 0.000 0.161 0.161 {built-in method builtins.exec}

50000 0.135 0.000 0.135 0.000 {built-in method builtins.print}

50000 0.003 0.000 0.003 0.000 {built-in method math.cos}

1 0.000 0.000 0.000 0.000 {method 'disable' of ' _ lsprof.Profiler' objects}

Here, you can see the number of calls (ncalls), total time (tottime),
time per call (percall), cumulative time (cumtime), and the file name, line
number, and function involved. You can ignore the builtins.exec line
because exec is called internally by cProfile.run to execute the code to profile.
Therefore, its cumulative time is 0.161, matching the total cumulative time.

20-01.py

333Optimizing Python

Most important, of the built-in methods, print (represented by builtins.
print) took the most time, followed by cos (math.cos – or cosine).

It may seem like total time and cumulative time are the same
thing. However, total time refers to time inside the function itself,
whereas cumulative time describes the time within the function
and all the other function calls within it.

There’s not a lot you can do to optimize print, but this serves to illustrate
that profiling can help you focus on what’s important. Since the proof is, as
they say, in the pudding, I want you to see the results of each tip I give you.
In this chapter, I’ll profile each optimization with cProfile so you can see
the difference.

Your performance journey should start with profiling. Once you have
a baseline profiling report, then apply an optimization and profile again to
see if what you did helped. Test only one thing at a time so you know what
improved your code. If you test multiple items at once, you won’t know which
one made the most impact.

Apparent Speed Usually Matters More
There are two basic measures of performance in terms of programs: wall

clock time and apparent execution speed. Wall clock time is the actual amount
of time it takes for a task to be done. Apparent execution speed is the time
it appears to take to do a given task and is largely a subjective measurement.

Sometimes the distinction is nonexistent or subtle, but a skilled
programmer can make a long-executing task appear to take a shorter amount
of time, in the eyes of the user. If that’s not possible, at least providing a
percentage of completion, or status messages as the task runs, can help the
user feel more comfortable during the wait.

I’m sure you’ve wondered sometimes if a website or desktop application
was locked up because it appeared to do nothing for a moment after you
performed an action. In some ways, this kind of experience is worse than
slowness, because it makes the user think that something is wrong or that
your program is unreliable.

You can use threading to execute a long-running task in the background
while you let the user perform other tasks. Or, if there’s nothing else
meaningful for the user to do during that period, use a thread to give an
on-screen report of the task’s status. Getting the progress of a task is simple
if you are performing the work in a loop, which is most likely the case with
long-running processes.

334 PYTHON QUICKSTART GUIDE

Here’s a quick example of a function outputting the percentage complete
during its execution.

def percent(n):

 return(str(n * 100) + "%")

def long _ task():

 # Start a long loop and do some string work

 for i in range(100000):

 a = "Hello, World!"

 b = a + " " + a

 c = len(b)

 for j in range(c):

 d = b[j]

 e = d

 progress = i / 100000

 print(percent(progress))

long _ task()

Another example is an install program displaying interesting graphics
or text for the user to read while the program is being set up on their computer.
This is less common today than it was back when disks were slower and setup
times were excessive, but the strategy is still used during operating system
and office suite installs.

Another scenario you may have encountered is a splash screen: an
attractive graphic displaying the name of a program, its author(s), and its
version information while the program is being loaded. Adobe Photoshop and
many other large programs use this technique. It is accomplished by quickly
displaying the splash graphic before anything else is loaded or initialized and
then using thread(s) in the background to get everything else set up and ready
for the user. The eye is distracted by the colorful graphic or logo, and it gives
the user the impression that work is being done, rather than leaving them
wondering if the program actually started at all.

Don't Reinvent the Wheel
Unless you have a good reason to do differently, I advise using built-in

functionality whenever possible. Sure, you can build your own list class and
give more features, but smart programmers have written highly optimized

20-02.py

335Optimizing Python

code over the years to handle lists, and your implementation will likely not
benefit from that expertise.

If you need functionality that isn’t in the standard modules, try searching
the Python Package Index (see chapter 19). You might find a module that does
most or all of what you need. Even if it isn’t the best or fastest code, you’ll
have a starting place to build from that can accelerate your development time.

Cache Results
When you are going to use the result of a function’s output more than once,

cache that result in a variable rather than invoking the function multiple times.

Avoid this

for i in range(100):

 print(math.sin(math.pi / 3))

Instead, do this

a = math.sin(math.pi / 3)

for i in range(100):

 print(a)

In the first example, the sine and division operation must be completed
many times within the loop. But there’s no need. If you know the data won’t
change, store it in a variable at the beginning and use it throughout your code.

