SQL

QuickStart Guide

The Simplified Beginner’s Guide
to Managing, Analyzing,
and Manipulating Data with SQL

Walter Shields

This digital copy is distributed by ClydeBank Media
QuickStart Guides (www.quickstartguides.com)
for individual use only. Digital reproduction,
print reproduction, or distribution of this file
or its contents is strictly prohibited. Copyright
ClydeBank Media LLC, all rights reserved.

http://www.quickstartguides.com

Copyright © 2019 by ClydeBank Media LLC

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including
photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of
brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. For permission requests, write to
the publisher, addressed “Attention: Permissions Coordinator,” at the address below.

ClydeBank Media LLC is not associated with any organization, product or service discussed in this book. Although the author and publisher
have made every effort to ensure that the information in this book was correct at press time, the author and publisher do not assume and hereby
disclaim any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from

negligence, accident, or any other cause.

All trademarks, service marks, trade names, trade dress, product names and logos appearing in this publication are the property of their respective

owners, including in some instances ClydeBank Media LLC. Any rights not expressly granted herein are reserved.

Trademarks: All trademarks are the property of their respective owners. The trademarks that are used are without any consent, and the
publication of the trademark is without permission or backing by the trademark owner. All trademarks and brands within this book are for
clarifying purposes only and are owned by the owners themselves, not affiliated with this document. The QuickStart Guide chevron design mark
is a registered trademark of ClydeBank Media LL.C.

Editor: Marilyn Burkley
Cover Illustration and Design: Katie Donnachie, Copyright © 2019 by ClydeBank Media LLC
Interior Design & Illustrations: Katie Donnachie, Copyright © 2019 by ClydeBank Media LLC

First Edition - Last Updated: August 26, 2022
ISBN-13: 9781945051753 (paperback) | 9781945051234 (hardcover) | 9781945051838 (eBook) | 9781945051920 (audiobook) | 9781636100197 (spiral bound)

Publisher’s Cataloging-In-Publication Data
(Prepared by The Donohue Group, Inc.)

Names: Shields, Walter, 1975- author.

Title: SQL quickstart guide : the simplified beginner’s guide to managing, analyzing, and manipulating data With SQL / Walter Shields.

Other Titles: SQL quick start guide

Description: First Edition (edited). | [Albany, New York] : ClydeBank Technology, [2019] | Includes bibliographical references and index.
Identifiers: ISBN 9781945051234 (hardcover) | ISBN 9781945051753 (paperback) | ISBN 9781945051838 (ebook)

Subjects: LCSH: SQL (Computer program language)--Handbooks, manuals, etc. | Database management--Computer programs--Handbooks,
manuals, etc. | Computer programming--Vocational guidance. | Querying (Computer science)--Vocational guidance. | LCGFT: Handbooks and

manuals.

Classification: LCC QA76.73.567 S55 2019 (print) | LCC QA76.73.567 (ebook) | DDC 005.756--dc23
Library of Congress Control Number: 2019950712

Author ISNT: 0000 0004 6515 9557

For bulk sales inquiries, please visit www.clydebankmedia.com/orders, email us at orders@clydebankmedia.com, or call 888-208-6826.

Special discounts are available on quantity purchases by corporations, associations, and others.

Chiank

Copyright © 2019
www.clydebankmedia.com
All Rights Reserved

ISBN-13: 978-1-945051-75-3 (paperback)
ISBN-13: 978-1-636100-19-7 (spiral bound)

iv. SQL QUICKSTART GUIDE

PRAISE FOR

wickStant Guiaded.

Really well written with lots of practical
information. These books have a very
concise way of presenting each topic
and everything inside is very actionable!

— ALAN F.

My new book is so helpful, it’s so easy
to understand and | can recommend
it to any client no matter what level of
expertise they have (or don’t have).

- AMANDA K.

Everything is written in a beautiful font
which is great for people who get bored
with reading.

— ANGEL L.

The book was a great resource, every
page is packed with information, but
[the book] never felt overly-wordy or
repetitive. Every chapter was filled with
very useful information.

— CUTRIS W.

| appreciated how accessible and how
insightful the material was and look
forward to sharing the knowledge that
I’'ve learned [from this book].

- SCOTT B.

My new QuickStart Guide is very easy to
follow, it’s really well written and it breaks
everything down, especially the essentials.

- ARIZE O.

After reading this book, | must say that
it has been one of the best decisions of

my life!

— ROHIT R.

This book is one-thousand percent worth
every single dollar!

- HUGO C.

The read itself was worth the cost of
the book, but the additional tools and
materials make this purchase a better
value than most books.

- JAMES D.

This is a “go-to” book for not only
beginners but also as a refresher for
experienced practitioners.

— CHARLES C.

I finally understand this topic ... this
book has really opened doors for me!

— MISTY A.

1 would like to give a special thanks to my family Julien, Max, Elke, and Norma.
1 couldn’t have written this book without their patience and support.

vi

Contents

INTRODUCGTIONccittuiirtnirtnniceancetnecstaescessscssnss 1
MY STOTY ettt ettt e e s e e e 3
WHhY | WOt THiS BOOKcciiiiiiieeeeeeeee ettt ettt e e 4
A Word of Encouragement for the Pure Beginner.............cccccccocueviiiiiiiiiiiiiiiiiciiiiiiicciccicns 5
The Scope and Focus of This BOOKccccoeviiiiiiiiiiiiiiiicicicciicicciccsiccc 5
Y@ T To I (oYUl OF T =T 6
Chapter by CRapLerccooiiiiiiiiiiiiiccc ettt 8

PART | - CREATING YOUR SQL LEARNING ENVIRONMENT

| 1| UNDERSTANDING DATABASE STRUCTUREcccccuttiieereennnnnneccneneennnnnneceness 13

Fundamental Terminologycccc.eeeeeeeiieieeeeeeee ettt 13
Fundamental Elements of Relational Databases...............uueeeeeeecvuveeeeeeeeeciiieeeeaeeecvseeseaeeenns 16
TYPES OF Data.....c.ccouiiiiiiiiiiiiiiiiiiiicict e 23
Relational Database Management SYStEMScoueeuueeieniieieeieeeeeeeeee et 27
The SELECT StAt@mMENT ..cccccueeviieeeeeeeiiieeeeeeeeetteeeeeeeeateaaaeeeeasaeaaaesessssessaaaessnssssaaassnnsnes 28
Queries, Statements, Clauses, and KeyWordsccooceeerieeceeeieeesieesiieesieeeeesee e 29
INtrodUCING SQLITEeeeeeieeeeee ettt ettt ettt et e e e e e nee e 30

| 2| SQL TOOLS AND STRATEGIES.......cccevuuuuuiiiirereennnnnnniicneneeennsnssssessseesssssssscsess 33

Introducing the STUNES Database............ceoeueeeieuieeieeiieeeieeeeeee ettt 33
Introducing DB Browser for SQLIte...........cccooiuiiiiiiiiiiiiiiiiiiicicicccc e 34
Installing DB Browser fOr SQLITE.........cccuttruteriteeteeieeeiteete ettt ettt site et eesiee s 34
How to Test Your SQL KNOWIEAGEueeiuiiiiiiieeieeeee ettt 34
Strategies fOr SUCCESSccovuiiiiiiiiiiiiiiiiicc e 35

| 3| EXPLORING A DATABASE IN SQLITEcccoeeiiiiiiiiiiniiisissnsscnsnnnsscnsenssssenseeees 39

Environment Orientation.............cccueeeveuiiiiiiiiiiiiiiiiiiiiiiieiiee sttt 39
Opening the sTunes Databasecccccuiuiviiniiiiiiiiiiiiiiiiiicicicc e 40
Investigating the Structure of the Database............ccceeecueeriuieeiieeriieeiieesieete et 41
Viewing the Individual Recordscccooiiiiiiiiiiiiiiiiiiiiiiiiiiciccccc e 42
The EXecute SQL Tabc..cocuiiiiiiiiiiiiiiiiiiieiieiietet ettt 43
Data Analysis Checkpoint.............cccocuiiiiiiiiiiiiiiiiiiiiiiiiciiccicccccc s 45

SQL QUICKSTART GUIDE

PART Il - WRITING SQL STATEMENTS

| 4 | GETTING STARTED WITH QUERIES.cccciiririmmmmnnniiinerieennnnniineneesenannennes 51
Adding CommENts t0 QUEIIESeeeuueeeueerieeeieeeiteeteet et ettt iteeteesiteesateesaee e 51
The Structure of @ BasiC QUETYcccueeeueerieeeiieeieeeiteeiteesiteetesitesitessitessatessitessatesnaeeeaes 52
Start Writing YOUr QUETYcoouiiviiiiiiiiiiiiiiiiciicciiiceitcit ettt 53
Coding Syntax Versus Coding CONVENTIONccecueeeueeeueeeiiieiteeiteeteesite ettt 56
Adding an Alias to YOUr COIUMNSccc..ueeiuiiiieiieeeeeeeee ettt 57
Using the ORDER BY ClaUSecccccouiiiiiiiiiiiiiiiiiiiiiicscecte e 58
Selecting the Top Ten Records Using LIMIT........ccccoouiiiiiiiiniiiiiiiiiiiiinicicicnicenceeeieaan 61
Data Analysis Checkpoint.............cccocuivuiriiiiiiiiiiiiiiiiiiicicccccccc e 62

| 5| TURNING DATA INTO INFORMATION.......ccoeeemmmmunneiccrerenennnnnecencneesansnssncness 65

Comparison, Logical, and Arithmetic Operatorsccccovuevuvivuirieiiiiciiiiiiiiiciccicciee 66
Filtering Records by Numbers with the WHERE Clause...........ccccccoevuiiiuiiiiiiiiiiiiicniccienee, 67
Filtering RECOIAS DY TEXT......eeeueeeeiieeiieeieeeieeet ettt ettt ettt e 72
Using the LIKE Operator to Search for Wildcards............cccccocuevuiiininiiciiiiiiininicicene, 74
Filtering Records by Date............ccccccoiiiuiiiiiiiiiiiiiiiiiiiicccccccc e 77
TRE DATE (1) FUNCHION......ccoeeeeeeeeeeeeeeeeeeeeeaaaaeeeeae e aaaeaeaaaeeeeaeaeeeeeeeeeeeeeeseseannns 78
Using the AND and OR Operators with Two Separate Fields............ccccccccvruiniiniinicnnnnen. 79
LR TEE @) S @ o =T - e OO 80
Using Parentheses with AND and OR to Specify the Order of Operations.......................... 81
The CASE State@meNtc..ccuiiiiiiiiiiiiiiiiiciece e 84
Data Analysis Checkpoint..............ccueeuiviiiiiniiiiiiiiiiiiiciciciceeccc et 89

| 6 | WORKING WITH MULTIPLE TABLEScccciiiiiiiiiiiiiiiinnsinnsnnnsesssensennsncsnneeens 91

WREE AFE JOINST ..ottt ettt ettt et et e et e s e 91
How Joins Interact with Relational Database Structure.............cocceeeeveevieciiecuiecicnceennennne. 94
Using JOINS With @n AlIGSccc..eeeieiiiieieeeeeeeee ettt 95
Join Types and Their Differencescccoveeiviieiiiiiiiniiiiiiiicicciccccccc e 98
Inner Joins with More Than TWo Tablesccceeievuieciiiiiiniiiniiiniiniciiceiciceciceveeiee 105
Using Left Outer Joins with NULL, IS, and NOTccccceeeierrieeneieeiieeniieeeieesieesieesiieeans 108
Turning a Right Join into @ Left JOiN..........ccccciiiiiiiiiiiiiiiiiiicicciccccc 111
Data Analysis Checkpoint..............ccccouiviiiniiiiiiiiiiiiiicicicccccc s 113
| 7 | USING FUNCTIONScoiirirmmmnnnniinnnreennnnnssisssssesssssssssssssssssssssssssssssssssssssses 115
Adding Calculations tO YOUr QUETIESc.c.ueeeueereueeeeiieeeieeeiieeete ettt esiteeeineesne e 115
Types of FUNCtions in SQLccc.ccuiviiiiiiiiiiiiiiieieiceeee e 116
Manipulating Text Data with String FUNCEIONSc.ccccoeviiiiiiiiiiiiiiiiiciiccccccce 118
Concatenating Strings Of TEXt.....cueeeuueeeuereieeeieeeteeeee ettt ettt ettt et et eateesaeeesaeeeas 120

Contents vii

TruNCating TEXt ..cccoviuiiiiiiiiiiiiiiiiii ettt ettt e e e s saaae e e e e 122

Additional String FUNCLIONScooouuiiiiiieeeeteeee ettt 125
Date FUNCLIONS .cceevveeiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee ettt eeeaeeaeaaaaaaaaeaenans 127
AGGregate FUNCHIONS........ccoovuuiiiiiiiiiiiiiiiiiiiiicce ettt ettt e e e 131
Nesting Functions with the ROUND () FUNCEION...cccccuutiieiiiieiieeeiieeeeeeeeeeeee e 132
Using Aggregate Functions with the GROUP BY Clausec.ccccoeveeeueeeneeeeieeeieeeieeenienane 133
Using the WHERE and HAVING Clauses with Grouped Queries............cccccouecuevinuinunennes 135
The WHERE Clause Versus the HAVING Clausecccceoceereeereiercueeeceeeciieecieeeceeeeneenans 138
Using GROUP BY with Multiple Fieldsccccooiririiiiiniiiiiiiiiciiiciiciciciccc 139
A Final Word on FUNCLIONSccccocuiriiniiiiiiiiiiiiiciiciceeeteeeste ettt 140
Data Analysis Checkpoint............c.ccoiiiiiiiiiiiiiiiiiiiiiciccc e 140

PART 111 - MORE ADVANCED SQL TOPICS

| 8 | SUBQUERIESccceuuuuuuiiirnriernnnnnniiisnneeennnnsssisssssesssssssssssssssssssssssssssssssssssssnes 145
Introduction to Subqueries Using Aggregate FUNCLIONScccceeueeeueeeueeeieesieeeieeeieeae 145
Using a Subquery in the SELECT State@ment.......cccccueeieeeeeeiiieeeiieeeeeeeeeeeeeeeee e 147
Using a WHERE Clause in @ SUDQUETY...........ccccciiiiiiiiiiiiiiiiiiiciicicicccccce 149
Subqueries without Aggregate FUNCLIONSccc.ceerueenieenieesieeniieesieeeieesie e sae e 150
Returning Multiple Values from a SUBQUETY...........cccccceccuiiiniiniiiiiiiiiiiieicicccee 151
Subqueries and the DISTINCT Clause.....ccccueevueeerieenueerniieeiieeniieesiieeniteeseeeneeenaeenneenanes 152
Data Analysis Checkpoint.............c.ccucouiviriniiiiiiiiiiiiiiiciccccicccc s 155
| Q| VIEWS oeeeeiiretientneniiiineteetnnnessissssseasssssssssssssssssssssssssssssssassssssssssssssssansanes 157
Turning Previous Queries into VIEWS..........ccoovcuiiiiiiiiniiiiiiiiiiiiiiiiicieeiieiceeeesiiecccee e 157
WHRY WE USE VIBWS ...ttt ettt e e e 159
How to Modify @ VIEWcccocuiiiiiiiiiiiiiicicccc e 160
Creating @ VIEW frOmM JOINScocuueeeuieiiieiiieeeeeete ettt ettt esaae e 160
Removing a View Using the DROP Stat@mentcccc.eeeeeuuieeeiieeieiieeeeieeeeeeeeeiee e 163
Data Analysis Checkpoint..............cuevuivuiiiiniiiiiiiiiiiiiiicicicctccccse s 164

| 10 | DATA MANIPULATION LANGUAGE (DML)ccciiiiriiierrnnnnnnnnennnnnneceeeeeceneees 167

Data Analysis Versus Database Managementcccccccuiiiuiiiiiiiiiiiiiiicnicniccicccciccies 167
Inserting Data into @ Database............cocueeeuieeeieesieeeieeiieeeie ettt et 168
Updating Data and the SET KeyWord..........cccoovvvuiiiiiiiiiiiiiiicciicciccicecececccicci 171
Deleting Dataccucouiiiiiiiiiiiiiiiiiiiici e 172
Data Analysis Checkpoint.............cccucouivuiiiniiiiiiiiiiiiiiiicicicciccccc s 173
(000]\ Tad I U 11 (@] 1 175
It Is All About Asking GOOd QUESTIONSeeeeueeeeuieeeiieeeiieeeiieeete ettt ettt eeaae e 175
Finding YOUr INICREccooueiiiiiiieeeeeee ettt 175

viii

SQL QUICKSTART GUIDE

Choosing the Right Database Occupation.............c.ccccuecuevucvuiiiiiiiiciiciiiiiiiicicicsceicieans 176

Is [t All aboUt the MONEY?eeiieeeeee ettt 176
Is SOL Knowledge Universal?............cccoooviiiiiiiiiiiiiiiiiiiiiiiiccicciccccccceei 177
SWIECHING CAr@EIS....ecuueeeeiieeeeteeteetee ettt ettt et et e st e s e e s e saeaeanes 178
Selling Your New Skills to Your COMPanycccccocueeuieiinuiiiiieiiiiiiiiiciciicceccieccecaen 178
Beyond SQL: Data Visualization SOftwarecccccevcuiiiiiiiiiniiiiiiiiciicciccccccce 179
INEEIVIEW AQVICE ...ttt 179
SQL COrtifiCAtiONS ...ceveeuveeierteeienieeteeiteeteettete et ettt sat ettt ettt et saestesaeesaeesaeennees 180
Final Thoughts and Parting Words.............cccccueiiiiiiiiiiiiiiiiiiciiiciccicccccccee 180

Chapter 3 Data Analysis Checkpointcccccooiviniiiiiniiniiiiiiciciccicccicicce 183
Chapter 4 Data Analysis Checkpointccccccccvviiiiiiiiiiniiiiiiiciciiccciciccccc 184
Chapter 5 Data Analysis Checkpointcccociiuiiiiiiiiiiiiiiiccicciccicccc 187
Chapter 6 Data Analysis Checkpointcccccoouiviniiiiiiinniiiiiciciccicciciccea 190
Chapter 7 Data Analysis Checkpointccccccvviiiiiiiiiininiiiiiciciiciicicicccc 191
Chapter 8 Data Analysis Checkpointcccooiiuiiiiiiiiiiiiiiiicciccicccccc 193
Chapter 9 Data Analysis Checkpointcccccooieiiiriiiiiniiiicicicicccciccce 197
Chapter 10 Data Analysis Checkpoint..............cccccccviiiiiiiiininiiiiiiiccicciicicicicccccea 199
APPENDIX L ..cauuiiiiitniiiiiieniiiiieniinieneiiiieneiiniensieeseanssesssssssssssssssssssssssssssssssscsses 203
Chapter 4 KEYWOIdS.........cccoiiuiiiiiiiiiiiiiiiiciciccc et 203
Chapter 5 KeYWOrdsccoouiiiiiiiiiiiiiiicicicc e 203
Chapter 6 KEYWOIdScccouieuiiiiiiiiiiiiticiicicictete et 206
Chapter 7 KEYWOIScccoivuiiiiiiiiiiiiiiiiciciccc st 207
Chapter 8 KEYWOrdSccoiuiiiiiiiiiiiiiiicicc e 208
Chapter 9 KEYWOIdScccouivuiiiiiiiiitiiticiicictcete ettt 209
Chapter 10 KEYWOrdSccccoouiiiiiiiiiiiiiiiiiiciccci e 209
ABOUT THE AUTHOR....ccuuiiitttiiiittttiiitttiintetneieteaneettetaesessasssssssssssssssasssscsses 21

ABOUT CLYDEBANK MEDIAcitiiiirmmnniiiinnnnierennniettenesescasssssssssssscsssssssceses 213
REFERENCES.couiiiiitiiiittiiititniiiiteneitieeneiitttanestseenssstsssssssssasssssssssssssssanses 219

Contents ix

BEFORE YOU START READING,
DOWNLOAD YOUR FREE DIGITAL ASSETS!