Let’s see the performance impact of this optimization.

import cProfile

import math

import contextlib

Avoid this

def slow _ func():

 for i in range(100000):

 with contextlib.redirect _ stdout(None):

 print(math.sin(math.pi / 3))

Instead, do this

def fast _ func():

 a = math.sin(math.pi / 3)

 for i in range(100000):

20-03.py

336 PYTHON QUICKSTART GUIDE

 with contextlib.redirect _ stdout(None):

 print(a)

print("**** SLOW FUNCTION ****")

cProfile.run("slow _ func()")

print("**** FAST FUNCTION ****")

cProfile.run("fast _ func()")

I made two small differences in this code. First, I imported the
contextlib module and used it in a with block to redirect the standard
out that print uses to None, which prevents the loop from printing. I also
increased the range iteration count to 100000 to slow the function down and
make the performance impact more noticeable.

If you find that this or any other loop code in this chapter takes too
long on your computer, feel free to adjust the iteration count in range.

On my computer, when I run the previous code, the difference is clear.

**** SLOW FUNCTION ****

 1000004 function calls in 0.317 seconds

 Ordered by: standard name

 ncalls tottime percall cumtime percall filename:lineno(function)

 1 0.000 0.000 0.317 0.317 <string>:1(<module>)

 1 0.208 0.208 0.317 0.317 cache-results.py:6(slow _ func)

 100000 0.013 0.000 0.013 0.000 contextlib.py:329(__ init __)

 100000 0.039 0.000 0.051 0.000 contextlib.py:334(__ enter __)

 100000 0.024 0.000 0.035 0.000 contextlib.py:339(__ exit __)

 1 0.000 0.000 0.317 0.317 {built-in method builtins.exec}

 100000 0.004 0.000 0.004 0.000 {built-in method builtins.getattr}

 100000 0.004 0.000 0.004 0.000 {built-in method builtins.print}

 200000 0.010 0.000 0.010 0.000 {built-in method builtins.setattr}

 100000 0.005 0.000 0.005 0.000 {built-in method math.sin}

 100000 0.004 0.000 0.004 0.000 {method 'append' of 'list' objects}

 1 0.000 0.000 0.000 0.000 {method 'disable' of '_ lsprof.Profiler' objects}

 100000 0.006 0.000 0.006 0.000 {method 'pop' of 'list' objects}

**** FAST FUNCTION ****

 900005 function calls in 0.285 seconds

337Optimizing Python

 Ordered by: standard name

 ncalls tottime percall cumtime percall filename:lineno(function)

 1 0.000 0.000 0.285 0.285 <string>:1(<module>)

 1 0.188 0.188 0.285 0.285 cache-results.py:12(fast _ func)

 100000 0.013 0.000 0.013 0.000 contextlib.py:329(__ init __)

 100000 0.037 0.000 0.048 0.000 contextlib.py:334(__ enter __)

 100000 0.023 0.000 0.033 0.000 contextlib.py:339(__ exit __)

 1 0.000 0.000 0.285 0.285 {built-in method builtins.exec}

 100000 0.004 0.000 0.004 0.000 {built-in method builtins.getattr}

 100000 0.003 0.000 0.003 0.000 {built-in method builtins.print}

 200000 0.009 0.000 0.009 0.000 {built-in method builtins.setattr}

 1 0.000 0.000 0.000 0.000 {built-in method math.sin}

 100000 0.003 0.000 0.003 0.000 {method 'append' of 'list' objects}

 1 0.000 0.000 0.000 0.000 {method 'disable' of '_ lsprof.Profiler' objects}

 100000 0.005 0.000 0.005 0.000 {method 'pop' of 'list' objects}

Not only is the fast _ func() faster by 0.032 seconds, but the faster
function makes almost 100,000 fewer function calls.

Just be careful that the cached data is always correct. If at some point the
value could change (e.g., you alter it, or you need to change the way you get
the data due to some condition in the code), run the function again to get a
new value. Even if you must obtain the new value several times, that is better
than having to run the same code hundreds or thousands of times in a loop.

Use Multiple Assignment
If you need to assign three or more variables in a row, use multiple

assignment.

Avoid this

a = 1

b = 2

c = 3

d = 4

Instead, do this

a, b, c, d = 1, 2, 3, 4

338 PYTHON QUICKSTART GUIDE

This may give you a speed boost and lets the interpreter skip a few steps.
To see it in action (and test the presence of a performance gain), we’ll need to
use a loop to extrapolate the results.

import cProfile

def slow _ func():

 for i in range(100000):

 # Avoid this

 a = 1

 b = 2

 c = 3

 d = 4

def fast _ func():

 for i in range(100000):

 # Instead, do this

 a, b, c, d = 1, 2, 3, 4

print("**** SLOW FUNCTION ****")

cProfile.run("slow _ func()")

print("**** FAST FUNCTION ****")

cProfile.run("fast _ func()")

And here are the results:

**** SLOW FUNCTION ****

 4 function calls in 0.010 seconds

 Ordered by: standard name

 ncalls tottime percall cumtime percall filename:lineno(function)

 1 0.000 0.000 0.010 0.010 <string>:1(<module>)

 1 0.010 0.010 0.010 0.010 assignment-results.py:3(slow _ func)

 1 0.000 0.000 0.010 0.010 {built-in method builtins.exec}

 1 0.000 0.000 0.000 0.000 {method 'disable' of '_ lsprof.Profiler' objects}

**** FAST FUNCTION ****

 4 function calls in 0.007 seconds

 Ordered by: standard name

 ncalls tottime percall cumtime percall filename:lineno(function)

 1 0.000 0.000 0.007 0.007 <string>:1(<module>)

20-04.py

339Optimizing Python

 1 0.007 0.007 0.007 0.007 assignment-results.py:11(fast _ func)

 1 0.000 0.000 0.007 0.007 {built-in method builtins.exec}

 1 0.000 0.000 0.000 0.000 {method 'disable' of '_ lsprof.Profiler' objects}

It’s not much, but every little bit helps. And, if you’re doing this quite
often, the time savings can really add up to a significant optimization.

Exit As Soon As Possible
If something goes wrong, or the function won’t be able to do what it’s

supposed to do, raise an exception, or return a value that provides the calling
code with a clue as to how to proceed. Oftentimes, I’ll exit early with a
return False or similar, and the calling code will check for False and
interpret that to mean that something failed.

Depending on your case, this can be a huge timesaver. However, it’s
difficult to illustrate this in a code sample because the situation in your app
will likely be dramatically different. Regardless, if you remember the mantra
“exit early if you can’t finish the block,” you’ll write faster, more efficient code.

Use Lazy Loading
Lazy loading is the process of importing modules and loading data that

you need when you need it and not a moment before.
In our code samples, we’ve been importing the modules we need at

the top of each program. There’s nothing wrong with that approach, and
for small programs it makes sense. But in larger programs, you can reduce
memory usage and perhaps shave a few nanoseconds off your runtime by
loading modules only when needed.

Use the Latest Python Version
With each release, the programmers of Python squash bugs and improve

the security and performance of the interpreter. There have been many
occasions when I’ve seen significant performance improvements by simply
upgrading the version of Python I am using to the latest stable release.

Optimizing the Coffee Shop Simulator
I don’t believe there’s such a thing as perfect code, but it’s certainly

possible to optimize the coffee shop simulator game to be more efficient—

340 PYTHON QUICKSTART GUIDE

and possibly faster. Any potential performance gains should be discoverable
through profiling.

Try using cProfile to benchmark the game and see if you can find the
parts of code that are the slowest. Once you identify the bottlenecks, examine
the code to determine if there is a better approach. There are undoubtedly
some inefficiencies in the game that could be improved.

Chapter Recap

 » Before doing anything else, profile your code with cProfile. This
will save you time by pinpointing where you need to optimize your
code.

 » Sometimes apparent speed is more important than the actual
time it takes to do something. Consider your users’ workflow and
enjoyment of the program.

 » Cache results to avoid redundant code, exit a block of code as soon
as you know you can’t finish the block, try lazy loading modules,
and use the latest version of Python for best results.

341What's Next?

| 21 |
What's Next?

Chapter Overview
 » Keeping up with Python
 » Finding Python packages
 » The open-source community of Python

You may not realize it yet, but you’re a Python programmer.

And not just a beginner, either. If you’ve completed all the exercises in
this book up until this point, you can safely say you have a fair bit of experience
with programming in Python. Granted, writing your own program from
scratch is something you’ve yet to do, but you have all the knowledge you
need to get started on a project.

My hope is that I’ve given you the knowledge you’ll need not only to
write your own Python programs but to know how to ask the right questions
when you get stuck. I’ve seen many a programming problem solved, by both
colleagues and myself, when we knew exactly how to phrase the web search
to find the right answer.

Don’t feel bad if you find yourself constantly referencing things from this
book even after you’ve read it from cover to cover. I’ve been programming for
over twenty years, and I still look up things on a regular basis. You’ll continue
to do so, even as a master Python programmer. Maybe a bit less often, but
it’s impossible to know everything about Python. And even if you somehow
managed that feat, new modules are released daily.

Keeping Up with Python
The Python web page, https://www.python.org, is an excellent resource

for all things Python. Not only does it have good reference documentation,
but the news section is updated often with announcements of new versions
and important events in the Python ecosystem.

342 PYTHON QUICKSTART GUIDE

The Python Package Index
Are you looking for a package with certain functionality? Th e Python

Package Index is the best place to start. At https://pypi.org, you can search
for what you need, and it will show a list of matching packages.

For example, if you’re needing to read a Microsoft® Excel spreadsheet,
search for excel and you’ll see a plethora of matches (fi gure 53).