SQL Software Download Links + Instructions

Video Tutorials

SQL Statement Reference Guide
Sample Database - Follow Along With The Book!

TWO WAYS TO ACCESS YOUR FREE DIGITAL ASSETS

Use the camera app on your mobile phone to scan the QR code

=0
%&% or visit the link below and instantly access your digital assets.
Lt
El,'{'?ih www.clydebankmedia.com/sql-assets)

Introduction

With each passing day—really with each passing second—greater and

greater quantities of data are collected. In the time it takes you to finish
this sentence, over 500,000 Google search queries will be submitted.! In a
single minute, over 300 hours of video content will be uploaded to YouTube.?
Our capacity to store data continues to grow. Meanwhile, smartphones and
social media have turned everyday individuals across the globe into a rapidly
(exponentially) growing army of data generators, constantly creating new
records that reveal our current interests, activities, thoughts, and feelings.
Businesses and government agencies of all kinds are accepting the reality that
maximum efficiency and maximum profitability cannot be achieved without
harnessing the power of data.

THE PHENOMENAL REALITY OF BIG DATA

@@®@

GOOGLE

e Processes 40,000

search queries
every second.

e Processed 27.5
billion search
queriesin 2001
compared to 1.2
trillion in 2012
and growing.

YOUTUBE

e 6 hours of video

content was
uploaded every
minute in 2007
compared to 400
hours per minute
in 2015 and
growing.

FACEBOOK

Brands and
organizations
receive a
cumulative
34,722 Likes
every minute of
the day.

Every month,
30 billion pieces
of content are
shared.

See references 3 and 4 in the back of the book

AMAZON

e Stores data from
152 million
customersin 1.4
million servers
spread through-
out several data
centers.

Introduction

2

While the volume of data being generated is astounding in its own right,
what is truly mind-boggling is that we have only just begun to make use of it
all. Only half of a percent of all data collected is ever analyzed.” If individuals,
businesses, governments, and other organizations were able to make better
use of collected data, then the potential upside would be limitless. Profits and
efficiency could be increased, marketers could gain more powerful insight
into target audiences, and more fraud and crime could be prevented—and
that is just the beginning. The shortfall in data analysis contributes to an
incredible demand for skilled data-handling professionals. This is where you
come in.

You are presumably reading this book because you want to learn SQL
(structured query language). You have been perceptive enough to notice the
ever-expanding role of data in the world, and you are putting yourself in a
position to make the most of it—a very wise decision. Some of you may be
studying SQL in a classroom environment, at either the high school or college
level. Or perhaps you are a business or government professional looking to
develop the skills necessary to carry you forward in your career. Whatever
the case may be, this book’s straightforward approach to SQL will prove an
invaluable resource.

SOL (properly pronounced “ess-cue-ell,” though “sequel” is commonly
heard) is the translation tool that allows everyday individuals, even those
without coding experience, to communicate with a database and turn big
data into information they can use to make decisions that affect their business
for the better. I have been working with SQL and other forms of big data
management for eighteen years, but I can still remember what it was like to
be a beginner. It took me a while to warm up to data management. When I
first learned how to use Microsoft Access, data management was just another
node in the IT field, without the hype that surrounds it in the present day.
'The quantity of data generated was relatively minuscule in light of today’s
information overload. Today, every search query made on Google, every post
shared on Facebook, and every five-star review in every product category on
Amazon is ultimately stored on a server somewhere and is subject to being
queried. SQL is the principal analytical tool used to decipher big data, hence
the extraordinary demand for individuals trained in the language. The
language of data is a language that every modern tech-oriented company
speaks to some degree. This book will get you fluent in the language of data.

SQL QUICKSTART GUIDE

My Story

My personal road to mastery of SQL began in the late nineties. At the time,
opportunities to learn SQL in a formal, institutional setting were quite scarce,
as the phenomenon of big data had not come to maturity. In lieu of any real
scholastic alternative, I matriculated into the school of hard knocks—I learned
SQL by trial and error, mostly error. Even after acquiring a bachelor’s degree
in computer science and a master’s in management information systems, I did
not feel that a formal, academic, and sometimes overly theoretical approach to
learning was the best pathway to success in the field of data science—a belief
I would confirm after working for over eighteen years in a variety of roles
using SQL (as well as other programming languages) to manage data systems
across several sectors, from startups to Fortune 500 companies, from law to
healthcare to big box retail.

If T have learned anything from both my academic and professional
wanderings, it is this: there is a much more practical approach to becoming
an invaluable resource in your existing or new career in the world of big data.
It does not have to be as difficult for you as it was for me. In fact, it was my
desire to distill all the lessons I have learned into a simple, practical, hands-
on approach to SQL that led me to write this book.

'The enthusiasm I have for teaching is actually a product of family values.
I was born in Trinidad, a country you have probably heard of but are perhaps
unable to place on the map. It is a tiny dual-island country, known formally
as “Irinidad and Tobago,” located at the northern end of the South American
continent and the southern end of the Caribbean Sea. Though the Caribbean
may be known for cruises, carnivals, soca, and reggae music, life was not all
beaches and coconuts.

My mother was both a literature teacher and a high school principal.
When she wasn'’t at school, she was at home giving piano lessons. She was
always sharing ideas, always teaching, and never lacking for students. She
considered it a social responsibility to pass her acquired skills and knowledge
to others in the community, often working long hours and giving back to
those around her in any way she could. The teaching passion extends deep
and wide throughout my family tree; I had an aunt, uncle, and grandfather
who were all professional educators. Though I have lived in the United States
for nearly twenty years, I still return to Trinidad each year to visit family and
to reflect on the incredible journey that is life.

When I am not working in the field you can find me in the classroom,
where I regularly host SQL and data visualization training courses for
beginners and intermediate-level students. I love to code—don’t get me
wrong—but it is in teaching, in seeing my students succeed, where I find the
most joy.

Introduction 3

4

Why | Wrote This Book

My objective in writing this book was to create a definitive beginner’s
SQL toolbox—the kind of resource I wish I'd had access to when I was just
beginning in this field. As I learned from my formal education, a theoretical
approach to technical and programming topics is not the most practical, or
the most sympathetic to our busy lives and schedules. Other SQL texts spend
a lot of time explaining both the history and the computer science theory
behind databases and query language. This book aims to take a polite nod
toward those topics, covering only what is essential for understanding how a
relational database functions, and then blaze on ahead. The rest of the book is
designed to equip you, the reader, with a hands-on reusable reference guide to
harness big data and turn it into actionable information. The truth of the matter
is that learning SQL requires a commitment to regular study and practice. The
best teachers do not simply spout information at their students and hope for
the best. The best teachers are those who set expectations responsibly and
ensure that students adopt a resilient, “can-do” frame of mind. I do not want
this book to center around my expertise. Instead, I want it to focus on you and
your path to learning. For me it is both a pleasure and a privilege to spend my
working hours venturing about in oceans of data. The next challenge lies in
helping you comfortably enter these oceans without fear of drowning.

Creating a “QuickStart” resource that can be used by a pure beginner
on SQL is an ambitious endeavor. I have worked with hundreds of SQL
students, enough to gather a sense of what works and what does not. My
passion for teaching SQL has spanned several years and many different
professional positions. When you acquire a real proficiency in this skill, you
will soon find yourself beset by colleagues looking to you for help. Whether it
is an executive who wants targeted data about the latest marketing campaign
or a fellow coder who needs your help crafting a query, being handy with
SQL has a way of drawing people to you—if you learn it, they will come.

My SQL coaching business, SQL Training Wheels, and my data
visualization business, Datadecided.com, are truly a culmination and
institutionalization of my enthusiasm for teaching the craft. SQL Training
Wheels began in a coffee shop in Tribeca, New York, with me and a laptop
tull of SQL learning materials I had prepared. I had no idea whether anyone
was going to show up. I must have underestimated the demand for SQL
training, because not only did people show up, 7any people showed up. And
they kept coming. Before I knew it, I had a business.

I have discovered over the years, in my capacity as an SQL mentor and
coach, that I truly enjoy teaching. Growing up among active academics, I
witnessed firsthand the power of imparted knowledge, how it could replenish

SQL QUICKSTART GUIDE

confidence and promote positive personal transformations. Though New
York City is worlds apart from my home in Trinidad, I still recognize and
relish that moment when I see a light turn on in a student’s mind—their eyes
brighten, their anxiety is abated, something clicks! I never get tired of these
“lightbulb” moments.

As I continue to improve and expand this training endeavor, working
with a rich variety of students with different aptitudes and skill sets, I find
myself contemplating the idea of one day expanding my business seaward,
back home to the Caribbean. I think it would be a blast teaching a few courses
in Trinidad, maybe in Grenada as well. How gratifying it would be to take
back the knowledge and experience of my time in the United States while
also developing a Caribbean franchise! There is no rule saying you cannot
dream big and give back at the same time.

A Word of Encouragement for the Pure Beginner

To be successful in your study of SQL, you must be patient—with the
material and especially with yourself. I believe in every student I teach, but
my success as a teacher is ultimately measured by that of my students. For
the pure beginner, SQL and database management will seem intimidating.
Accept it, transcend it; greet the challenge with a tenacious spirit, and you are
going to be successful! Here are a few important things to keep in mind for

those of you who are brand new to SQL:

» Don't be afraid of making mistakes. There is no shortage of sandbox
space in this industry. In other words, there are plenty of ways to
practice SQL without the potential of “ruining” an existing database,
which is a concern for some beginners. A sample database is made
available for you to use in conjunction with this book. I want you to
take full advantage of it and be open to learning via trial and error.

» Treat this book as a workbook. Highlight, underline, write in the
margins. SQL is a topic that is learned by doing, not just reading.
I have carefully designed the exercises in this book to reflect real-
world scenarios and to slowly build upon each other to fortify what
was learned in the previous chapter. If you find a new concept
difficult, there is value in going back and working through the

fundamentals again.

Introduction 5

6

» Enjoy your study! Do not lose sight of the fact that you are sitting
on the cutting edge of information technology, honing a high-
demand skill that is poised to radically change the world. It is okay
to be a little excited!

The Scope and Focus of This Book

For readers who already possess a basic or even an advanced understanding
of SQL, this QuickStart Guide will function as both a refresher and a handy
reference text that you can consult when crafting your queries. Also, if you
are among the many aspiring SQL coders to have recently enrolled in an
SQL course or training program, then this QuickStart Guide will serve as
a fantastic primer text and should provide a nice advantage for you in the
classroom.

Please note that this book primarily covers the basic SQL toolkit you
need to understand and extract useful and actionable information from
existing database sources. The standard query methods taught in this text can
be done safely without risk of changing the database in any way. However, in
one of the later chapters we do briefly cover adding, modifying, and removing
entries from a database (known as data manipulation language, or DML).
Learning the concepts in the DML chapter is not necessary for extracting
information from a database, but it is helpful to know how this process is
done, and this chapter may be of some interest to those considering a career
in database administration.

SQL and Your Career

SQL is one of the most consistently in-demand coding languages that
you can study. It is the gold standard for database administration work, but it
is also highly sought after in a host of other technical occupations, including
software engineering and development, quality assurance testing, and business
analysis, to name a few. In fact, why don’t we take a moment and review some
of these job descriptions.

» Database administrator (DBA): The database administrator is
ultimately responsible for ensuring that the company is using the
right tools to store and access their data. DBAs take a leadership
role in purchasing or modifying the hardware and software solutions
that comprise the company database. Database administrators are also
responsible for controlling access to the database. They must set and
enforce access permission thresholds, password controls, and so forth.

SQL QUICKSTART GUIDE

» Database developer: The primary role of the database developer is
to continually expand and refine the SQL code used to navigate the
database. In many organizations the SQL coders are asked to create
preassembled blocks of code that can be easily employed by non-
skilled individuals. SQL developers are also often placed in charge
of ongoing testing of the database to ensure quality performance
and optimized functioning.

» Data scientist: Data scientists focus on improving and generating
new ways of using data to add value to the business. A data scientist
working for Amazon might design a system aimed at using data
from your product searches to determine which products you see
advertised when you log in to your account.

As our capacity to record and store massive amounts of data continues
to expand, so does the differentiation and specialization in the data industry.
It is no longer uncommon to find universities oftering degrees in database
administration, data center operations, and data management. In this rapidly
emerging field, SQL is the common tongue, and learning it is your ticket to
the big data party.

While the data industry understandably covets SQL-trained individuals,
the real-world demand for SQL actually extends even further. In any given
industry (not just in big data) you may find a multitude of job positions that
utilize SQL. Some of these jobs may not require SQL as a primary skill, but
if you are able to bring SQL knowledge to the table while also meeting the
rest of the job’s requirements, then you will hold a serious advantage over the
competition when it comes to getting hired or getting a raise.

If you can develop and demonstrate proficiency in SQL, then you can
expect to command a healthy salary in the marketplace. In 2018, the average
salary for an SQL-trained worker in the United States was upwards of
$80,000.¢ In addition to academic study, you will likely need to acquire some
hands-on learning before a company will hire you full time. Many companies
offer paid internships that will provide you with the opportunity to put your
SQL skills to the test in real-world business environments.

Some of you may be pursuing SQL in an effort to mobilize your career
path within the company for which you currently work. Perhaps your
acquiring of SQL literacy will clearly create value for your company, and you
intend to make a case (or have made a case already) to the powers that be that
you should be allotted whatever time and resources are needed to develop
this skill. And if you end up becoming a more sought-after commodity in the
meantime, well, that is always nice too, right?

Introduction 7

8

The demand for SQL spans a multitude of industries and job types. If
a company or industry benefits from storing and analyzing data, then the
company and industry are likely to benefit from SQL. Take a moment and try
to think of all the businesses out there that could potentially benefit from data
analysis. This is not a difficult exercise. It is actually much more challenging
to think of businesses that would not benefit; hence the insatiable demand in
the marketplace for professionals adept at transcribing big data into business

advantages. Full speed ahead!

Chapter by Chapter

'There are innumerable ways to learn a new skill. For this particular skill,
I've found there is no better way than jumping right in and practicing. This
book is designed to get you writing queries as soon as possible. The book is
divided into three major parts consisting of three to four chapters each:

» “Part 1: Creating Your SQL Learning Environment” — Part 1
includes an introduction to database terminology and structure, as
well as a hands-on section designed to set up the specific database
software we will be using in this book. Even if you feel confident
that you understand the basics of SQL, we still strongly recommend
that you follow along, as this section will explain the specific SQL

tools, methods, and strategies we will be using throughout the text.

» “Chapter 1: Understanding Database Structure”— This is the only
real “sit down and read” chapter in this book. This chapter introduces
the concept of a relational database, the types of data you will
encounter, and a brief overview of some of the terminology used.
The rest of the text will be definitively hands-on.

» “Chapter 2: SQL Tools and Strategies”— In this chapter, we explain
how to get the most out of this book, which is intended to be used
in conjunction with free downloadable SQL software (SQLite)
and a provided sample SQL database so that you can test out what
you have learned immediately after you learn it. This chapter also
explains how to make the most of the included self-assessments,
guided exercises, and other resources provided in the book.

» “Chapter 3: Exploring a Database in SQLite” - In this chapter, we
will open the sample database in an SQL browser and explore its
contents. You will familiarize yourself with using an SQL browser to

SQL QUICKSTART GUIDE

»

»

»

»

»

»

»

navigate the overall structure of a database, view data on individual
database tables, and access the “Execute SQL tab.

“Part 2: Writing SQL Statements” — In Part 2, we give you the tools
to write simple queries. We start with the basic SELECT statement
and then introduce additional SQL keywords that enable us to
return more specific results.

“Chapter 4: Getting Started with Queries” — This chapter introduces
the basic SELECT statement, demonstrates how to return data

from a specific table using the FROM statement, sort that data
alphabetically using ORDER BY, and then limit the results using
LIMIT.

“Chapter 5: Turning Data into Information” — This chapter
introduces the WHERE clause and the comparative, logical, and
arithmetic operators that it takes as arguments. Chapter 5 also
introduces LIKE and the use of wildcards as well as the DATE ()
function, AND/OR operators, and the CASE statement.

“Chapter 6: Working with Multiple Tables”— This chapter
introduces join statements that allow you to return and compare
data from multiple tables using INNER JOIN, LEFT JOIN,and
RIGHT JOIN.

“Chapter 7: Using Functions” - This chapter introduces a powerful
collection of calculation tools known as functions, including
aggregate, string, and date functions.

“Part 3: More Advanced SQL Topics”— Part 3 introduces more
advanced but very helpful techniques used to enhance the efficiency
of writing queries. This part also includes an introduction to data
manipulation language (DML), which, unlike all other SQL

statements so far, will permanently alter the data in a database.

“Chapter 8: Subqueries” - This chapter introduces the concept

of nesting one query inside of another query, resulting in what is
called a subquery. The chapter demonstrates how to use subqueries
with a variety of SQL keywords we have already learned, as well as
introducing the DISTINCT keyword.

Introduction

9

» “Chapter 9: Views” - This chapter introduces virtual tables known
as views: queries that are saved and can be executed repeatedly as
needed or used as subqueries in other SQL statements.

» “Chapter 10: Data Manipulation Language”— This chapter covers

data manipulation language (DML) and introduces the INSERT,
UPDATE, and DELETE keywords.

10 SQL QUICKSTART GUIDE

PART |

CREATING YOUR SQL LEARNING ENVIRONMENT

|11

Understanding Database Structure

Chapter Overview

» Understanding the language databases use

» How a relational database functions

» Data types

» Relational database management systems (RDBMSs)
» SQLite

When learning any new technical skill, you need to know the basic vocabulary
to start your journey. We aim to find the right balance: arming you with the
tundamental terms and concepts you will need for the remainder of this book,
while avoiding unnecessary jargon or advanced concepts. In this chapter, we
will introduce the concept of a relational database and showcase the types
of data you will encounter in a typical database. We will also introduce the
fundamental SQL query: the SELECT statement.

Fundamental Terminology

A “datum” is defined as “a piece of information.”” Data is simply the plural
form of datum. Data appears everywhere and is contained in everything,
but for practical purposes the term “data” generally refers to recorded or
recordable information. One of the simplest tools used to record and visualize
data is the table. A table is merely a two-dimensional grid consisting of rows
and columns.

WOTs

When used in a database, a table may also be referred to as a
“base relvar,” though in this book we will adhere to the term
“table.” Please see the Terminology Summary graphic (Figure 5).

Understanding Database Structure 13

14

fig. 2

S

This is a table
I I

UserlD Name DateOfBirth | Height | Weight [BloodType| PrimaryCareDoctor
92463 | Archibald Kennedy 08/24/1976 | 75 310 B- Dr. Waynewright
92423 | Dennis McGhee 03/12' :1982 68 190A B+ 1 Dr. Murphy

92436 | Cynthia Owens 09/30§1955 69 1oi|‘ 0+ Dr. Waynewright

These are data

Asyou can see in Figure 2, the table contains different types of data. Data
can be names, numbers, dates, characters (like “+” or “-”), or it may be presented
in a multitude of other formats. Data, in its purest sense, is just information.
Therefore, when handling data it behooves us to constrain it appropriately.
Look at the table in Figure 2; it appears to store basic information about a
group of medical patients. Data about the patients is defined using various
formats. There are numbers, names, and dates, and in the BloodType field,
character). The

formats used to render data are not random. All databases contain something

[{3

a string of two characters is used (a letter and a “+” or

known as metadata, which is data that describes the structure and formatting
of the data itself, commonly referred to as “data about the data.” For example,
the DateOfBirth field may contain metadata that constricts information
in the field into mm/dd/yyyy format. The metadata in the Height field might
limit data to two digits in length and require that it be expressed in terms of
inches.

'The term database can be simply defined as a collection of data arranged
for ease and speed of search and retrieval by a computer. The database is often
symbolized graphically as a multitiered cylindrical icon (Figure 3) meant to
symbolize the stacking of hard disks one on top of another to create a high-
capacity data storage center.

Data inside the database is typically stored in a collection of tables. Each
table contains a specific set of data, which may relate to and reference other
data from other tables within the database.

The patient data table in Figure 2 is just a table, not a database. It
could, however, be incorporated into a database alongside other tables,
such as those storing information about lab tests, prescription drugs,
appointment histories, hospital personnel, doctor information, specialties,
and appointment availability.

SQL QUICKSTART GUIDE

— DATABASE

'The purpose of the database is to facilitate the interaction, organization,
and analysis of related data across a multitude of sources. When data is placed
in tables that have the capacity to relate to one another within a database, a
new level of versatility becomes possible.

I 11

RECORDS

TABLES

DATABASE

A database is composed of tables, and tables are composed of records.

'The rows in a given table are considered records. They may also be referred
to as fuples. The columns in a table may generally be referred to as fields.
'They may also be called attributes. Fields/attributes are the categories used to
define the data within the record (row).
WOTg

Throughout this book we will be using the term “records” to

describe the rows in a table and “fields” to describe the columns.

Please refer to the Terminology Summary in Figure 5.

Understanding Database Structure 15

16

fig. 6

TERMINOLOGY SUMMARY

Terms we will use May be referred to
throughout this book: elsewhere as:
Record, Row Tuple
Field, Column Attribute
Table Relation, Base Relvar

Every record is broken down into several fields that represent single
elements of data describing a specific thing. For example, our table featured
in Figure 6 stores information about patients, presumably at a particular
hospital or medical practice or in a particular insurance pool. Whatever the
nature of the organization, if they keep a database, then that database will
likely be composed of several tables. Understanding how tables refer to and
relate to one another is key to understanding essential database architecture.

FIELDS RECORDS

UserID Name DateOfBirth | Height | Weight |BloodType| PrimaryCareDoctor \
92463 | Archibald Kennedy 08/24/1976| 175 310 B- Dr. Waynewright 4

TABLE
92423 | Dennis McGhee 03/12]1982| 68 190 B+ Dr. Murphy 1
92436 | Cynthia Owens 09/30[1955| 60 104] 0+ Dr. Waynewright
DATA

Fundamental Elements of Relational Databases

'The relational database is a database design that was formally conceived
of in 1969 by a computer scientist at IBM named Edgar F. Codd. Codd
published an article the following year called “A Relational Model of Data
for Large Shared Data Banks.”® Nine years later, several big players in tech,
including IBM and Relational Software Inc. (later to become Oracle),
began using relational databases for commercial purposes. Four decades
later, the relational model continues to prevail as the most common form
of database design.

SQL QUICKSTART GUIDE

RAPH/

fig. 7

To gain a rudimentary understanding of how relational databases

tunction, it is important to understand the role of key fields.

PRIMARY KEY FIELD
FOREIGN KEY FIELD

PatientID | PatientName | PrimaryCareDoctorID | PrimaryCareDoctorName | DateOfBirth [Height | Weight | BloodType
92463 | Archibald Kennedy | 106547 Dr. Waynewright 8/24/1976 | 75 310 B-
92425 | Dennis McGhee 106474 Dr.Murphy 3/12/1982 | 68 190 B+
92443 | Cynthis Owens 106547 Dr. Waynewright 9/30/1955 | 60 104 0+
92478 | William Hampton 106437 Dr. Salazar 6/5/1973 73 175 AB-
92392 |HildaBass 106783 Dr.Dean 6/10/1997 | 68 152 B+
92436 | Frankie Stone 106437 Dr. Salazar 5/28/1979 | 68 106 0+
92403 | VernaSullivan 106984 Dr.Conner 7/17/2010 | 66 125 0+
92398 | Merle Doyle 106439 Dr.Frank 1/8/1962 65 143 B-
92442 | Ruth Swanson 106954 Dr. Hines 2/15/1970 | 61 160 0-
92384 | Johnathan Singleton | 106474 Dr. Murphy 6/2/1970 61 232 AB+
92405 | WM Patrick 106439 Dr. Frank 6/11/1955 | 69 196 0+
92376 | MonaNorris 106984 Dr.Conner 10/15/1932 | 60 98 B+
92399 Rick Gordon 106366 Dr. Hart 1/25/2002 | 68 149 B+
92408 | DonRivera 106437 Dr. Salazar 712611954 | 72 185 A-
92389 | SheriGriffin 106211 Dr.Harvey 1211611987 | 78 132 AB-
92466 | Guillermo Lawrence | 106954 Dr. Hines 2/8/1978 60 219 0+
92310 Felipe Parker 106474 Dr. Murphy 12/10/1998 | 61 165 0-
92413 | Brandi Carlson 106399 Dr. Flowers 11/20/2000 | 66 12 B+
92398 | Floyd Casey 106783 Dr.Dean 12114/1986 | 61 203 A-
92439 | Patrick Walton 106366 Dr.Hart 8/11/1973 | 76 189 0+
92421 | VickiKlein 106954 Dr. Hines 11/28/1980 | 65 98 0+
92381 | CathyHarrison 106474 Dr.Murphy 11/16/1946 | 78 203 AB-
92393 | Ann Guerrero 106783 Dr.Dean 6251974 | 61 142 B-
92437 | Gustavo Bates 106399 Dr. Flowers 2/25/2001 | 78 165 A-

A relational database will contain a multitude of tables similar to the

patient_info table shown in Figure 7. These tables relate to one another on
the basis of key fields. In the patient_info table you will notice the primary
key field and the foreign key field. As a matter of best practice, every table

in a relational database should have a primary key. The primary key acts as
the unique identifier for a record in the table. Each record’s primary key
must be unique, record by record, and must not be null (empty). Notice the
PatientId field in the patient_info table. Since this field is used as the
table’s primary key, each and every record in the table must have unique data

stored in this field. In other words, no two records may contain the same

PatientId data.

Understanding Database Structure

17

18

WOT7s

Although there must be unique data in the primary key field (PatientId
in this case), the other fields contain data that may be replicated in more than
one record. For example, consider the PrimaryCareDoctorId field; if
Dr. Waynewright, ID# 106547 (see the first row in Figure 7), treats multiple
patients in the database, then his name and ID may show up in multiple
records in the table.

In a relational database, tables are often referred to as “relations,”
because they contain a set of records (rows) related to various fields
(columns). Throughout this book, however, we will be using the term
“table.” Please refer to the Terminology Summary in Figure 5.

A foreign key field is a field within a table that is acting as a primary
key in another table in the database. Let’s suppose that in addition to our
patient_info table there is another table in the database called primary_care_
doctors, which uses the PrimaryCareDoctorId field as its primary key.
In the primary_care_doctors table, Dr. Waynewright, with the ID# 106547,
will appear in only one record. It is the overlap of various key fields among
tables that facilitates the all-important relatability within the aptly named
relational database. These relationships are commonly visualized using a
database schema, also known as an entity relationship diagram (ERD), which
serves as a kind of blueprint for the database.

patient_info
& Patientld
Name
lab_orders : PrimaryCareDoctorld hospitals
— —1 PrimaryCareDoctorName
& LabOrderNo DOB 1 & Hospitalld
PatientID Height HospitalName
PrimaryCareDoctorld |2 Weight Address
Text o | = BloodType Capacity
BloodType Specialties
Laboratoryld i HelicopterAccess
OrderDate primary_care_doctors
UrgencyLevel 1 & PrimaryCareDoctorld
=== PrimaryCareDoctorName
A rudimentary database Emal!Add ress o
schema/ERD Hospitalld
YearsInPractice
LicenseNo.

SQL QUICKSTART GUIDE

For the moment, don’t worry about the 1’s and the eo symbols. We will
explain them in a moment. For now, take a few minutes to study the schema
and consider its relationships. There are only four tables in this schema, and
the tables are connected to one another by way of one or more common fields.
'The PatientId field is the primary key for the patient_info table, but it is
a foreign key field for the Jab_orders table. Similarly, the HospitalId field
is the primary key for the hospitals table, but it is a foreign key field for the
primary_care_doctors table. Pretty simple, right? Let’s take a look at another

schema for a different kind of operation.

suppliers products order_details orders customers
& Supplierld & Productld 1—l_ & Orderld 1 & Orderld J_] & Customerld
CompanyName ProductName =1 & Productld Customerld = | CompanyName
ContactName =21 Supplierld UnitPrice =1 Employeeld ContactName
ContactTitle —1 Categoryld Quantity OrderDate ContactTitle
Address QuantityPerUnit Discount RequiredDate Address
City UnitPrice ShipVia = | City
Region UnitsInStock Freight Region
PostalCode UnitsOnOrder IS ShipName PostalCode
Country ReorderLevel £ Employeeld ShipAddress Country
QQAPH/C\ Phone Discontinued LastName ShipCity Phone

Fax FirstName ShipRegion Fax
HomePage Title ShipPostalCode

TiFIeOfCourtesy ShipCountry shippers
categories Birthdate] ,

1 HireDate — & Shipperld

& Categoryld - — Address CompanyName
CategoryName City Phone
Description Region
Picture PostalCode

Country

HomePhone

Extension

Photo

Notes

ReportsTo

'The schema in Figure 9 describes a database that handles the ordering and
shipping of products to customers. Now, about those 1 and e symbols found
at the ends of the connecting lines in our sample schemas: these notations
describe the nature of the interactivity between tables. When there is a 1 on
one end of the connecting line and a e symbol on the other end, it represents
a “one-to-many” relationship between the tables’ shared fields.

Let’s take a closer look at the products table (Figure 10). Clearly, the data

here is about various products and their attributes.

Understanding Database Structure 19

RAPH

fig. 10

RAPH

fig. 11

fig. 12

suppliers products

& Supplierld ! & Productld
CompanyName —L ProductName
ContactName =1 Supplierld
ContactTitle Categoryld
Address QuantityPerUnit
City UnitPrice
Region UnitsInStock
PostalCode UnitsOnOrder
Country ReorderLevel
Phone Discontinued
Fax

HomePage

The ProductId field is
the primary key for this table, as
symbolized by the key icon. Each
record in the table will contain a
unique product identification number.
In fact, that is the whole purpose of
this table—to catalog the attributes of
the database’s various products.

Now, let’s look at the relationship
between products and suppliers.

P

SUPPLIERS

Supplierld | CompanyName | ContactName ContactTitle Address City etc.
S$-101 Van EckIndustries [Bruce Davidson | Vp Operations 2158 Del Dew Drive Temple Hills
$-102 Wright & Gate Co Wilma Joy Supply Chain Supervisor 291 Creekside Lane Ventura
$-103 Olivias Supply Brad Pence Site Manager, Baton Rouge | 4353 LocustView Drive [Baton Rouge
S-104 Cantor Corporation | Orville Bedford | President 2811 West Drive Chicago
$-105 Bellagio Finland Wallace Grim Distributions Superviser 4939 Breezewood Court | Chanute
S-106 Decks Materials JohnTuck VP Operations 4529 Counts Lane Lextington
S-107 Lennor Co Rachel Durst Site Manager, Jackson 2216 Rhapsody Street [Gainesville
PRODUCTS

L
Productld ProductName Supplierld | Categoryld QuantityPerUnit | UnitPrice | etc.
P001 Welding goggles $102 SA-432 1 $12.99
P002 Welding helmet $102 SA-432 1 $41.49
P003 Stick electrodes 5104 WE-214 40 $7.00
P004 Magnetic clamp $101 WE-220 1 $11.86
P005 Heat resistant blanket $104 WE-212 1 $3.73
P006 Work table $105 GE100 1 $1,386.67
P007 Replacement plates 5105 GE-100 1 $396.00
P008 Welding wire $104 WE-214 1 $112.86
P009 Welding coveralls $102 SA-435 1 $60.27
P010 Welding nozzle $103 WE-214 1 $141.65
P0O11 Gas regulator 5106 AU-100 1 $166.25
P012 Welding hoods 5102 SA-432 1 $42.37
P013 Spotwelding electrode $104 WE-212 1 $2.35
P014 Plasma cutter 5107 PL-100 1 $1,64591
PO15 Plasma cutter cutting tip $107 PL100 1 $9.27

20 SQL QUICKSTART GUIDE

There is a one-to-many relationship between suppliers and products based
on the data in the SupplierId field. In suppliers each record will possess a
unique identification number for each supplier, but in products there may be
several records with the same supplier identification number.

'The key icon next to the SupplierId field in suppliers alerts us to the
fact that SupplierId is the primary key for that table. We can certainly
have many different products (each with its own unique product ID number)
coming from the same supplier and cataloged in the products table. Contrast
this with suppliers, where we must have one and only one unique supplier ID
number for each record.

Supplierld

$102
5102
5104
$101
5104
$105
5105
5104
$102
5103
5106
$102
5104
5107
$107

by | Supplierld
S$-101
$-102
5103
5104
$-105
5106
$-107

NOTE

Identical supplierId data may appear in multiple records in the

products table but not in the suppliers table.

Next, let’s look at the relationship between the products, order_details, and
orders tables (Figure 14).

Understanding Database Structure 21

22

products order_details orders
& Productld 1—|_ Q0rderd [1 & Orderld
ProductName =1 &€ Productld Customerld
Supplierld UnitPrice Employeeld
Categoryld Quantity OrderDate
QuantityPerUnit Discount RequiredDate
UnitPrice ShipVia
UnitsInStock Freight
UnitsOnOrder ShipName
ReorderLevel ShipAddress
Discontinued ShipCity
ShipRegion
ShipPostalCode
ShipCountry

'The order_details table appears to have two primary keys, as signified by
the key icons. It is helpful to think of this scenario as a composite primary key,
or composite key, whereby two or more fields are used to define the primary
key. Though there are technically two keys in play, it is still best thought of as
a single item—7he primary key.