Th e Python Package Index list of packages relating to “Excel.”

You can click on each result to see more details about it, and if you want
to install it, you generally do so with the pip command.

pip install package

Replace package with your package name.

Of course, not every package will suit your needs, and some have been
abandoned. I would advise clicking on Release history on the left-hand side
(fi gure 54) to see if there have been recent updates. If the last version was
released eight years ago, that’s probably a good indicator that the project is no
longer supported.

fi g. 53

343What's Next?

A look at the release history of the drf-excel package.

Frequent updates are generally a good thing to see. Active development
means you’ll probably get quick security updates and bug fi xes. Most projects
have links to their GitHub page as well, where you can browse the code
and see the history of the project. Additionally, a lot of packages will have
instructions for use on their main page, and if not, you can usually fi nd it on
the project’s home page (found under Project links > Homepage).

If you’re writing software that will be used long term or depended
upon heavily for important tasks, it’s a good idea to carefully consider
using external packages. While they can provide extraordinary
functionality with minimal effort, keep in mind that you are responsible
for making sure the package is adequately maintained. And this
doesn’t just apply to the package itself, as it may have its own
dependencies to consider.

I don’t want to talk you out of using packages from the Python
Package Index, but on important projects, I do advise performing due
diligence on each dependency.

fi g. 54

344 PYTHON QUICKSTART GUIDE

Python News through Google
For a broader view of all the news related to Python, you can use Google

News. Visit https://news.google.com and type “Python” in the search bar
at the top of the page (but don’t yet hit ENTER). You’ll see a dropdown of
various options; click the one that says “Python” with Topic in italics right
under it. The entry should have the Python logo.

When you select this item, Google will show a list of news articles in
the media that pertain to Python. Choosing “Python Topic” rather than
just blindly searching for “Python” will eliminate news stories about
nonvenomous snakes. You can click the follow button at the top of the
results to be alerted whenever there’s a news story about Python.

Getting Help
If you get stuck on a Python problem, the programming Q&A forum

Stack Overflow, located at https://stackoverflow.com, is a great place to get
help. The search engine at the top of the page is pretty good at finding what
you want, or you can use the [python] tag to limit your search to entries
related to Python.

[python] converting string to integer

In this search, the [python] tag in brackets will ensure that the results
are related to Python programming.

If you’re looking for discussion, the Python subreddit at https://www.
reddit.com/r/Python is a great place to start. The community is quite active,
with almost a million members at time of publication.

The Python Education subreddit at https://www.reddit.com/r/
learnpython is a great place for Python beginners and has over six hundred
thousand members at time of publication. But you’ve read this book and you’re
an awesome Python programmer now, so you may not need this. Nevertheless,
I’ve found that there’s no greater teacher than the process of helping someone
else learn. Discussing Python in either subreddit will sharpen your skills and
keep you up to date on the language.

If conversing via Discord is your thing, check out the Python Discord at
https://discord.gg/python.

Python Is Open-Source Software
The Python interpreter, as well as many of the packages that are available

for it, is open-source. The project was developed with the hard work of many

https://www.reddit.com/r/Python
https://www.reddit.com/r/Python

345What's Next?

volunteers, and through their labors they have created not only an amazing
programming language but a thriving ecosystem.

I encourage you to give back to the community if you can. You can submit
bug fixes or patches, write documentation for Python, write a package, or
even donate to the Python Software Foundation. Even if you’re writing
proprietary software for yourself or your company, you might still be able to
release some small portion of it as an open-source package—perhaps some
code that has a stand-alone function or integrates with another system.

Of course, if you’re writing code for hire, check with your employer for
their desired licensing terms. If they’re leery of sharing any of their code, you
can remind them that releasing part of their software will enlist the help of
the broader open-source community to find bugs and submit patches that
benefit everyone. Also, open-source projects can serve as free promotion for
the company that releases them.

The ClydeBank Coffee Shop Simulator Game
Throughout this book we’ve built on the coffee shop simulator game. By

chapter 16 it was complete, but that doesn’t mean development has to stop
there. I would encourage you to add your own features to the game or modify
it as you see fit. I’ve made a few suggestions in the “On Your Own” callouts
throughout the book, but feel free to implement your own enhancements.
The sky’s the limit!

Chapter Recap

 » The official Python website contains news, great documentation,
and a host of other resources.

 » You can keep up with Python news via the Python website and
through news alerts with Google News.

 » Stack Overflow and Reddit are great places to get Python help.

 » Python is open-source and has a large community of developers.

347Conclusion

Conclusion
When my wife became a notary public, she received a little pamphlet
titled “So, You’re a Notary.” I gave her a bit of undeserved teasing about this.
However, after reading through it, I understood a deep philosophical truth
about life. I’m sure the author of the pamphlet didn’t intend it to be a life-
changing publication, but what I realized from this gem was that so many
of life’s accomplishments don’t come with a manual for mapping the rest of
your path.