COMPOSITE KEY

Orderld Productld UnitPrice Quantity Discount
101 P006 $1,386.67 1 NULL
101 P003 $7.00 3 NULL
101 P005 $3.73 1 10%
102 POT1 $166.23 1 NULL
102 P013 $2.35 1 NULL
103 P014 $1,645.91 1 NULL
104 P001 $12.99 3 NULL
104 P012 $42.37 3 NULL
104 PO11 $166.23 2 10%
104 P003 $7.00 5 NULL
105 P010 $141.65 1 NULL
105 P004 $11.86 3 NULL
105 P003 $7.00 2 NULL
106 P014 $1,64591 1 NULL

SQL QUICKSTART GUIDE

'The combination of data that populates the fields used to form a composite
key acts as the unique identifier for any given record within the table. In other
words, if the OrderId of a record in the order_details table is “101” and the
ProductId for the same record is “P006,” then we can assume that no
other record in the table will have the same combination of data in those two
fields. There may be one or several other records with an OrderId of “101,”
and there may one or several other records with a ProductId of “P006,”
but only one record may have both “101” as its OrderId and “P006” as its
ProductId. This combination of data across fields acts as the composite
key, which, like any primary key, provides a unique identifier for each and
every record in the table.

You may have noticed that the standard primary key in any given table
usually represents the “one” in a one-to-many relationship. For example, in
orders, we can see that the primary key, the OrderId field, will provide
a unique identifier for each record in the table. The “many” side of the
relationship is found in order_details. Why do you think that is?

Let’s think this through logically. We can infer that the purpose of order_
details is to provide information about various products that are ordered. We
can infer that any given product may be ordered multiple times by multiple
customers under many different circumstances, with different prices, etc.
Hence, ProductId cannot be used on its own as a primary key for order_
details. We may also infer that any given order may include multiple products,
and if we look at the other fields used in order details—UnitPrice,
Quantity, and Discount—then we can see clearly that these fields speak
to the properties of an individual product, not an order at large. Therefore,
OrderId cannot be used on its own as a primary key for order_details. The
solution is to combine ProductId and OrderId into a composite key,
thereby ensuring that the data contained in the UnitPrice, Quantity,
and Discount columns corresponds to a unique and specific order and a
unique and specific product within that order.

Types of Data

Earlier in this chapter we introduced the concept of metadata, which
is data that describes limitations or formatting specifications for other data
within the database. When developing a database using SQL, a specific data
type must be designated for each and every column used. Data types will vary
slightly depending on the version of SQL you are using. In general, though,
you will have numeric data types, character or text-based data types, dates
and times, and Boolean values. Let’s talk a little bit about each of these.

Understanding Database Structure 23

24

WOTs

Numeric Data Types

Numeric data includes integers, which are whole numbers that do not
use decimals. Usually, when an integer data type is used, it comes with
some form of limitation on its length. Recall that in Figure 7, the table
contained data about various patients. For the Weight column we might
consider assigning an integer data type with a limit of three digits. Why?
Because a) we are okay rounding up or down to the nearest pound or
kilogram and do not need to use decimal places, so integers will do. And b)
it is inconceivable that we would need more than three digits to describe
someone’s weight in pounds. When integer data will not do, and we need
a more precise numeric format, we can use decimal data, which will allow
us to use decimals as needed to fine-tune our numeric values. Like integer
data, decimal data can also be length-restricted.

NUMERIC DATA

INTEGER DECIMAL
5 30.5
6176 14.65
47261 5.634
531 365.1
90 0.437

1 15347.45

Data types that permit longer spans of digits, characters, etc.,
require more bytes of storage space. SQL also allows monetary
numeric data types.

Character or Text-Based Data Types

Character or text-based data types may be configured to hold both a fixed-
length string of characters and a variable-length string. For example, if
one of your database columns included standard six-character Canadian

SQL QUICKSTART GUIDE

postal codes (which include both numbers and letters), then you would
use a character or text-based data type configured for a fixed-length string
of six characters. If you were creating a column to hold a customer’s first
or last name, then you would want to configure a variable-length string
using reasonable maximum and minimum length limits.

CHARACTER and TEXT-BASED DATA

CanadianZipCode FirstName LastName
L4K8R3 Ronald Dalton
VOSON2 Clara Abramson
H7L9NO Joseph Scalia
L3MOL7 Benjamin Dreadnaught
E6K5T8 Harold Mercedes
E7K3C5 James Rockefeller

The examples we have used thus far have featured relatively short

NOTE

text-based data, such as names and address information. Many

databases contain text-based fields that permit much lengthier

strings of text and characters. Some database structures can allow for

the text of multipage memorandums or even books to be cataloged.

Dates and Times

Dates and times are obviously important data in many circumstances.
SQL allows users to choose from a variety of different date-and-time
layouts: YYYY-MM-DD, YYYY-MM-DD HH:MI:SS, YY-MM-DD.
You may also format a column to hold just the year, either in a four- or
two-digit format; that is, “2019” or just “19.” Figure 18 exemplifies date
and time data in use.

Understanding Database Structure 25

26

NOTE

WOTs

DATE and TIME DATA

DateOfBirth | CreditCardExpiration| TimeOfDelivery

01/25/1977 | 08/2023 2019-04-21 08:25;55
09/30/2003 | 05/2025 2020-12-05 13:30;15
08/15/1999 | 01/2023 2020-05-10 22:20;36
02/25/1962 | 11/2022 2019-01-17 10:20,01
09/12/1998 | 05/2026 2021-06-29 15:21,59
11/03/1959 | 03/2023 2022-09-03 16:42;26

Date/time formats in SQL have built-in numeric values that allow
the database to interpret requests for chronologically specific
outputs. For example, if you want to know how many customers
bought a certain product between the dates of October 1, 2020,
and December 31, 2020, then SQL can help you generate and sort

this output.

Boolean Values

A Boolean value is data expressed as either True or False. If you are in

charge of a sensitive operation for a government or private entity, then

you may use a database to help you keep track of your staff members’

security clearance levels. If you need to locate a list of staff members who

have security clearances A, B, and D, but not necessarily C, then using

Boolean data analysis can make life easier. Figure 19 shows Boolean data

in use.

Different versions of SQL will have different lists of recognizable
data types. Some versions of SQL, such as SQL Server and MySQL
(discussed later in this chapter), do not provide the user with the
option to label a data type as “Boolean.” Instead, they provide a
“Bit"” data type, which can easily be appropriated into a quintes-

sential Boolean format.

SQL QUICKSTART GUIDE

BOOLEAN DATA

ClearedForTakeOff InDefault ConvictedFelon
True False False

False True False

False False False

True True True

False True False

Relational Database Management Systems

SQL operates in a wide variety of software packages known as relational
database management systems (RDBMSs). These systems facilitate the
application of SQL when one is issuing commands and posing questions to
a database. Popular RDBMS software includes Oracle Database, Microsoft
SQL Server, MySQL, IBM Db2, and SQLite.

MySQL. /SQLite
%QL Server ORACLE PostgreSQL

It is not uncommon for the RDBMS software itself to be referred to
as a database. This is a slight misnomer. More precisely stated, the
RDBMS provides an interface (usually known as an SQL browser)
for the user to interact with the data stored on the database.

Some RDBMSs are primarily graphic by design. Others are more text-
based. RDBMSs also vary in their approach to SQL. We referenced one such
anomaly previously in this chapter with regard to the handling of Boolean
data. RDBMSs do vary in the way they present database information.

Understanding Database Structure 27

'The fact that we are telling the RDBMS what information to present to us
defines SQL as a “declarative” programming language. This stands in contrast
to other programming languages you may be familiar with, such as C++,
Java, etc. Those languages are more procedural, in that they handle creating
and running a program from start to finish (allocating memory, including
existing reference files, etc.). With SQL, all of the memory allocation and
other procedural duties are handled by the RDBMS.

The SELECT Statement

As you know, SQL stands for structured query language, and for several
decades it has set the standard for how we communicate with relational
databases. The most common SQL command is SELECT, a command we
will be working with quite closely in chapter 4 and throughout the rest of
this book. An SQL query is usually comprised of the SELECT keyword in
combination with other SQL keywords and references to the data involved
in the query. As is the case in other programming languages, the correct
sequence and choice of SQL keywords is vital to creating a query that can
be correctly interpreted by the SQL browser. This mandated structure is
also known as the synfax of a query.

In the following example, we can see how syntax of a query varies slightly
from one RDBMS implementation to another. These are two very basic queries
that essentially do the same thing (they return the first ten records from the
Products table) but as you can see, they are phrased slightly differently.

In SQL Server we would type the following:

SELECT TOP 10 *
FROM
products;

But in MySQL, we would type

SELECT *

FROM
products

LIMIT 10;

If we were to structure a query in MySQL similar to the SQL Server

example, the SQL browser would generate a syntax error which would prevent
the query from running. In this case, the only difference between these two

28 SQL QUICKSTART GUIDE

SQL implementations is the way we tell the SQL browser to limit our results
to the top ten. The rest of the query is the same. The variations between
RDBMSs are generally very minor, usually less than a 10 percent change
from one to another. The simple, declarative nature of SQL is fairly consistent
across most RDBMSs. 'Therefore, if you commit yourself to learning the
underlying logic of SQL within the confines of any given RDBMS, then
you will find your knowledge to be quite portable; that is, you will be able to
quickly tailor your knowledge of SQL fundamentals to another RDBMS.

Queries, Statements, Clauses, and Keywords

If you have had any previous experience with SQL, you may have heard
these four words used interchangeably: query, statement, clause, and keyword.
SELECT is a special keyword in SQL, but it is also referred to as a SELECT
statement, the SELECT clause, or a SELECT query. So what is the difference?
Let’s start with the broadest term and finish with the most specific.

In its most basic form, a query is a request that returns information from
the database in the form of records. A query can be composed of several SQL
statements (which we will encounter in chapter 8 in the form of subqueries).
An SQL statement is any valid piece of code that is executed by the RDBMS.
'The code examples we just compared are both valid SQL statements (since
the RDBMS allows us to execute them) and queries (since they return a
record set). A clause is a subsection of a query, containing at least one keyword
and the relevant information to be used in conjunction with that keyword (in
this case references to fields and tables).

SELECT
InvoiceDate
— The SELECT clause BillingAddress
e ~ FIELDS
BillingCity
Total -
FROM

— The FROM clause —— invoices™] TABLE

SQL STATEMENT

| The ORDER BY clause — ORPER BY
Total;

Words in ALL CAPS are SQL keywords.

Understanding Database Structure 29

30

NOTE

D

fig. 22

WOT7s

Asyou can see in Figure 21, an SQL statement can be comprised of many
clauses, each containing at least one keyword, as well as references to fields
and tables.

As with the previous example, Figure 21 is both a complete SQL
statement and a complete query. A query can contain multiple
clauses, each starting with a keyword.

Introducing SQLite

Now that we have a basic grasp of database architecture and how we
interact with it, let’s switch gears a bit and move toward a more hands-
on learning approach using real-world problem-solving scenarios. As we
mentioned, there are several different RDBMSs to choose from. It would
be ineffective in this context to try to go function by function, documenting
the nuances of each individual RDBMS. Instead, we have selected SQLite
as the official RDBMS of this book. SQLite is a very accessible and practical
choice for new learners. It is an open-source software product and thus free
to use for any purpose. About 99 percent of what you learn using SQLite is
applicable to most other RDBMSs. SQLite is also one of the most widely
used RDBMS systems in the world—used in computers, mobile devices,
even automobiles.” More information and some additional documentation
can be found at https://www.sglite.org/index.html.

@& Apple skype; =® Microsoft
Google 1\ Adobe Dropbox

INTUIT BOSCH facebook.

Some of the well-known companies that use SQLite.

The “Lite” in SQLite does not refer to the capabilities of this
software, but rather to the fact that it is lightweight when it comes
to setup complexity, administrative overhead, and resource usage.

SQL QUICKSTART GUIDE

Chapter Recap

»

»

»

»

»

»

»

»

»

»

A table is a two-dimensional grid of rows and columns that contains
data.

Data can exist as a variety of different data types, such as strings of
text, numbers, or special characters.

Metadata describes the nature and format of the data, including any
minimum/maximum character length or required numbers, letters,
or special characters.

Relational databases can contain many tables. Each table in a
relational database should have a primary key that serves as a unique
identifier for that table.

A foreign key is any column in a table that exists as primary key in
another table.

'The relationship between tables and their primary and foreign keys
is called the database schema and can be shown visually by an entity
relationship diagram (ERD), which functions as a blueprint for the
database.

There are a variety of different relational database management
systems (RDBMSs) such as Oracle Database, Microsoft SQL
Server, MvSQL, IBM Db2, and SQLite. Though they differ in

many ways, all share the structured query language as a backbone.

The SELECT keyword is the most common SQL command used
in SQL queries.

SQL statements can contain multiple clauses using different SQL
keywords.

This text will use SQLite, but the skills you learn here can easily
translate to other RDBMS platforms.

Understanding Database Structure 31

| 2 |

SOL Tools and Strategies

Chapter Overview
» Setting up our SQL environment
» 'The sTunes database
» DB Browser for SQLite
» Self-assessments

» SQL learning strategies

So far, we have talked a bit about what a relational database is, how data
is structured inside of a database, and how we can use a relational database
management system (RDBMS) to ask questions of the database (by writing
queries) and obtain meaningful results. Now that we have gone over the
fundamental concepts and terminology, we need to set up a working SQL
environment so that we can start practicing queries. This chapter will
tamiliarize you with the resources intended to be used in conjunction with
this book, as well as the many exercises and self-assessment questions that will

help you test your SQL knowledge.

Introducing the sTunes Database

Imagine you were just hired as an SQL data analyst by an online retail
music company, to perform analysis on their music sales data. You are given
access to the company database and told it contains product information
(in this case, songs and albums), personal customer information, employee
records, and sales data. Management wants to know if the data in the sTunes
database contains any useful information about sales, customer demographics,
and any ways the company can improve or expand their services. You are
given the task of analyzing their database and presenting to management any
insights you discover about the data. You perform all your analysis with SQL.
To begin this task, you will need to download a copy of this database onto
your computer.

SQL Tools and Strategies 33

34

FOLLOW ALONG AND DOWNLOAD THE sTUNES COMPANY
DATABASE: The sample database used throughout the rest of this
book is called the sTunes database. After it downloads, do not
open it; just save it to a location on your computer and take note
of where you save it.

Access the sTunes database and all Digital Asset files for this title
at: www.clydebankmedia.com/sql-assets

Introducing DB Browser for SQLite

As we mentioned at the end of chapter 1, we will be working with an
RDBMS called SQLite, pronounced “SQL Lite.” Although SQLite is the
particular implementation or protocol for our sample database, we still need to
download an actual application (also known as an SQL browser) that we can
use to “browse” our database just like a web browser is used to interpret pages
on the web. SQLite comes with DB Browser, which is a high-quality, visual,
open-source tool used to create, design, and edit database files compatible
with SQLite. It is for users and developers wanting to create databases, search,
and edit data.

Installing DB Browser for SQLite

To install DB Browser, follow the download link included in the digital
assets located at www.clydebankmedia.com/sql-assets. Once there, you will
find a variety of download links for different operating systems. Be sure to
choose the operating system that is relevant to you (32- or 64-bit Windows,
Mac OS, Linux, etc.). After downloading the correct file, navigate to where
you downloaded it and install the software.

How to Test Your SAL Knowledge

As with any technical skill, practice is the key to mastery. Besides
providing examples from a sample database, this book features two types of
exercises in the following chapters to assess your newly acquired knowledge
of SQL. Exercises labeled “ON YOUR OWN?” allow you to quickly
practice your skills immediately after a new concept is introduced. As the
name implies, these questions do not have written solutions but are not
intended to be overly difficult. Another form of self-assessment are the “Data
Analysis Checkpoints.” These exercises are more challenging and may require

SQL QUICKSTART GUIDE

knowledge of concepts explained in previous chapters. You can find detailed

solutions to every Data Analysis Checkpoint in Appendix I.

Strategies for Success

Before we launch our software and open up the sTunes Database, I'd like
to offer a few words of advice, to beginner and expert alike. These words come
from my experience as a teacher, and following this advice will greatly improve
your chances of success:

Type Out Every Code Example by Hand

If you have access to a digital version of this text, do not just copy
and paste coding examples into the SQL browser! This advice applies
especially to the beginning student who has not experienced SQL before.
I am very against the idea that you can learn a programming language
by merely copying existing code examples or exercises into the RDBMS
environment and observing what they do. Copying and pasting bypasses
the syntax, spelling, and muscle memory you activate by rewriting the
query yourself. Pasting code from other sources can introduce formatting
errors in your code that are difficult to diagnose. For example, pasting
code that includes word-processor-formatted quotation marks will often
cause a syntax error because DB Browser does not interpret these symbols
as single quotation marks. The mistakes we make are just as important as
the successes. If the SQL statement you are trying to execute results in a
bizarre syntax error, sometimes the best thing to do is delete everything
and write the query again from scratch.

Convert SQL Queries to Natural Language Questions

When answering a question or writing a query, try to think of the result
as an answer to a real-world question. Instead of thinking “How many
entries are in the customers table?” think “How many customers do we
have?” This book is intended to help start or enhance your career using
SQL as a tool in your ever-expanding toolbox. The questions you will get
from your managers and coworkers will be real-world questions, so it’s
important to learn the technique of turning a real-world question into an
SQL statement and then back into a real-world answer.

Treat This Book Like a Reference Guide

We realize that some of our readers will already have some familiarity
with SQL and may want to jump ahead to a particular section. We
have designed this book to include the SQL keywords (discussed in

SQL Tools and Strategies 35

each chapter) within the chapter headings so that our readers can easily

navigate through the text or quickly go back to review a concept they have

already learned. In addition to quick navigation aids, we have included a

second appendix with a list of SQL keywords by chapter and some stand-

alone examples to get you writing queries as soon as possible. We hope

you will keep this book by your desk and refer to it as often as you need to.
2llOy o :

Although topic jumping is encouraged, we recommend reading

the next chapter (3) first, as it will introduce the software needed

to run all of the example queries in the remainder of the book.

36 SQL QUICKSTART GUIDE

Chapter Recap

» 'This book is designed to introduce the minimum required
background information and then jump right in to writing SQL
queries.

» To achieve this goal, and to get the most out of this book, it must be
used concurrently with database software up and running as well as
a sample database.

» As a data analyst, you will often be given an existing database to
analyze. The sTunes database file provided here serves as a good
example of what an existing database will look like when you first
open it.