Your Python career began the second you picked up this book and
committed yourself to learning Python. This was no small achievement, and
here you are with some great experience under your belt. You’ve programmed
a video game—granted, with some guidance, but how many people can say
that? This process has given you a new way to think about computing problems.
You have the power to make your computer do quite literally anything you
want it to do. Dissatisfied with a piece of software you use? You can now write
a replacement! Have an idea for the next killer application? Write it!

In chapter 21, (What’s Next?), I tried to show you some next steps, but
I could only speak in general terms because it is no understatement to say
that the whole world of programming is in your hands. A new era of cloud
computing was born when Dropbox was written with Python. YouTube uses
Python to innovate with new features, letting you binge watch an endless
stream of videos. And NASA uses Python to lead the next generation
into space.

That leaves me with one final question for you—what awesome new
software will you build with Python?

348 PYTHON QUICKSTART GUIDE

REMEMBER TO DOWNLOAD
YOUR FREE DIGITAL ASSETS!

Use the camera app on your mobile phone to scan the QR code
or visit the link below and instantly access your digital assets.

go.quickstartguides.com/python

TWO WAYS TO ACCESS YOUR FREE DIGITAL ASSETS

or

String Formatting Codes Cheat Sheet

Regular Expression Cheat Sheet

Logging Formats Reference

List of Built-in Exceptions

349Appendix: On Your Own Answer Key

Appendix
On Your Own Answer Key

There’s more than one way to solve a problem in programming. Some solutions
are better than others, and specific approaches have the advantage of being
faster, being easier to expand, or containing fewer lines of code. Nevertheless,
don’t feel bad if your code doesn’t exactly match these examples. In fact, there
may be even better solutions than these.

If you are stuck and need the solution, I encourage you to find the answer
here and then expand on what you are trying to do. This will give you even
more programming problem-solving experience.

Chapter 1: What’s in a Name?
Here is the simplest approach to solving this exercise.

name = input("What is your name? ")

print("The first letter of your name is " + name[:1] + ".")

Remember, if your example works but doesn’t look like mine, don’t worry.
You still solved the problem!

Chapter 3: Number-Guessing Game
Here are several approaches to the number-guessing game.

Simplest Solution
from random import seed

from random import randint

number = randint(1, 10)

guess = int(input("Please pick a number between 1 and 10: "))

if guess == number:

 print("You guessed the number correctly!")

CH01-01.py

CH03-01a.py

350 PYTHON QUICKSTART GUIDE

else:

 print("Sorry, that's incorrect. The number was " + str(number))

Loop Solution
This solution actually takes one fewer line of code and is more interactive.

from random import seed

from random import randint

number = randint(1, 10)

guess = int(input("Please pick a number between 1 and 10: "))

while guess != number:

 guess = int(input("Sorry, that's incorrect. Try again: "))

print("You guessed the number correctly!")

Chapter 5: More Bottles!
Here’s a solution to reverse the flow of time and return the bottles to

the wall.

Define the bottles _ song function with the start argument defaulting to 1

def bottles _ song(start = 1):

 # Set the initial number of bottles to the start argument

 bottles = start

 # Loop through until bottles are restored

 while bottles <= 99:

 # Display the song

 this _ verse = []

 this _ verse.append(str(bottles) + " bottles of beer on the wall. ")

 this _ verse.append(str(bottles) + " bottles of beer. ")

 this _ verse.append("Take one down, pass it around, ")

 this _ verse.append(str(bottles) + " bottles of beer on the wall. ")

 # Add a bottle

 bottles += 1

 # Yield to the calling function

 yield "".join(this _ verse)

 # Pick back up here when we return

CH03-01b.py

CH05-01.py

351Appendix: On Your Own Answer Key

 return True

Loop through the generator

for v in bottles _ song():

 print(v)

Chapter 6: Inches to Centimeters
Here’s a way to construct the Length class and the sample code to use it.

class Length:

 def __ init __ (self, inches):

 self. _ inches = inches

 @property

 def inches(self):

 return self. _ inches

 @inches.setter

 def inches(self, value):

 self. _ inches = value

 @property

 def centimeters(self):

 return self. _ inches * 2.54

 @centimeters.setter

 def centimeters(self, value):

 self. _ inches = value / 2.54

l = Length(1)

print("1 inch is " + str(l.centimeters) + " centimeters.")

l.centimeters = 5

print(str(l.centimeters) + " centimeters is " + str(l.inches) + " inches.")

Chapter 7: A Fantasy World
Here’s the class design I came up with for elements of a role-playing

game. Your code may be simpler or more complex, depending on how far you
went into the design detail.