» DB Browser for SQLite is a free-to-use, public domain database
software program that is lightweight and is a good starting point for
learning how to examine database files. This program can be run in a
Windows or macOS environment.

» Two types of self-assessments are provided in this text to help test
your knowledge. The answers to the Data Analysis Checkpoints can
be found in Appendix I.

» To make the most of your learning experience, type out the SQL

queries in this book by hand (instead of copying them) and consider
any SQL question in terms of its real-world meaning.

SQL Tools and Strategies 37

| 3 |

Exploring a Database in SQLite

Chapter Overview

»

»

»

»

»

»

»

Launching the SQL software
Opening a database file

'The Database Structure tab
'The Browse Data tab

The Execute SQL tab
Viewing query results

Data Analysis Checkpoint

In this chapter, we will familiarize ourselves with the interface of our chosen

SQL browser for SQLite: DB Browser.

Environment Orientation

We have a bit more preparation to do and then we are ready to start

analyzing the sTunes database. Now that we have installed DB Browser for
SQLite software and downloaded the sTunes sample database, it is time to
fire it up and get going!

1.

Start the DB Browser for SQLite application.

a. Macusers: Go to Finder and double-click DB Browser for
SQLite in your Applications folder.

b. Windows users: Go to your Start Menu and click on the DB
Browser for SQLite application from your list of installed
programs.

2. You will see the following default screen (Figure 23):

Exploring a Database in SQLite

39

B o
P ——

yes) L]
o -
e =
.

sQutop [Pt | Ousdms | Remote |

Opening the sTunes Database
3. With DB Browser open, click on “Open Database.”

0|
File Edit View Help

L_B New Database [Open Database [Write Changes % Revert Changes

Database Structure | Browse Data | EditPragmas | ExecutesqL |

(3 Create Table D Create Index [f Modify Table [Delete Table

fig. 24
Name Type Schema
4. 'This opens the “Choose a Database File” dialog box. Navigate to the
folder where you downloaded the sTunes sample database file and
click on “Open.”
|
@@o[J. » Computer » Local Disk (C:) » Downloads ~ [42][search Downtoads o
Organize = Newfolder m—— T ——— E———
\“AGg 2 Favorites A Name = Date modified Type Size
(%) sTunes 4/27/20195:42PM Data Base File 864 KB‘
53 Libraries
[Documents
& Music =
;] :i:“"‘ No preview available.
fig. 25 & Homegroup
% Computer

&, Local Disk (C)

- @ il v

40 SQL QUICKSTART GUIDE

Investigating the Structure of the Database
When the file is opened, the Database Structure tab shows the tables
contained in the sample database.

File Edit View Help

BNewDatabase (@ OpenDatabase £ Write Changes | Revert Changes
Database Structure | Browse Data | _EditPragmes | ExecutesQL |
| Create Table ® Create Index) Modify Table g Delete Table
Name Type Schema
4[] Tables (13)
> (] albums CREATE TABLE "albums" ([Albumid] INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, (Title] NVARCH
> [artists CREATE TABLE "artists" ([Artistid] INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, [Name] NVARCHA
> (] customers CREATE TABLE “customers" ([Customerld) INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, [FirstNan|
> (] employees CREATE TABLE “employees" ([Employeeld] INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, [LastNar|
\N\AGG > (1] genres CREATE TABLE "genres" ([Genreld] INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, [Name] NVARCH
> (] invoice_items CREATE TABLE "invoice_items" ([InvoiceLineld] INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, [Inw
> (] invoices CREATE TABLE "invoices" ([Invoiceld] INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, [Customerid]
> (] media_types CREATE TABLE "media_types” ([MediaTypeld] INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, [Nam|
. @ > [playlist_track CREATE TABLE "playlist_track” ([Playlistld) INTEGER NOT NULL, [Trackid] INTEGER NOT NULL, CONSTRAIN
> [playlists CREATE TABLE "playlists” ([Playlistid] INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, [Name] NVAR

> [sqlite_sequence CREATE TABLE sqlite_sequence(name,seq)

fig. 26

Indices (10)

IFK_AlbumArtistid
IFK_CustomerSupportRepld
IFK_EmployeeReportsTo
IFK InvoiceCustomerld
IFK InvoiceLinelnvoiceld
IFK InvoicelineTrackid
IFK_PlaylistTrackTrackid
IFK_TrackAlbumid
IFK_TrackGenreld
IFK_TrackMediaTypeld

Views (0)

L Triggers (0)

> | sqlite_statl CREATE TABLE sqlite_statl (tbl,idx stat)
> [1] tracks CREATE TABLE "tracks” ([Trackld] INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, [Name] NVARCHA
4

CREATE INDEX [IFK_AlbumArtistld] ON “albums"” ([Artistld])
CREATE INDEX [IFK_C ON" 3

CREATE INDEX [IFK_EmployeeReportsTo] ON “employees” ([ReportsTo])
CREATE INDEX (IFK_InvoiceCustomerld] ON “invoices” ([Customerld])
CREATE INDEX [IFK_InvoiceLinelnvoiceld] ON “invoice_items" ([Invoiceld])
CREATE INDEX [IFK_InvoiceLineTrackld] ON "invoice._items" ((Trackld])
CREATE INDEX [IFK_PlaylistTrackTrackld] ON "playlist_track" ([Trackid])
CREATE INDEX [IFK_TrackAlbumid] ON "tracks" ([Albumid])

CREATE INDEX [IFK_TrackGenreld] ON "tracks™ ([Genreld])

CREATE INDEX [IFK_TrackMediaTypeld] ON "tracks” ([MediaTypeld])

Now that we can investigate the database structure, we can learn a lot
more about our fictitious company, sTunes. Once the I'T department gives
us the proper permissions, our company will most likely give us some time to
familiarize ourselves with the database we were tasked to analyze. Before we
start writing any SQL statements, it’s a good idea to see what type of data we
have available to us.

First, we can see that there are thirteen tables in the sTunes database. By
expanding the arrow to the left of the table name, we are shown the fields
contained in each table. In the a/bums table, as can be seen in Figure 27, the
fields are AlbumId, Title,and ArtistId.

Database Structure | BrowseData | EditPragmas | ExecutesqQL |
|- Create Table) Create Index [y Modify Table [73 Delete Table
Name Type
4 || Tables (13)
4 [] albums
fig. 27 .2 Albumld INTEGER
Q Title NVARCHAR (160)
(=) Attistld INTEGER

Exploring a Database in SQLite 41

42

@N\EMEQ’) At the beginning of chapter 1, we talked about the fundamental
terminology of this book. The fields we are seeing are the columns
in each table. The data stretched across the rows of the table (not
pictured here) are the records.

The AlbumId field is an infeger data type, which means it holds numeric
data (numbers).

The Title field is a character data type (known as NVARCHAR), which
means it holds characters or non-numeric data.

The ArtistId field is also an integer data type.

WEMg We spoke about metadata and different data types in chapter
2 Qp 1, where we went over database structure. The Type field in our
database browser panel (see Figure 27) is a good example of
metadata. The data type for each field is chosen based on the
most logical type for its function.

Viewing the Individual Records

The Browse Data tab can be used to see the records contained in each
table. Use the drop-down to switch between tables and browse the data
contained in each one.

"3 DB Browserfor SQlite - C\Downlosds\sTunes.db
File Edit View Help

NewDabase (3 Open Database

Databese suchee_ | rovee oots | Edtimames | Brearzsor

rate[labums -|8 @

(Renrecrd) [peirecnd

Albumid Title Artistid
[Fite e iter

For Those About To Rock We Salute You 1

Balls to the Wall 2
id

Facelift

17 17 Black Sabbath Vol. 4 (Remaster) 12
18 18 8ody Count 13
1 19 Chemical Wedding 14
20 20 The Best OF Buddy Guy - The Millenium Collection 15
2 2 Prenda Minha 16

2 2 Sozinho Remix Ao Vivo 16

23 23 Minha Historia 17

In Figure 28, the Browse Data tab displays the data stored in the albums
table. It shows the columns we observed in the Database Structure tab. It also
shows the actual data contained in these columns.

SQL QUICKSTART GUIDE

In row 1, the following data is contained in each column of the a/bums table:

AlbumId =1
Title = “For Those About to Rock We Salute You”
ArtistId =1
NEVSe
< P As per our chapter 1 terminology discussion, the columns you are
seeing are referred to as fields. Every row represents an individual
record.

By examining this table, we can also learn a bit about the other tables
in this database. In chapter 1, we introduced the concept of a foreign key
field. In this table we can see that the primary key is AlbumId (there is a
unique number for each record). We also have an ArtistId which accepts
an integer instead of an actual artist name. This gives us a hint that there is
probably another table that holds the actual artist name as a character data
type and that ArtistId is most likely a foreign key field.

NEMse
< P A foreign key is a field that exists as a primary key in another table.
If we look at the artists tabl e, we can confirm that ArtistId is the
primary key in that table, so it exists as a foreign key in this one.

The Execute SQL Tab

The Execute SQL tab is where you write your SQL statements. There
are three main component window panes in the execute SQL tab: the Query
Pane, the Results Pane, and the Messages Pane. Let’s explore these three panes
by writing the following SQL code into the Query Pane, as seen in Figure 29:

SELECT
*

FROM
albums;

This SQL statement selects all fields (the * symbol designates “all fields”)
from the a/bums table and, once you press the play button above the Query
Pane, displays the fields, and data in those fields, in the Results Pane below.

As seen in Figure 29, the Play button to the left executes all SQL
statements written in the window. The Play button to the right executes only
the SQL statement that your cursor is on (it executes only one statement at
a time).

Exploring a Database in SQLite 43

44

WAGs

fig. 29

WOTs

"2 DB Browser for SQLite - C\Downloads\sTunes.db
File Edit View Help

New Database (g} Open Database

[Database Structure._| BrowseData_| EditPragmas | Execute SQU

& &> n} PLAY BUTTONS

— QUERY PANE

——
Albumid Title Artistld
For Those About To Rock We Salute You
Balls to the Wall
Restless and Wild

Let There Be Rock

—— RESULTS PANE

Facelift

1
2

3

4

5 Big Ones
6

7

8 Warner 25 Anos
9

1
2
3
4
5
6
7
8
9

1
2
2
1
3
Jagged Little Pill 4
5
6
Plays Metallica By Four Cellos 7

8

10 10 Audioslave
| ——

347 rows returned in 9ms from: SELECT

i — MESSAGES PANE

FROM

Since we are starting off with basic queries, we are only going to
be running one SQL statement at a time. More advanced queries
can use multiple statements executed at the same time. The ability
to execute statements individually is valuable in multi-statement
queries. If you have only one complete SQL statement in the
Execute Pane, then these Play buttons essentially do the same thing.

'The Results Pane lists the output generated by our query. If we have more
results than can be viewed on the screen at one time (Figure 30), the browser
provides us with a scroll bar to navigate down through all the results.

There is another way to determine if what we see on the screen (in this case
only five results), represents the entire query or if there is more data available.
Under the Results Pane is the Messages Pane, which displays informative
messages about our query.

» The number of rows returned from our SQL statement
» How much time our query or SQL statement took to run
» Error messages, if our SQL statement contained errors

SQL QUICKSTART GUIDE

Albumld Title Artistld =
il n! For Those About To Rock We Salute You 1 =
2 (2 Balls to the Wall 2
3 (3 Restless and Wild 2
4 4 Let There Be Rock 1
5 S Big Ones 3 .

347 rows returned in 9ms from: SELECT
*

FROM
albums;

The first thing we see is that our query returned 347 rows of data. If we
did not notice the scroll bar, then this message would serve as our notification
to scroll down. The second thing we observe is that our query was returned
in 9 milliseconds (abbreviated as 9ms). You may wonder why it is valuable to
see how much time it takes to process a query. In this case, it doesn’t really tell
us anything. However, in larger databases with more advanced queries, it can
take much longer to return data. The length of time it takes also depends on
how a database is optimized and structured. We will talk more about database
structure in chapter 6 when working with multiple tables.

NOTs
The Messages Pane is also the location where any error messages
will be displayed. If your query does not execute correctly, check
the Messages Pane.
Data Analysis Checkpoint
NOTs

You have reached the first Data Analysis Checkpoint in this book!
These checkpoints will be at the end of every remaining chapter.

This is a good time to practice what you have learned so far.

Using the Database Structure tab and the Browse Data tab, try to answer
the following questions:

1. How many tables are in our database?

Exploring a Database in SQLite 45

2. How many fields does the table named #racks have?
3. What are some of the data types in this table?

4. What does the actual data look like in the table?
=2

The answers to these Data Analysis Checkpoints are at the end of
the book in Appendix I.

46 SQL QUICKSTART GUIDE

Chapter Recap

» DB Browser for SQLite, the chosen software for this text, opens like
any other computer software program.

» Selecting the Open Database button will allow you to select a
database file from your computer to open.

» Investigate the structure of the database file with the Database
Structure tab.

» Use the Browse Data tab to view individual records in the table you
select with the provided drop-down menu.

» Use the Execute SQL tab to write and then execute your first SQL

statement.
» 'The Results Pane contains the data returned by your query.
» 'The Messages Pane contains information about your query

including how many rows were returned, how long the query took to
run, and any applicable error messages.

Exploring a Database in SQLite 47

PART Il

WRITING SQL STATEMENTS

| 4 |

Getting Started with Queries

Chapter Overview
» Query notation techniques
» SQL query basics
» Using an alias
» Sorting results alphabetically
» Limiting query results
» Data Analysis Checkpoint

SQL is a powerful and robust language that offers the user a wide variety of
commands. Although there are more commands than we could ever show in
this book, there are a few simple and easy-to-use commands that we can start
experimenting with immediately. This chapter will cover the basics of writing
a good query and formatting the results. By the end of this chapter you will
be able to select individual fields from a specific database and display those
fields in alphabetical order. Let’s get started!

Adding Comments to Queries

Before we begin composing our first SQL query, we will take a look at
creating comments. Comments are plain English sentences used to help add
insight and authoring information about SQL statements that you create. It
is considered an industry best practice to use comments in your SQL queries;
they help both the SQL author and those that come after the author to
quickly gain understanding and context regarding the intention and function
of the given SQL statement.

There are two ways to create a comment. Preceding anything written in
the Query Pane with two hyphens (--) creates a comment on that line. Our
example shows a comment created on line 1 (Figure 32).

A comment block is a multi-line comment. It is created using the front
slash and star symbols to open the block /*, followed by a star and a front

Getting Started with Queries 51

52

slash */, which closes the block. Anything that falls between the opening and

closing symbols becomes part of the comment (Figure 33).

albums;

\“\AGG il ——This is a line of comment[i— LINE OF COMMENT
Z
3 SELECT
© 4 .
5 FROM
) 6 albums;
fig. 32 — COMMENT BLOCK
su1B8
1 l/i
2 CREATED BY: Walter Shields
3 CREATED ON: 3/13/2018
4 DESCRIPTION: This script selects all of the records from the albums table
5 *I/
6 SELECT
7/ *
8 FROM
9
0

[

Our example shows some standard information that is very useful
to include in a comment block. The author, date, and description provide
significant value to anyone who encounters the SQL query or script.

Comments are often overlooked completely in SQL texts. We
omit comments in future chapters for the sake of brevity only.
When working with real-world databases, preexisting comments
have saved me a lot of time that | would have otherwise spent
writing additional queries to figure out how the database
functioned. Comments become especially important when your
queries will be read or used by others.

The Structure of a Basic Query

Writing a query is like asking a question in any natural language. The
phrasing matters, the details matter, and the order of the words matters. The
more detailed our question is, the more precise our answer will be.

In the creation of an SQL query, we need to consider the following five
questions:

1. What database are we speaking to?

2. What table within that database are we requesting data from?
3. What fields within that table are we interested in?

SQL QUICKSTART GUIDE

4. Do we want to exclude any data, filter or omit any range or time
period?
5. In one concise sentence, what does our query do?

'The purpose of the foregoing questions is to help us build a bridge
between the natural language we use every day and the language of SQL. If
you are employed as a data analyst, you will be asked normal questions from
your boss or coworkers about the business. You will have to convert these
plain-language questions into SQL statements in order to answer them. After
you have received the results of your query, you will then have to convert
those results back into natural language that is accessible to all. Such is the

WOTz nature of the job.

If you are having trouble with a query, refer to the five questions

above. Contemplating these questions will help you write your query.

Start Writing Your Query

To begin writing your first query, you can use the existing Execute SQL
tab labeled “SQL 1” or start a new Query Pane tab, in the same way that you
would open a new web browser tab. Click on the “Open Tab” icon.

DB Browser for SQLite - C:\Downloads\sTunes.db
File Edit View Help

& New Database % Open Database] Write Changes % Revert Changes

[Database Structure_|_Browse Data_| EditPragmas | ExecuteSQL |

| OPEN TAB BUTTON
[sa:fd | sa28 —— NEW TAB

1

With our new Query Pane opened, the first thing we will write is a
comment block:

/*

CREATED BY: <your name>

CREATED ON: <date>

DESCRIPTION: <A concise description of your query,
i.e., question #5>

*/

Getting Started with Queries 53

After finishing our comment block, we can begin to write our first SQL
statement. But to do that, we need a good question to answer. In chapter 2,
we introduced the concept of an operational scenario for this book: imagining
yourself as a data analyst for the fictional company sTunes. As you have seen
from exploring the sTunes database in chapter 3, sTunes sells online music
and has a digital library of artists, tracks, and albums and a list of customers
who have purchased these songs. Let’s say sTunes customer service wants to
send a new promotional advertisement to all existing customers. Customer
service wants to know if their customer contact list is up to date, so they
ask us if we can get a complete list of first names, last names, and customer
email addresses (if available) from the database. How would we go about
answering this question? Let’s start by answering the questions listed earlier
in the chapter.

1. What database are we speaking to?

In this case, we are dealing with only one database. The sTunes database
should already be opened in DB Browser. If you have closed the browser
since working through chapter 3, you may need to open it and the sTunes
database file again.

2. What table within that database are we requesting data FROM?

We are looking for customer information. Browsing our Database
Structure tab, we can see that we have a table named customers. That table
looks promising.

3. What fields within that table are we SELECTing to display?

'This question can be answered by our Browse Data tab. If we click on that
tab and select the customers table in our drop-down menu, we see that it
has fields for first name, last name, and email.

4. Do we want to exclude any data, filter or omit any range or time
period?

In this case, sTunes customer service wants a list of all customers, so we'd
better not omit anything.

5. Inone concise sentence, what does our query do?
This query selects the first name, last name, and email address from the

customers table.

After adding your comment block, start by typing FROM customers.
'This tells your query what table to look in for its data. Then type the keyword

54 SQL QUICKSTART GUIDE

SELECT above the FROM clause, followed by the names of the fields within
the customers table that you wish to view. Each field name is separated by a
comma. The comma tells SQL to expect another field. The resulting code
should look like this:

/*

CREATED BY: Walter Shields

CREATED ON: 3/13/2018

DESCRIPTION: This query selects the first name,
last name, and email from the customers table.

*/

SELECT
FirstName,
LastName,
Email

FROM
customers;

After composing this SQL query, run the statement by clicking on
the Execute SQL play button in the menu bar. The results of the query are
displayed in the Results Pane below (Figure 35). The Messages Pane also

shows that the query returned 59 rows (aka records) in 3 milliseconds.

3 DB Browser for SQUte - CA\Downloads\sTunes.db

File Edit View Help

§NewDatabase () Open Database

Astid Gruber astrid gruber@apple.at

8 Dan Peeters daan_peeters@applebe

Getting Started with Queries

55

56

Qg,N\EMGQ

» Add another field from the cuszomers table to this query. Try adding
the Company or Phone field to our sTunes mailing list. Don't
forget to add an extra comma!

Coding Syntax Versus Coding Convention

As we mentioned in chapter 1, all queries must conform to a certain
syntax in order to be understood by the SQL browser. When writing queries,
there is much more to take into consideration than just making sure the SQL
browser can understand you. It is also important that other database users
can understand and follow your queries. The practice of writing queries in
a standardized, readable, and consistent way is known as coding convention.
Coding conventions vary in different database environments. This section
will explain the coding conventions used in this book.

In earlier examples of queries, we used a * symbol after our SELECT
keyword (in lieu of specifying individual fields). This special symbol tells the
SQL browser to retrieve and display all fields in a table. Although this symbol
is useful in some circumstances, in most cases it is a best practice to determine
which fields you specifically want to select and call out those fields by name.

'The semicolon at the end of the statement is optional in this case, since
we are only writing one single SQL statement. The semicolon denotes the end
of an SQL statement. Since most of the SQL queries we will be writing in
this book are single statements, we will be omitting the semicolon from this
point forward.

In the SELECT clause, we have chosen three fields to display. We must
separate every field with a comma (except for after the last field). Omitting
a comma between fields or adding a comma after the last field are both
common syntax mistakes that will result in a syntax error appearing in your
query Results Pane.

Notice that the code is broken up on multiple lines. We could write the
entire query all on one line and the SQL browser would still recognize the
code and return results. But it is a best practice to separate queries into clauses
with the content of each clause indented on a new line. Later in this text,
our queries will become much longer and will contain many more clauses.
Organizing our queries with indents and spacing increases readability and
helps others to follow along,

A clause is a subsection of an SQL statement that starts with
a special SQL keyword (SELECT, FROM, etc.) and may include
additional parameters and operators.

SQL QUICKSTART GUIDE

Adding an Alias to Your Columns

Often the technical language of the database will differ from the common
language of a business. Sometimes you will be working with old databases or
those that have not had their field names updated in a while. If you apply an
alias to a field name (in order to describe the data in a way your coworkers
are more likely to understand), any report you deliver will make much more
sense to both you and anyone else reading along. Using aliases is also helpful
if you want to clean up the column names and make your query output more
readable or aesthetically pleasing.

In the following example, we will demonstrate several different ways to
create an alias for selected field names from our customers table. An alias is
always listed directly after the name of a field from our database. Aliases
are commonly associated with the AS keyword, however, the use of the AS
keyword between the field name and the alias name is optional in most

RDBMS implementations.

/*

CREATED BY: Walter Shields

CREATED ON: 3/13/2018

DESCRIPTION: This query selects the first name,
last name, email, and phone number fields from the
customers table and demonstrates four different
ways to create an alias.

*/

SELECT
FirstName AS 'First Name',
LastName AS [Last Name],
Email AS EMAIL
Phone CELL

FROM
customers

As seen in the preceding query, we used the AS keyword for the first three
fields, then omitted this keyword for the Phone field, which we renamed
to CELL. If the alias you create contains multiple words (such as First Name
and Last Name), it needs to be surrounded with some sort of demarcation,
in this case either single quotes '' or square brackets [] as shown. Since the
aliases EMAIL and CELL are single words, they don’t need any quotations
or brackets.

Getting Started with Queries 57

58

WOTg SQL allows a great deal of variation in alias syntax. Other RDBMSs
may not recognize every aliasing method listed here. If you get a

syntax error when running your query, check to see how you desig-

nated your alias.

WITHOUT ALIASES WITH ALIASES

FirstName LastName Email First Name Last Name EMAIL
1 Luis Gongalves luisg@embraer.com.br 1 Luis Gongalves luisg@embraer.com.br
2 Leonie Kéhler leonekohler@surfeu.de 2 Leonie Kohler leonekohler@surfeu.de
3 Frangois Tremblay ftremblay@gmail.com 3 Franois Tremblay fremblay@gmail.com
4 Bjorn Hansen bjorn.hansen@yahoo.no 4 Bjom Hansen bjorn.hansen@yshoo.no
5 Frantisek Wichterlovéa frantisekw@jetbrains.com 5 FrantiSek Wichterlova frantisekw@jetbrains.com
fig. 36 6 Helena Holy hholy@gmail.com 6 Helena Holy hholy@gmail.com
7 Astid Gruber astrid.gruber@apple.at 7 Astrid Gruber astrid.gruber@apple.at
8 Daan Pecters daan_peeters@apple.be g Daan Peeters daan_peeters@apple.be
9 Kara Nielsen kara.nielsen@jubii.dk 9 Kara Nielsen kara.nielsen@jubii.dk
10 Eduardo Martins eduardo@woodstock.com.br 10 Eduardo Martins eduardo@woodstock.com.br
As you can see in Figure 36, the output on the left leaves the field names
unchanged. The output on the right shows how our aliases modified the
column names. Adding an alias will not change the data in the database.
Aliases only alter how fields are displayed in the Results Pane.
~NOUR o
§ ‘1’1 » Add another field to this query and give it an alias.
B » Practice changing the alias syntax and omitting the AS keyword
entirely. Does this have any effect on your output?
NOTE

Avoid using any existing SQL keywords as your alias names. Using

existing keywords could cause confusion, generate syntax errors,
or cause the RDBMS to interpret your alias as a command instead.

Using the ORDER BY Clause

In our fictional scenario, we are providing a list of customers to sTunes
customer service. It might be useful to order our results by the last name of
our customers. To sort our results by customer last name, we need to use a
new clause after our FROM clause. The ORDER BY clause allows us to sort our
query results by any field(s) we choose. The default sort order is ascending, A
to Z. The special keyword ASC, which specifies ascending order shown in the
following example, is optional. To sort in descending order (Z to A), we would

SQL QUICKSTART GUIDE

add the keyword DESC after the field being sorted. ORDER BY LastName
DESC would sort the aliased column LastName in descending order.

/*

CREATED BY: Walter Shields

CREATED ON: 3/13/2018

DESCRIPTION: This query selects the first name,
last name, and email from the customers table,
ordered by Last Name.

*/

SELECT
FirstName AS [First Name],
LastName AS [Last Name],
Email AS [EMAIL]

FROM
customers

ORDER BY
LastName ASC

[2 0B Browserfor SQLite - C\Downloads\sTunesdb.
Fie Edit View Help
& New Database () Open Database.
Dotabase Swuctre | Bronse Data | Edtiragnes | Eveate U
s B B > M
s 1@
TEs
|2 REATED BY: Walter Shields
Bl com o
[a | oescr a
[
6
7
s
9
|10
AG :
\! [3 2
5
|14
15
1
fig. 37
9 Joio
10 Edwrd
seect
“custon)
ORDER BY
Lastiame ASC

Without ORDER BY, every query will return data in the order that it
was initially saved in the table.

Getting Started with Queries 59

60

We can use the ORDER BY clause to sort by multiple columns as well. In
this example, we will sort by first name (ascending), and then by last name
(descending). This will require us to list two fields in our ORDER BY clause.
Just like with the SELECT clause, when listing multiple fields, we must
separate them by commas.

/*
CREATED BY: Walter Shields

CREATED ON: 3/13/2018

DESCRIPTION: This query selects the first name,
last name, and email from the customers table,
ordered by first name (ascending), then last name
(descending).

*/

SELECT
FirstName AS [First Name],
LastName AS [Last Name],
Email AS [EMATIL]

FROM
customers

ORDER BY
FirstName ASC,
LastName DESC

Fie Edit View Help
BNewDatabase (3 OpenDatabase | [Wrte Changes 5 Revert Changes

[-Browss ata [Eatprogmes | Eveaesar |

s BB >N

SQL QUICKSTART GUIDE

NOTE

When we run this query and look at the customer first names starting
with D, we can see that first names are in ascending order and last names are
in descending order.

If you use the ORDER BY statement on a column where some of the
corresponding rows have empty values, you will see those values
show up as NULL at the very top if you are using ascending order.

» Rearrange the fields in the SELECT clause so that LastName
is the first column instead of the second. Order the output by
LastName. Does this make the list more readable?

Selecting the Top Ten Records Using LIMIT

In our queries so far, we have returned every record available from the
customers table. Although we have limited our records to three fields, and
sorted those fields, we can see in our Messages Pane that we are returning 59
rows every time. If we are not interested in seeing all 59 records, we can limit
our results to a specified number of rows. This is often helpful when sorting
queries by a number (which we will demonstrate later), like highest price or
largest sale. Adding the keywords LIMIT 10 after the ORDER BY clause
returns only the first ten records from the query in the sort order you specify.
'This number can be changed to any number you wish to limit your results by
(provided there are at least that many records in the table).

/*

CREATED BY: Walter Shields

CREATED ON: 3/13/2018

DESCRIPTION: This query selects the first 10 records
from the customers table, ordered by first name
(ascending), then last name (descending).

*/

SELECT
FirstName AS [First Name],
LastName AS [Last Name],
Email AS [EMAIL]

FROM
customers

Getting Started with Queries 61

62

ORDER BY
FirstName ASC,
LastName DESC

LIMIT 10
DB Browser for SQLite - C:\Downloads\sTunes.db.
Dotabase Structure | Browse Data | EdtProgms | Exeaute SQU
s BB >N
s 18
\WAGe
10 rows returned in ims frem: SELECT
FirstName AS [First Name],
LastName AS [Last Name], =
gy e ——— Email AS (EMAIL]
i 3 Atid Guber customers
fig. 39 - — ORDER BY
5 Comile Bemerd FirstName ASC,
6 Dwn Peetes LastName DESC
7 o Miller LIMIT 10
®
As we can see in Figure 39, our Messages Pane now says “10 rows
returned in 1ms.” The query performs the ORDER BY operation first and then
applies the limit.
WOTs There is no requirement to use LIMIT with ORDER BY. In many

cases, it makes sense to order your results by certain criteria before
you limit them. If you do not use the ORDER BY clause, the results
of the LIMIT statement will be returned to you in the order they
were originally added to the table.

Data Analysis Checkpoint

1. How many customers’ last names begin with B?

2. When sorted in descending order, which company appears at the top
in the customers table?

3. How many customers do not have a postal code listed?

SQL QUICKSTART GUIDE

Chapter Recap

» Adding comments to queries is considered a best practice. A basic
comment block can include your name, the date the query was
created, and a brief description of what the query does.

» When composing a query, it is helpful to phrase what you want in a
natural language first, then decide what keywords and clauses you
need.

» A basic query usually begins with a SELECT clause that specifies
what fields to display from the table specified in the FROM clause.

» An alias used after the AS keyword can rename or reformat the field
names in your query results. This change is only cosmetic and does
not affect the data in the database.

» Using ORDER BY allows you to sort alphabetically by field(s), either
in ascending (ASC) or descending (DESC) order.

» You can limit the number of results returned by using LIMIT after
your ORDER BY clause. You must include the number of results you
wish to show.

Getting Started with Queries 63

NOTE

1S |

Turning Data into Information

Chapter Overview
» Operators in SQL
» 'The WHERE clause
» Searching for text using wildcard values
» 'The DATE () function
» Using OR and AND together
» 'The CASE statement
» Data Analysis Checkpoint

At this point in our study, using a basic SELECT statement query, we can
return any set of fields from a database table and see that data ordered by
the field of our choice. Displaying and ordering fields is a valuable first step
in our learning journey, but we need more precise tools so that we can ask
more specific questions. In the previous chapter’s Data Analysis Checkpoint,
we asked you how many customers’ last names began with B. If you did the
exercise, you noticed that the query didn’t return very many names. It was easy,
in this case, to sort the data alphabetically by last name and then just manually
count the names ending in B. But what if our database was much larger and
contained a million customers? Would you really want to manually count all
the B names? Fortunately, SQL provides some tools that not only allow us to
narrow down our result set (that is, the results of our query) to very specific
data, but also to order and filter our data by user-specified conditions. Let’s see
what these new statements can do!

From this point on in the text, we will not be showing screen
captures of the DB Browser output (unless we are specifically
referring to a feature of the browser). Instead, we will be showing
the output of our queries in tabular form (Figure 40).

Turning Data into Information 65

66

Result set containing more

Result set containing than three rows, but only
only three rows displaying the first three
InvoiceDate BillingAddress InvoiceDate BillingAddress
1 1/1/2009 0:00 Theodor-Heuss-StraBe 34 1 1/1/2009 0:00 Theodor-Heuss-StraBe 34
2 2/1/2009 0:00 BarbarossastraBe 19 2 2/1/2009 0:00 BarbarossastraBe 19
3 2/1/2009 0:00 8, Rue Hanovre 3 2/1/2009 0:00 8, Rue Hanovre
3rows returned 150 rows returned
in3ms | in3ms

Comparison, Logical, and Arithmetic Operators

Operators are special keywords in SQL that we use in conjunction with
SQL clauses to compare the values of fields, select subsets of fields, or perform
arithmetic operations. Unlike the keywords we have explored already, such as
SELECT, operators cannot exist as their own SQL clause but must be used
with other clauses such as the SELECT clause and the WHERE clause (which
we will explore in this chapter). Figure 41 shows the three types of operators
we will use in this chapter.

TYPES OF OPERATORS

COMPARISON LOGICAL ARITHMETIC
= Equal To BETWEEN + Add
> Greater Than N - Subtract

LIKE

< Less Than AND / Divide
>= Greater Than or Equal To OR * Multiply
<= Less Than or Equal To % Modulo
<> Not Equal To

These different types of operators can be combined to make more
complex queries. Combining different types of operators allows us
to search for ranges of data or create unique conditions. There are
many more options than we can list in this chapter, but we will go
over some of the more common ones.

NOTE

SQL QUICKSTART GUIDE

In the following example, we can see arithmetic operators being used in

conjunction with the SELECT clause to augment the value of a field called

Total from the sTunes invoices table. Arithmetic operations are useful when

we need to add taxes, surcharges, or other modifications to numeric data.

SELECT
Total AS [Original Amount],
Total + 10 AS [Addition Operator],
Total - 10 AS [Subtraction Operator],
Total / 10 AS [Division Operator],
Total * 10 AS [Multiplication Operator],
Total % 10 AS [Modulo Operator]
FROM
invoices
ORDER BY
Total DESC
Original Amount Addition Subtraction Division Multiplication Modulo
Operator Operator Operator Operator Operator
1 25.86 35.86 15.86 2.586 258.6 5
2 23.86 33.86 13.86 2.386 238.6 3
3 2186 3186 11.86 2186 218.6 1
4 2186 3186 11.86 2186 218.6 1
5 18.86 28.86 8.86 1.886 188.6 8
412 resultsin 42ms

» Using the example query above, show the Total field from invoices
with a 15 percent tax added.

Filtering Records by Numbers with the
WHERE Clause

Other than SELECT, the most common place we will encounter operators
is in the WHERE clause. The WHERE clause allows us to add specific conditions
to our queries. Using WHERE, we can limit the results of our queries so that

only data that satisfies our conditions appears in our result set. Some common

types of data we can filter for include numbers, text, and dates. In order to

filter records to return specific data, we use the WHERE clause in conjunction

with operators.

Turning Data into Information 67

68

In the following example, let’s imagine the sales department from our
fictional sTunes company asked us a question like “How many customers
purchased two songs at $0.99 each?” How would we go about answering that
question? In the chapter 3 Data Analysis Checkpoint, we looked at the #racks
table. We observed that our company sells individual songs for both $0.99 and
$1.99, as we can see in Figure 43.