CH06-01.py

352 PYTHON QUICKSTART GUIDE

A class of player (i.e., fighter, mage, rogue, etc.)

class PlayerClass:

 pass

The brave fighter

class Fighter(PlayerClass):

 pass

The wise mage

class Mage(PlayerClass):

 pass

The sneaky rogue

class Rogue(PlayerClass):

 pass

The powerful healer

class Healer(PlayerClass):

 pass

Our player

class Player:

 pass

Weapon base class

class Weapon:

 pass

A short sword

class ShortSword(Weapon):

 pass

A long sword

class LongSword(Weapon):

 pass

A bow

class Bow(Weapon):

 pass

CH07-01.py

353Appendix: On Your Own Answer Key

A dagger

class Dagger(Weapon):

 pass

Armor base class

class Armor:

 pass

Leather armor

class LeatherArmor(Armor):

 pass

Plate armor

class PlateArmor(Armor):

 pass

A shield

class Shield(Armor):

 pass

Base spell class

class Spell:

 pass

A fireball spell

class Fireball(Spell):

 pass

A simple healing spell

class Heal(Spell):

 pass

The monster

class Monster:

 pass

A basilisk (don't look!)

class Basilisk(Monster):

 pass

354 PYTHON QUICKSTART GUIDE

Chapter 11: Counting the Days
Here’s the simplest solution I can think of to find the difference between

now and a future date. In this example, I used Halloween of 2023.

import datetime

The future date

future = datetime.datetime(2023, 10, 31, 0, 0)

Now

now = datetime.datetime.now()

Calculate difference

difference = future - now

Display difference

print("It's " + str(difference) + " until " + str(future) + "!")

CH11-01.py

355About the Author

About
the Author

ROBERT OLIVER

Robert Oliver is the DevOps Manager
at a leading learning management system
provider and has consulted and developed
software for leading fi rms across the
globe for over two decades. He has been
programming in Python for years and uses it
in his daily systems management tasks.

In addition to writing technical books, Robert is the author of several fi ction
novels, including the successful Sign of Alchemy fantasy series.

Robert lives with his family in the beautiful Shoals Area of North Alabama.

To watch the Quick Clip, use the camera on your mobile phone
to scan the QR code or visit the link below.

www.quickclips.io/python-8or

Meet the author of the Python
QuickStart Guide.

357 About QuickStart Guides

About
QuickStart
Guides
QuickStart Guides are books for beginners, written by experts.

QuickStart Guides® are comprehensive learning companions tailored for
the beginner experience. Our books are written by experts, subject matter
authorities, and thought leaders within their respective areas of study.

For nearly a decade more than 850,000 readers have trusted QuickStart
Guides® to help them get a handle on their finances, start their own business,
invest in the stock market, find a new hobby, get a new job—the list is
virtually endless.

The QuickStart Guides® series of books is published by ClydeBank Media, an
independent publisher based in Albany, NY.

Connect with QuickStart Guides online at www.quickstartguides.com

359Glossary

Glossary
Apparent execution speed
The speed at which a user
perceives a program or process
to run.

Argument
A value supplied to a function or
method.

ASCII
Stands for American Standard
Code for Information
Interchange. The ASCII
system defines human-readable
characters from binary data.
UTF-8 has largely replaced this
format.

Assembly language
A human-readable version of
machine code, the bare-metal
programming language that
computers natively understand.

Assertion
A test of the output of code
against a known value.

Branching
The process of copying code to
a new, independent version in a
Git repository.

Breakpoint
A location in code where a
debugger will break (pause)
execution.

Buffer
A variable or data structure
that stores data meant to be
processed, usually during input
and output operations.

Business logic
Code that contains unique and
essential functionality within an
application.

Caching
The process of loading frequently
accessed data from a slower device
(like a disk) to a faster device (like
memory) for quick retrieval.

Case-sensitive
A condition in which uppercase
and lowercase letters are
considered distinct.

Casting
The act of converting one type of
variable into another type.

Class
A structure that defines a reusable
container that holds both data
(variables) and logic (functions).

Class variable
A variable shared across all
objects of the same class.

Cloning
In regard to Git repositories,
the process of copying the
repository to another location
(usually from a provider like
GitHub to a local computer).

Command line arguments
Options provided after the
program name on the command
line.

Compression
In regard to data, the act of
eliminating redundancies and
structuring data so that it takes
up less space.

Concatenation
In Python, the act of joining one
or more strings.

Constant
A read-only variable.

360 PYTHON QUICKSTART GUIDE

Content delivery network
A geographically distributed
network of servers that serve
assets (usually images, CSS,
JavaScript, and HTML files)
to visitors. The closest server is
used, thus saving access time.

Data exchange
The act of transferring data in a
standardized way.

Database
A software program that stores
data in an organized manner and
provides a mechanism to retrieve
that data.