[DB Browser for SQLite - CADownloads\sTunes.db
File Edit View Help
 NewDatabase (3 Open Database | Write Changes (% Revert Changes
Database Structure | BrowseData | EditPragmas | ExecuteSQU
Table: (| radks BRI
Trackid Neme Albumid MediaTypeld Genreld Composer i Bytes UnitPrice
[Fitter Filter Fitter [Fiter [Fitter [Fitter [Fitter [Fitter [Fitter
3161 3161 Minha Fé 28 1 7 Murilso 206994 6981474 0.99
3162 3162 Lua de Ogum 248 1 z Ratinho/Zeca ... 168463 5719129 0.99
3163 3163 Samba pras ... 248 1 7 Grazielle/Rog... 152816 5121366 0.99
3164 3164 Verdade 248 1 7 Carlinhos San... 332826 11120708 0.99
3165 3165 The 8rig 229 3 21 2617325 488919543 1.99
3166 3166 07% 228 3 21 2585794 541715199 1.99
: 3167 3167 Five Years Gone 228 3 2 2587712 530551890 1.99
flg- 43 3168 3168 The Hard Part 228 3 2 2601017 475996611 1.99
3169 3169 The Man Behi... 229 3 2 2615990 493951081 1.9
3170 3170 Greatest Hits 229 3 2 2617117 522102916 199
3171 3171 Landslide 28 3 2 2600725 518677861 1.99
3172 N2 The Office: A... 249 3 19 1380833 290482361 199
3173 3173 Diversity Day 249 3 19 1306416 257879716 1.99
3174 3174 Health Care 249 3 19 1321791 260493577 199
3175 3175 The Alliance 249 3 19 1317125 266203162 1.99
3176 3176 Basketball 249 3 19 1323541 267464180 1.99

If we look in the invoices table, as shown in Figure 44, we can see the total
price of customer orders in the Total field.

| 2 DB Browser for SQLite - C:\Downloads\sTunes.db .
File Edit View Help
 NewDatabase (g Open Database {3 Write Changes (% Revert Changes
Database Structure | BrowseData | EditPragmas | ExecutesQL |
A G Table: | invoices
\w 6 Invoiceld Customerld wvoiceDate BillingAddress BillingCity BillingCountry _BillingPostalCode Total
[Fitter Fitter [Fitter [Fitter Fitter [Fitter [Fitter [Fitter [Filter

1am|1 2 2009-01-01 0... Theodor-Heus... Stuttgart Germany 70174 1.98
2.2 4 2009-01-02 0... Ullevalsveien 14 Oslo Norway 0171 3.96
3 3 8 2009-01-03 0... Grétrystraat 63 Brussels Belgium 1000 5.94
4 4 14 2009-01-06 0... 8210 111 ST ... Edmonton AB Canada T6G 2C7 8.91

ﬁg_ 44 suls 23 2009-01-11 0... 69 Salem Street Boston MA USA 2113 13.86
6 6 37 2009-01-19 0... Berger StraBe... Frankfurt Germany 60316 0.99
25l7 38 2009-02-01 0... Barbarossastr... Berlin Germany 10779 1.98
8 8 40 2009-02-01 0... 8, Rue Hanovre Paris France 75002 1.98
9 9 42 2009-02-02 0... 9, Place Louis... Bordeaux France 33000 3.96
10 10 46 2009-02-03 0... 3 Chatham St... Dublin Dublin Ireland 5.94

If we wanted to see how many customers purchased just two $0.99 songs,
we would look in the inwoices table for total amounts of $1.98, which would
represent two songs.

Using the tools we learned in the last chapter, we could write a query that
selects all invoices and then orders them by total, but that would require us

SQL QUICKSTART GUIDE

NOTE

to manually count. Instead, we can insert a WHERE clause between the FROM
and ORDER BY clauses to search for only those totals that equal $1.98. In
conjunction with the total, adding a few other fields, such as invoice date and
address, will help identify each invoice. Adding in all these clauses yields the

tollowing:
SELECT
InvoiceDate,
BillingAddress,
BillingCity,
Total
FROM
invoices
WHERE
Total = 1.98
ORDER BY
InvoiceDate
InvoiceDate BillingAddress BillingCity Total
1 2009-01-01 00:00:00 | Theodor-Heuss-StraBe 34 | Stuttgart 198
2 2009-02-01 00:00:00 | BarbarossastraBe 19 Berlin 198
3 2009-02-01 00:00:00 | 8, Rue Hanovre Paris 198
4 2009-03-04 00:00:00 | 1 Microsoft Way Redmond 198
5 2009-03-04 00:00:00 | 1Infinite Loop Cupertino 1.98
6 2009-04-04 00:00:00 | 421 Bourke Street Sidney 198
7 2009-04-04 00:00:00 | CalleLira, 198 Santiago 198
8 2009-05-05 00:00:00 | RuaaAssuncdo 53 Lishon 1.98
9 2009-05-05 00:00:00 | TauentzienstraBe 8 Berlin 198
10 2009-06-05 00:00:00 | Qe7BlocoG Brasilia 198
111 rows returned
in7ms

The WHERE clause always comes after the FROM but before the
ORDER BY. In the example above, the WHERE clause is added to
return all invoices that are equal to 1.98. The = sign is referred to

as a comparison operator.

Turning Data into Information 69

70

NOTE

Using comparison operators, try out the following queries:

» Write a query that returns all invoices that are greater than 1.98.

» Write a query that returns all invoices that are greater than or equal
to 1.98.

» Write a query that returns all invoices that are not 1.98.

Logical operators are also very useful. They can help you write more
complex and specific queries that would be harder to accomplish with
comparison operators. Let’s say you were asked to find out how many invoices
existed inside a certain range, such as between $1.98 and $5.00.

A good way to accomplish this is with the BETWEEN operator. The
BETWEEN operator returns a range of values. The AND operator is used in
conjunction with the BETWEEN operator to span the range of values we want
to see in our result set. Our example below returns the range of invoices that
fall between 1.98 and 5.00.

SELECT
InvoiceDate,
BillingAddress,
BillingCity,
Total

FROM
invoices

WHERE
Total BETWEEN 1.98 AND 5.00

ORDER BY
InvoiceDate

As we can see with the first ten results of this query (Figure 46), the
invoice totals we returned in our dataset are all between $1.98 and $5.00.
'The BETWEEN operator is inclusive of the parameters you give it. In other
words, in the prior example, it would include any values that equaled 1.98 and
5.00. Using comparison operators, you could write Total >= 1.98 AND
Total <= 5.00 inyour WHERE statement to achieve the same eftect, but
BETWEEN would be simpler.

Although we are using the AND operator with BETWEEN in the
preceding example, the AND operator has a much more extensive
role as a logical operator and will be covered later in this chapter.

SQL QUICKSTART GUIDE

InvoiceDate BillingAddress BillingCity Total

1 2009-01-01 00:00:00 | Theodor-Heuss-StraBe 34 | Stuttgart 198
2 2009-01-02 00:00:00 | Ullevélsveien 14 Oslo 396
3 2009-02-01 00:00:00 | BarbarossastraBe 19 Berlin 198
4 2009-02-01 00:00:00 | 8, RueHanovre Paris 198
5 2009-02-02 00:00:00 | 9, Place Louis Barthou Bordeaux 396
6 2009-03-04 00:00:00 | 1 Microsoft Way Redmond 198
7 2009-03-04 00:00:00 | 1Infinite Loop Cupertino 1.98
8 2009-03-05 00:00:00 | 801 W 4th Street Reno 396
9 2009-04-04 00:00:00 | 421 Bourke Street Sidney 198
10 2009-04-04 00:00:00 | CalleLira, 198 Santiago 198

178 rows returned

in3ms

» Order the previous query by the Total field. What is the highest

invoice amount in this dataset?

Yet another useful operator is the IN operator, which is used to find

a list of precise values. In our previous example, the BETWEEN operator

returned every value in our invoices table that fell between 1.98 and 5.00. The

IN operator allows us to find specific values within a dataset. The values are

separated by a comma and wrapped in parentheses. This query returns only

the invoice amounts that are exactly $1.98 or $3.96 (Figure 47).

SELECT
InvoiceDate,
BillingAddress,
BillingCity,
Total

FROM
invoices

WHERE
Total IN (1.98,

ORDER BY
InvoiceDate

3.96)

Turning Data into Information

71

InvoiceDate BillingAddress BillingCity Total

1 2009-01-01 00:00:00 Theodor-Heuss-StraBe 34 Stuttgart 198
2 2009-01-02 00:00:00 Ullevalsveien 14 Oslo 3.96
3 2009-02-01 00:00:00 BarbarossastraBe 19 Berlin 198
4 2009-02-01 00:00:00 8, Rue Hanovre Paris 198
5 2009-02-02 00:00:00 9, Place Louis Barthou Bordeaux 3.96
6 2009-03-04 00:00:00 1 Microsoft Way Redmond 1.98
7 2009-03-04 00:00:00 1 Infinite Loop Cupertino 1.98
8 2009-03-05 00:00:00 801 W 4th Street Reno 3.96
9 2009-04-04 00:00:00 | 421 Bourke Street Sidney 198
10 2009-04-04 00:00:00 | CalleLira, 198 Santiago 198

168 rows returned

in2ms

NOTg With the = operator, we can find only one value. With the IN

operator, we can add as many values, separated by commas, as we

need. We can also use the IN operator with text, as we will see in

the following section.

ORo,
§ 2 » How many records does the query above return?
EE » Write a query that lists all invoices that are $13.86, $18.86, and
$21.86.

Filtering Records by Text

We can also use operators to return specific text, in a way similar to what we
have done with numbers. Let’s look at an example with comparison operators.
We will answer the question: How many invoices were billed to Tucson?

To answer this question, we will structure our SELECT statement like we
did for invoice totals, except this time we will focus on the billing city in our
WHERE clause. The following query returns all invoices that have been billed
in the city of Tucson:

SELECT
InvoiceDate,
BillingAddress,
BillingCity,
Total

72 SQL QUICKSTART GUIDE

FROM

invoices
WHERE
BillingCity = 'Tucson'
ORDER BY
Total
InvoiceDate BillingAddress BillingCity Total
1 2012-03-011 00:00:00 | 1033 N Park Ave Tucson 0.99
2 2011-01-15 00:00:00 1033 N Park Ave Tucson 198
3 2013-09-02 00:00:00 | 1033 N Park Ave Tucson 198
4 2011-04-19 00:00:00 1033 N Park Ave Tucson 396
5 2011-07-22 00:00:00 1033 N Park Ave Tucson 594
6 2009-06-10 00:00:00 | 1033 N Park Ave Tucson 891
7 2013-10-13 00:00:00 1033 N Park Ave Tucson 13.86
7 rows returned in Tms

In this result set, we see that we have only seven invoices from Tucson.

WOTs
When using text as criteria in the WHERE clause, the text value(s)
we specify must be surrounded by single quotes (BillingCity =
'Tucson').
E
MEMse

We are using = in the preceding example because we are looking for
one value. If we wanted to search for multiple cities, we could use the
IN operator similar to how we used it to retrieve numerical values.

SELECT
InvoiceDate,
BillingAddress,
BillingCity,
Total

FROM
invoices

WHERE
BillingCity IN ('Tucson', 'Paris', 'London')

ORDER BY
Total

Turning Data into Information

74

NOTg

InvoiceDate BillingAddress BillingCity Total

1 2011-11-08 00:00:00 202 Hoxton Street London 0.99
2 2012-03-11 00:00:00 1033 N Park Ave Tucson 0.99
3 2012-08-13 00:00:00 8, Rue Hanovre Paris 0.99
4 2013-01-15 00:00:00 113 Lupus St London 0.99
5 2009-02-01 00:00:00 8, Rue Hanovre Paris 198
6 2009-07-06 00:00:00 | 113 Lupus St London 198
7 2010-04-11 00:00:00 4, Rue Milton Paris 198
8 2010-09-13 00:00:00 202 Hoxton Street London 198
9 2011-01-15 00:00:00 1033 N Park Ave Tucson 198
10 2011-11-21 00:00:00 113 Lupus St London 1.98

35 rows returned

in7ms

Using the LIKE Operator to Search for Wildcards

In previous examples, we have used the = operator to search for exactly the
text we are looking for. SQL also allows us to search for parts of a text value
using the LIKE operator. This is particularly useful when we are not certain
how a text value is spelled in a database. Also, there may be cases where a text
value is not spelled correctly in our database. If we were to look for all invoices
that were billed in cities that start with 7, the criteria in our WHERE clause
would need to be changed to accommodate this type of search.

What makes the LIKE operator so useful is its use of wildcard characters,
which are represented by “%,” also called the percent symbol. What follows
the = sign is the only value you can expect to see in your result set. With the
LIKE and wildcard, you can find variations on your input.

Wildcard characters will always be enclosed in single quotation
marks. Without quotation marks, % is an arithmetic operator
known as modulo, as shown earlier in this chapter in the table of
operators. Text searches are not case-sensitive. A lowercase t and
an uppercase T will return the same results.

A wildcard symbol represents any number of any type of characters. As
used in the example below, the query will search for any invoices that were
billed in cities that start with 7. Our results show that both Toronto and
Tucson are now included.

SQL QUICKSTART GUIDE

SELECT

InvoiceDate,
BillingAddress,
BillingCity,
Total
FROM
invoices
WHERE
BillingCity LIKE 'T$%'
ORDER BY
Total
InvoiceDate BillingAddress BillingCity Total
1 2009-07-24 00:00:00 796 Dundas Street West Toronto 0.99
2 2012-03-11 00:00:00 1033 N Park Ave Tucson 099
3 2011-01-15 00:00:00 1033 N Park Ave Tucson 198
4 2011-01-15 00:00:00 796 Dundas Street West Toronto 198
5 2013-06-01 00:00:00 | 796 Dundas Street West Toronto 198
6 2013-09-02 00:00:00 1033 N Park Ave Tucson 198
7 2011-04-19 00:00:00 1033 N Park Ave Tucson 396
8 2013-09-03 00:00:00 | 796 Dundas Street West Toronto 396
9 2011-07-22 00:00:00 1033 N Park Ave Tucson 594
10 2013-12-06 00:00:00 796 Dundas Street West Toronto 594
14 rows returned
inTms

Adding another percent symbol before the 7"'would change the search to

any invoice whose billing city has a 7"anywhere in it.

SELECT
InvoiceDate,

BillingAddress,

BillingCity,
Total
FROM
invoices
WHERE

BillingCity LIKE '$T%'

ORDER BY
Total

Turning Data into Information

75

InvoiceDate BillingAddress BillingCity Total
1 2009-01-19 00:00:00 | Berger StraBe 10 Frankfurt 0.99
2 2009-02-19 00:00:00 | 1600 Amphitheatre Parkway Mountain View | 0.99
3 2009-07-24 00:00:00 796 Dundas Street West Toronto 0.99
4 2010-08-31 00:00:00 | Celsiusg. 9 Stockholm 0.99
5 2010-10-01 00:00:00 230 Elgin Street Ottawa 0.99
6 2011-01-02 00:00:00 [2211 W Berry Street FortWorth 099
7 2011-09-07 00:00:00 | Ruados Campedes Europeus de Viena, 4350 Porto 0.99
126 rows returned
in2ms
NOTg
This of course does not exclude cities that begin or end with
lowercase t. The % can represent any letter(s) at all, including t.
The LIKE operator can also be used to exclude results that match
specified criteria. By placing the NOT keyword in front of LIKE, you can
exclude records from your query result.
SELECT
InvoiceDate,
BillingAddress,
BillingCity,
Total
FROM
invoices
WHERE
BillingCity NOT LIKE 'S$T%'
ORDER BY
Total
InvoiceDate BillingAddress BillingCity Total
1 2009-03-22 00:00:00 | 110 Raeburn Pl Edinburgh 0.99
2 2009-04-22 00:00:00 | 511248 Street Yellowknife 0.99
3 2009-05-23 00:00:00 PracaPioX, 119 Rio de Janeiro 099
o“APH/C 4 2009-06-23 00:00:00 | C/ Sgan Bernardo 85 Madrid 0.99
5 2009-08-24 00:00:00 | Grétrystraat 63 Brussels 0.99
6 2009-09-24 00:00:00 | 3 Chatham Street Dublin 099
. I ' 7 2009-10-25 00:00:00 319 N. Frances Street Madison 0.99
fig. 52 8 2009-11-25 00:00:00 Ullevélsveien 14 Oslo 0.99
9 2009-12-26 00:00:00 9, Place Louis Barthou Bordeaux 0.99
10 2010-01-2600:00:00 | 801 W 4th Street Reno 099
286 rows returned
in4ms

76 SQL QUICKSTART GUIDE

We can see from these examples that there are many helpful ways to use
the wildcard operator. Here are a few of the most common:

WILDCARD USAGE RESULT
(Where T is either the letter or a part of (Note again, these are not case-sensitive)
the string of letters you are looking for)
'TS! Finds all records beginning with T
'ST' Finds all records ending in T
1ome Finds all records with T in the middle
°-° of a string of text
1o Finds all records beginning and
° ending with T
WOTs A good way to think about the wildcard is to treat the % symbol as

“"whatever else.” For example, when you specify '$T%' you are saying
"] don't care what comes before or after, as long as thereisa T
somewhere in that string of text that isn't in the first or last position.”

Filtering Records by Date
Taking what we learned about both numbers and text, we can also search
for invoices on a specific date. Look at the following example:

SELECT
InvoiceDate,
BillingAddress,
BillingCity,
Total

FROM
invoices

WHERE
InvoiceDate = '2009-01-03 00:00:00"

ORDER BY
Total

Turning Data into Information 77

78

InvoiceDate BillingAddress BillingCity Total

1 2009-01-03 00:00:00 | Grétrystraat63 Brussels 594

1 rows returned in Tms

Note the way we wrote the date. When querying for dates, it is important
to first take a look at how the date is stored in the table you are querying. As
we learned in chapter 1, to do this we visit the Browse Data tab and select the
invoices table and observe the format in which the InvoiceDate column
stores dates. In our sample database, dates are stored as yyyy-mm-dd 00:00:00.
Next, let’s go to the Database Structure tab and look at the InvoiceDate
field of the invoices table. We can see in the Type column that this field stores
dates in a data type called DATETIME.

When used in the WHERE clause, dates are surrounded by single quotes
just as text is. When querying with dates, use the same operators used when
querying with numbers: =, >, <, BETWEEN, etc.

» Get all invoices that were issued between January 1,2009, and
December 31, 2009.

» Find the top 10 highest value invoices that occurred after July 5,
2009.

The DATE () Function

When working with dates in SQL, we have access to a number of
functions that help us obtain more refined results by specifying parts of a date
we are interested in. We saw in our previous example that the InvoiceDate
column of the invoices table is defined as a DATETIME data type. Therefore,
when we were specifying a date value in our WHERE clause, we needed to
include the time portion of it (2009-01-03 00:00:00). The DATE () function

allows us to exclude the time when specifying our date criteria.