Decorator
In Python, a line of code placed
above a function or method that
declares additional scope or
attributes.

Deduplication
The act of removing redundant
data.

Delimiter
One or more characters that
separate segments of data.

Delta
The change in value.

Design pattern
An established method or
paradigm for approaching a
problem.

Environment variables
Strings (usually short) that are
available in the operating system
and accessible to programs.

Escape sequence
A series of characters that
represent something other
than the characters themselves.
Escape sequences provide special
processing within a regular
expression.

Evaluate
The act of executing the statement
and converting it into a value.

Exception
An error that occurs during the
regular execution of a program.
Python can raise a wide variety
of exception errors depending on
the error condition encountered.

Flag
A variable, usually True or False,
that denotes whether a certain
status or state has been reached.
Often used as a toggle switch or
an indicator of an evaluation.

Floating-point number
A number that contains a
decimal point.

Fork
A copy of a Git repository that
is independent of the original
repository. Can be merged back
into the original repository via a
pull request.

Function
A named, grouped set of
commands that usually accepts
arguments and returns one or
more values.

Garbage collection
A feature of the Python
interpreter that frees memory
that was used by variables,
objects, and other data structures
that are no longer needed.

Generator
A block of code that runs until it
reaches a yield statement, then
returns control back to the caller.
Subsequent calls to the generator
will resume where it left off,
continuing to the next yield
statement.

GET request
An HTTP request that tells
the web server that the browser
would like the contents of a page.

Global variable
A variable that is within the
scope of the main program.

Handle
The unique identifier of an open
file or device.

Hashing
The process of taking a string
and generating a shorter fixed-
length code that represents the
original data.

361Glossary

Integer
A variable that stores a whole
number.

Interpreter
The core Python system that
executes code.

IP address
A unique address referencing a
network device.

Iteration
A single execution through a loop.

JSON
Stands for JavaScript Object
Notation, a standard readable
text format used to store and
exchange data between processes.

Key-value pair
A pairing of a value with a
named index to reference it.

Lambda expression
A short, nameless (sometimes
called anonymous) function.

Lazy loading
The act of loading assets or
modules when needed rather than
at the beginning of execution.

Literal character
A character indicated to be the
actual character and to have no
special meaning beyond that.

Memory leak
A condition in which memory is
used but not released. Over time,
this grows to consume increased
memory, possibly more than the
system has available.

Merging
In regard to Git, the act of
combining two separate branches.

Metacharacter
A special character or sequence
of characters in a regular
expression.

Method
A function within a class.

Model–view–controller
Abbreviated MVC, a paradigm
that separates data, user
interface, and logic into models,
views, and controllers.

Module
Any Python code file.

Modulo
The value of the remainder when
dividing two numbers.

Multilevel inheritance
A class possessing a chain of
ancestors.

Multiple inheritance
A class possessing multiple
ancestors.

Hex digest
A string of hexadecimal digits
produced by a hashing function.

Immutable
Not changeable; read-only.

Index
A pointer to a specific piece of
data in a larger data structure.
Lists, for example, contain multiple
values, and an index allows a value
to be specifically referenced by its
position in the list.

Infinite loop
Any loop in execution that
continues (or has the potential to
continue) forever.

Inheritance
The process of a class deriving
functionality or structure from
an ancestor class.

Input
A term used to describe the data
received from a user or storage
device.

Input validation
The act of ensuring that input
matches an expected format.

Instance variable
A variable defined within a class
that is specific to that instance (in
other words, specific to that object).

362 PYTHON QUICKSTART GUIDE

Mutable
Changeable.

Namespace
A region of code that
differentiates logic and data
structures from other regions,
preventing colliding names and
providing organization to code.

Newline
A special character sequence that
denotes a line break, moving the
cursor position to the next line.

NOP
Stands for “no operation” and is
a statement (such as pass) that
tells Python to do nothing and
move to the next operation.

Obfuscation
The act of hiding or obscuring
the original source code of a
program.

Object
An instance of a class.

Object relational mapping
Abbreviated as ORM, a
paradigm aimed at making it
easier to work with tables, data,
and the relations between sets of
data in a database.

Object-oriented programming
An approach to programming that
involves objects that contain code
and data, modeled from classes.

Operator
A character or symbol that
assigns a value to a variable,
logically compares values,
or performs mathematical
functions.

Output
A term used to describe data
provided to a user.

Package
A collection of modules that
can be imported and used in a
program.

Port
A unique identifier more specific
than an IP address, which can be
opened for a specific program to
transmit on the network.

Private variable
A variable that is accessible only
to operations inside the class.

Property
A member of a class that acts
like a variable but allows the
execution of code when read or
written.

Pull request
A request to the maintainer of a
Git repository to accept a merge
of code from another branch or a
forked repository.

Race condition
A situation that occurs when two
or more threads or processes are
trying to access the same device
or read/modify the same piece
of data and inadvertently disrupt
the other threads.

Refactor
Organize and reformat code to
address previous design issues.

Regex anchor
A special symbol that describes
a certain position or attribute
within a string.

Regression
A flaw in software that was fixed
but reappears later (usually due to
further changes in the code).

Regular expressions
Sometimes called regex, a system
of symbols that allow searching
through strings to match specific
patterns.

Repository
In regard to Git, a container
where source code and its version
history are stored.

Resources
A term encompassing one or
more aspects of a system’s used
CPU, memory, and disk space.

Scalable
Able to grow and expand to meet
increased demands.

363Glossary

Scope
The place where data structures
and functions can be accessed.

Search engine optimization
The science and art of optimizing
a website for better rankings in
search engine results.

Serialization
The process of saving the state of
an object and its data to a string
(and later a file, if desired) so that
it can be recreated later.

Setter
A method that sets a property of
an object.

Source code management
The process of tracking
source code file versions
and synchronizing them for
collaboration purposes.

Splash screen
A screen or window displayed to a
user while the main program loads.

Standard in
Refers to the default device
that receives input—usually the
keyboard. Can be redirected if
needed. Often abbreviated as
stdin or STDIN.

Standard out
Refers to the default device
that generates output—usually
the screen. Can be redirected
if needed. Often abbreviated as
stdout or STDOUT.

String
A type of variable that contains
text and numbers and is generally
human-readable.

Test coverage
The ratio of lines tested to the
total lines of code.

Test-driven development
A quality assurance paradigm in
which programmers create tests
based on the requirements of the
program before writing any code
and then regularly test that code
to ensure proper operation.

Text file
A file containing readable
characters.

Tuple
A read-only, ordered collection
of data.

Unit testing
A testing method that focuses on
ensuring that individual parts of
code work as expected.

URL
Initialism for Uniform Resource
Locator; the address of a page or
resource on the web.

UTF-8
A method of character encoding
that greatly expands the ASCII
character set. It includes mostly
letters, numbers, and glyphs from
many international languages.

Variables
Locations to store data that are
referenced by name.

Wall clock time
The actual time that a process
takes to complete, not in terms
of CPU time but measured from
start to finish.

365References

References
CHAPTER 8
 https://peps.python.org/pep-0557/

CHAPTER 15
https://docs.djangoproject.com/en/4.0/faq/general/

CHAPTER 16
https://www.sqlite.org/mostdeployed.html

CONCLUSION
 https://blog.dropbox.com/topics/company/thank-you--guido

 https://www.python.org/about/quotes/

 https://www.python.org/about/success/usa/

Use the camera app on your mobile phone to scan the QR code
or visit the link below to record your testimonial and get your free book.

go.quickstartguides.com/free-qsg

TWO WAYS TO LEAVE A VIDEO TESTIMONIAL

or

Leave us a quick video testimonial on our website and
we will give you a FREE QuickStart Guide of your choice!

RECORD
TESTIMONIAL

SUBMIT TO
OUR WEBSITE

GET A
FREE BOOK

SAVE 10% ON YOUR NEXT

USE CODE: QSG10

Use the camera app on your mobile phone to scan the QR code or visit the link below the cover to shop.
Get 10% off your entire order when you use code ‘QSG10’ at checkout at www.quickstartguides.com

www.quickstartguides.shop/sql

www.quickstartguides.shop/dmarketing

www.quickstartguides.shop/rungrow

www.quickstartguides.shop/html-css

Terms: Your free Audible membership will rebill at up to $14.99 after the end of the 30-day trial period and is subject to Audible’s terms and conditions. There are
no commitments, and you can cancel your Audible membership at any time, including before the end of the trial period. Free monthly credits can be redeemed for
audiobooks from the Audible catalog and are yours to keep. This promotion is provided by Audible and is restricted to US and UK customers only. ClydeBank Media

QuickStart Guides are not affi liated with Audible. Any devices depicted on this page are for illustrative purposes only and are not included in this promotion. ClydeBank
Media QuickStart Guides may receive affi liate compensation should you choose to start a paid Audible membership using any of the links we provide.

Use the camera app on your mobile phone to scan the QR code
or visit the link below to select your free audiobook from Audible.

TWO WAYS TO SELECT A FREE AUDIOBOOK

or www.quickstartguides.com/free-audiobook

One Tree Planted is a 501(c)(3) nonprofi t organization focused on global
reforestation, with millions of trees planted every year. ClydeBank Media is

proud to support One Tree Planted as a reforestation partner.

Every dollar donated plants one tree and every tree makes a difference!

Learn more at www.clydebankmedia.com/charitable-giving or make a contribution at onetreeplanted.org.

PROUDLY SUPPORT ONE TREE PLANTED