SELECT
InvoiceDate,
BillingAddress,
BillingCity,
Total

FROM
invoices

SQL QUICKSTART GUIDE

WHERE

DATE (InvoiceDate) = '2009-01-03"
ORDER BY
Total
InvoiceDate BillingAddress BillingCity Total
1 2009-01-03 00:00:00 | Grétrystraat 63 Brussels 594

1 rows returned in 2ms

'The result of this query is identical to that of the query before it. However,
using the DATE () function saves us a bit of time in typing our query when
the time information is either blank or not relevant.

NOTg There are many functions available in SQL. The DATE () function
is particularly useful when using the WHERE clause to sort records

by date. In chapter 7, we will explore using other functions in our

queries in a more comprehensive way.

Using the AND and OR Operators with
Two Separate Fields

So far in this chapter, we have only used operators to select a subset of one
field. For example, we have used the AND operator with the BETWEEN operator
to filter results from the Total field between two different numerical values.
We can also use the AND and OR operators to specify criteria from multiple
fields. The query below uses the AND together with the DATE function to find
all invoices after 2010-01-02 with a total of less than $3.00. The result of this
query must satisfy both conditions: (DATE (InvoiceDate) > '2010-
01-02' AND Total < 3).

SELECT
InvoiceDate,
BillingAddress,
BillingCity,
Total

FROM
invoices

Turning Data into Information 79

WHERE
DATE (InvoiceDate) > '2010-01-02"

AND Total < 3

ORDER BY
Total
InvoiceDate BillingAddress BillingCity Total
1 2010-01-26 00:00:00 | 801 W 4th Street Reno 0.99
2 2010-03-29 00:00:00 | BarbarossastraBe 19 Berlin 0.99
3 2010-04-29 00:00:00 | 1 Microsoft Way Redmond 099
4 2010-05-30 00:00:00 | 421 Bourke Street Sidney 0.99
5 2010-06-30 00:00:00 | RuadaAssuncdo 53 Lisbon 099
6 2010-07-31 00:00:00 | Qe7BlocoG Brasilia 0.99
7 2010-08-31 00:00:00 | Celsiusg.9 Stockholm 099
8 2010-10-01 00:00:00 | 230 €Elgin Street Ottawa 0.99
9 2010-11-01 00:00:00 | SenderBoulevard 51 Copenhage 0.99
10 2010-12-02 00:00:00 Via Degli Scipioni, 43 Rome 0.99
136 rows returned
in3ms

We can see from our results that only invoices after the second of January
2010, whose total is under $3.00, are returned.

NOT7s
You can add additional AND operators to search for additional criteria.
As with the TN operator, you are not limited to only two values.
OUR
S
o z » Find all invoices whose billing city starts with P and whose total is
EE greater than $2.00.
The OR Operator

'The OR operator allows you to find the records that match any of the
criteria you ask for. The following query searches for all invoices whose billing
city starts with P or starts with D.

80 SQL QUICKSTART GUIDE

SELECT
InvoiceDate,

BillingAddress,
BillingCity,
Total
FROM
invoices
WHERE
BillingCity LIKE 'p%' OR BillingCity LIKE 'd$'
ORDER BY
Total
InvoiceDate BillingAddress BillingCity Total
1 2009-09-24 00:00:00 | 3 Chatham Street Dublin 0.99
2 2011-02-02 00:00:00 | Klanova 9/506 Prague 0.99
3 2011-03-05 00:00:00 | 68, Rue Jouvence Dijon 0.99
4 2011-09-07 00:00:00 | Ruados Campedes Europeus de Viena, 4350 Porto 0.99
5 2012-04-11 00:00:00 Rilskd 3174/6 Prague 0.99
6 2012-08-13 00:00:00 8, Rue Hanovre Paris 0.99
7 2009-02-01 00:00:00 | 8, Rue Hanovre Paris 198
8 2009-12-08 00:00:00 | Klanova 9/506 Prague 198
9 2010-01-08 00:00:00 | 68, Rue Jouvence Dijon 198
10 2010-04-11 00:00:00 4, Rue Milton Paris 198
56 rows returned
indms

Using Parentheses with AND and OR to
Specify the Order of Operations

When writing longer WHERE clauses that include multiple logical
operators, SQL follows an order of operations similar to what is used for
basic arithmetic. You may have heard of the acronym PEMDAS (parentheses,
exponents, multiplication/division, addition/subtraction) if you live in the
United States or BEMDAS (brackets, exponents, etc.) if you live in a country
more influenced by the United Kingdom. If you have not heard of either, don’t
worry. We have a simple way of handling the order of operations, but for now,
let’s look at how a statement functions with both an AND operator and an OR
operator. Let’s say we wanted to look at all the invoices over $1.98 from any
cities whose names start with P or D. We could write the following:

Turning Data into Information 81

82

SELECT

InvoiceDate,
BillingAddress,
BillingCity,
Total

FROM
invoices

WHERE
Total > 1.98 AND BillingCity LIKE 'p%' OR
BillingCity LIKE 'd%'

ORDER BY
Total
InvoiceDate BillingAddress BillingCity Total
1 2009-09-24 00:00:00 | 3 Chatham Street Dublin 0.99
2 2011-03-0500:00:00 68, Rue Jouvence Dijon 099
3 2010-01-08 00:00:00 68, Rue Jouvence Dijon 198
4 2010-06-12 00:00:00 12, Community Centre Delhi 198
5 2011-03-1800:00:00 3 Chatham Street Dublin 1.98
6 2012-08-26 00:00:00 68, Rue Jouvence Dijon 1.98
7 2012-10-27 00:00:00 12, Community Centre Delhi 198
8 2013-08-02 00:00:00 3 Chatham Street Dublin 198
9 2011-06-06 00:00:00 4, Rue Milton Paris 199
10 2010-12-02 00:00:00 12, Community Centre Delhi 199
43 rows returned
in2ms

There is a slight problem with this query as written. When the query
is executed, the SQL browser combines the two conditions immediately on
either side of the AND operator first, returning results for invoices whose total
is greater than $1.98 and whose billing cities begin with P, then it processes
the condition to the right of the OR operator completely separately, as if the
AND did not exist. In other words, it first looks for the results where Total
> 1.98 AND BillingCity LIKE 'p%',then it looks for all results
where Bi11lingCity LIKE 'd$%',then it returns the results for both in
ascending order by Total.

If you have typed the above query into your SQL browser, you will notice
that there are results for less than $1.98, but only for cities starting with D.

SQL QUICKSTART GUIDE

That is because, in the SQL order of operations, the AND operator is processed
first and the OR is processed second. This result isn’t exactly what we originally
wanted, but there is an easy way to ensure that the SQL browser processes

our query the way we intended, without our having to resort to a logic table.

WOT7s SQL processes the AND operator like multiplication and the OrR
operator like addition, unless you include parentheses. Without
parentheses, the AND will be processed in the same way that 3*2+1
would equal 7, but 3*(2+1) would equal 9.

When parentheses are added as shown in the example below, the SQL
browser first looks for all the records that satisty the criteria between the
parentheses: (B111ingCity LIKE 'p%' OR BillingCity LIKE
'd%"). Then, from within only these records, it looks for records where the
total is greater than $1.98 (Total > 1.98).

SELECT

InvoiceDate,
BillingAddress,
BillingCity,
Total
FROM
invoices
WHERE
Total > 1.98 AND (BillingCity LIKE 'p%' OR
BillingCity LIKE 'd%')
ORDER BY
Total
InvoiceDate BillingAddress BillingCity Total
1 2011-06-06 00:00:00 | 4, Rue Milton Paris 199
2 2013-12-22 00:00:00 12, Community Centre Dehli 199
OV‘APH/C‘ 3 20110619 00:00:00 | 8, Rue Hanovre Paris 298
4 2010-03-12 00:00:00 | Klanova 9/506 Prague 396
5 2010-04-12 00:00:00 | 68, Rue Jouvence Dijon 396
I' 6 2010-07-14 00:00:00 | 4, Rue Milton Paris 396

. 7 2010-10-15 00:00:00 Rua dos Campedes Europeus de Viena, 4350 Porto 396

fig. 59 8 2011-05-20 00:00:00 | Rilska 3174/6 Prague 396
9 2011-09-21 00:00:00 | 8, Rue Hanovre Paris 39
10 | 2013-01-29 00:00:00 | 12, Community Centre Delhi 39

35 rows returned
inTms

Turning Data into Information

83

84

Writing the query this way ensures that all invoice totals greater than $1.98

are returned from either P cities or D cities, which was what we initially wanted.

Although it is good to know how SQL processes logical operators,
it is better to just use parentheses whenever you are using multiple
operators so that it is clear to you, and anyone else who reads your
code, what you actually intended. If you would like more practice,
try the following exercises both with and without parentheses to
see how it affects the result.

» Run the query again and observe if there are any values in the
Total column that are less than $1.98.

» Find all invoices that have total values higher than $3.00 whose
billing city starts with P or D.

The CASE Statement

'The CASE statement allows you to create a new, temporary field in your

database that serves as a label for your data based on unique user-specified
conditions. To better understand the utility of the CASE statement, consider
the following scenario from our fictional company, sTunes.

Operational Scenario

'The sTunes sales team has a new sales goal. They want as many sTunes
customers as possible to spend between seven and fifteen dollars when
purchasing music from the sTunes online store. Thus, they have created
the following categories: Baseline Purchase, Low Purchase, Target Purchase,
and Top Performer.

Since the cost of a song varies between $0.99 and $1.99, any invoice total
in this range is considered a Baseline Purchase. Invoice totals between
$2.00 and $6.99 are labeled Low Purchase. Since the target sales goal is
between $7.00 and $15.00, any sales in this category are labeled Target
Purchase. Any sale above $15.00 is seen as a Top Performer.

Based on these categories, the sTunes sales department wants to see if any
information can be gleaned from the database concerning the sales in all
of the listed categories.

SQL QUICKSTART GUIDE

We can use a CASE statement to create a new field in our invoices table
called PurchaseType. This will appear alongside the other preexisting
fields in our query as if it was just another field in the database.

Adding the CASE Statement to a Query

To add the CASE statement to our query, we must start with a SELECT
statement with the preexisting fields we are interested in from the inwoices
table. First, we create a simple SELECT statement similar to the type we
have used since chapter 4.

SELECT
InvoiceDate,
BillingAddress,
BillingCity,
Total

FROM
invoices

ORDER BY
BillingCity

For this first example, we are going to order our results by billing city so
we can see our sales goals by geographic region.

To add our CASE statement to this query, we place it at the bottom of
the SELECT portion of our query after all the existing fields. We start by
adding the keyword CASE, followed by the keyword END. Between these
two keywords we start testing for conditions. Each test begins with the
keyword WHEN, followed by a logical test, which is similar to what you
would add in a WHERE clause. Our first case to test is Base/ine Purchases,
which is any invoice under $2.00, in other words "TOTAL < 2.00".
After the logical condition, we then specify what we want to happen if
that condition is met. This is done with the THEN keyword. The label we
desire for cases under $2.00is 'Baseline Purchase' which is what
is specified for our operational scenario.

'This same sequence can be repeated for as many conditions as we want to
test. So we repeat this process for the rest of the sales categories mentioned
in our operational scenario. The ELSE keyword always follows the last
explicit condition listed. Any records that have yet to be categorized will
take their assignment from the category named in the ELSE clause.

Turning Data into Information 85

86

The ELSE keyword doesn’t need to be included, but it is good
practice to include it. There may be outliers in your data that fall
outside of your conditions. The ELSE clause will capture these
outliers and you can figure out what to do with them. If you do not
include an ELSE clause, any results in your dataset that fall outside
of your conditions will be returned as NULL.

The last thing we do is create an alias that will become the name of the
new field in our database. This alias will go after our END statement. We
will call our new field PurchaseType.

We create aliases using the AS keyword. So our CASE statement
terminates with END AS and then the alias name we chose for the
new field in our table.

Putting this all together gives us the following (Figure 60):

SELECT
InvoiceDate,
BillingAddress,
BillingCity,
Total,
CASE
WHEN TOTAL < 2.00 THEN 'Baseline Purchase'
WHEN TOTAL BETWEEN 2.00 AND 6.99 THEN 'Low
Purchase'
WHEN TOTAL BETWEEN 7.00 AND 15.00 THEN 'Target
Purchase'
ELSE 'Top Performers'
END AS PurchaseType
FROM
invoices
ORDER BY
BillingCity

If we scroll over a bit in our results, we can see that the SQI browser
added a new category called PurchaseType and added all our sales
goal categories to the data.

We can see in the result set that all the categories we tested for are rep-
resented according to their respective price brackets (PurchaseType).

SQL QUICKSTART GUIDE

RE e

fig. 60

WOoT7s

InvoiceDate BillingAddress BillingCity Total PurchaseType

1 2009-05-10 00:00:00 | Lijnbaansgracht 120bg Amsterdam 891 Target Purchase
2 2010-12-15 00:00:00 Lijnbaansgracht 120bg Amsterdam 191 Baseline Purchase
3 2011-03-19 00:00:00 Lijnbaansgracht 120bg Amsterdam 396 Low Purchase
4 2011-06-21 00:00:00 | Lijnbaansgracht 120bg Amsterdam 8.94 Target Purchase
5 2012-02-09 00:00:00 | Lijnbaansgracht 120bg Amsterdam 0.99 Baseline Purchase
6 2013-08-02 00:00:00 | Lijnbaansgracht 120bg Amsterdam 198 Baseline Purchase
7 2013-09-12 00:00:00 | Lijnbaansgracht 120bg Amsterdam 13.86 Target Purchase
8 2009-04-05 00:00:00 | 3,RajBhavan Road Bangalore 396 Low Purchase
9 2009-07-08 00:00:00 | 3,RajBhavan Road Bangalore 5.94 Low Purchase
10 2010-02-26 00:00:00 | 3,RajBhavan Road Bangalore 199 Baseline Purchase

412 rows returned

in17ms

Using the ORDER BY clause, we can also order our results by the
new field we created, which would show each category of purchase
type alphabetically, starting with “Baseline Purchase” and ending
with “Top Performers.” We conveniently named these categories
to be consistent with increasing purchase price for clarity, but they
can be named anything you want them to be.

Now that we have created new categories for our data, there are a lot of
useful ways we can manipulate the rest of the SELECT statement to learn
more about the demographics of our customers based on our new sales

categories.

Our case statement is written, so we can answer some pertinent questions,
including the following:

» What cities do our top-performing sales come from?

» Are our top-performing sales mainly from the United States or from
other parts of the world?

» From what cities are the most baseline purchases made?
Let’s take a closer look at the first question. We can modify our existing

query with a WHERE clause in order to look only at top performers and
order them by city.

Turning Data into Information 87

88

SELECT
InvoiceDate,
BillingAddress,
BillingCity,
Total,
CASE
WHEN TOTAL < 2.00 THEN 'Baseline Purchase'
WHEN TOTAL BETWEEN 2.00 AND 6.99 THEN 'Low
Purchase'
WHEN TOTAL BETWEEN 7.00 AND 15.00 THEN 'Target
Purchase'
ELSE 'Top Performers'
END AS PurchaseType
FROM
invoices
WHERE PurchaseType = 'Top Performers'

ORDER BY
BillingCity
InvoiceDate BillingAddress BillingCity Total PurchaseType

1 2010-02-18 00:00:00 Erzsébetkrt. 58. Budapest 21.86 Top Performers
2 2010-03-21 00:00:00 | 162 E Superior Street Chicago 15.86 Top Performers
3 2012-10-06 00:00:00 68, Rue Jouvence Dijon 16.86 Top Performers
4 2011-04-28 00:00:00 [3 Chatham Street Dublin 21.86 Top Performers
5 2012-08-05 00:00:00 | 2211 W Berry Street FortWorth 23.86 Top Performers
6 2011-05-29 00:00:00 319 N. Frances Street Madison 18.86 Top Performers
7 2011-06-29 00:00:00 [Ullevalsveien 14 Oslo 15.86 Top Performers
8 2012-09-05 00:00:00 [Klanova 9/506 Prague 16.9 Top Performers
9 2013-11-13 00:00:00 Rilské 3174/6 Prague 259 Top Performers
10 2010-01-13 00:00:00 Calle Lira, 198 Santiago 179 Top Performers

11 rows returned

in6ms

Looking at the result of this query, we can determine that our top
performers come mainly from outside of the US.

'The combinations of fields we can search for or narrow down to is virtually
limitless. For example, we could also organize the data by invoice date to
see if there are any seasonal purchase trends. Using CASE statements,
along with the WHERE clause and the operators we learned about in this

SQL QUICKSTART GUIDE

chapter, can really help us turn our data into information that would be of
direct interest to our sales team.

In our examples in this chapter, we have always used the CASE
statement in the SELECT portion of our query after we have
listed the fields we want to display. In your upcoming real-life
SQL adventures, you may also encounter a query with a CASE

WOT7s

statement contained in a WHERE clause, however uncommon. All
that is important for now is to remember that a CASE statement
must be defined in SELECT but can be referenced elsewhere.

Data Analysis Checkpoint

1. Create a query for the invoices table that includes a CASE statement
that labels all sales from billing country USA as “Domestic Sales” and
all other sales as “Foreign Sales.” Label your new field as SalesType
after your END AS statement.

2. Order this data by the new field SalesType.

3. How many invoices from Domestic Sales were over $15?

Turning Data into Information 89

90

Chapter Recap

»

»

»

»

»

Operators are special SQL keywords that are used with SQL clauses
to filter data by specific conditions.

Using the WHERE clause with a combination of different operators
can enable the user to search records for specific text, dates, and
numbers.

The DATE () function allows us to exclude the timecode when
specifying our date criteria.

'The order of operations when using logical operators (such as AND/
OR) is controlled by parentheses () .

'The CASE statement allows you to label records with a special field
name based on user-specified logical conditions.

SQL QUICKSTART GUIDE

| 6 |

Working with Multiple Tables

Chapter Overview

» Introducing joins

» Joins and relational database structure

» Joins and aliases

» Inner join, left outer join, and right outer join
» Joining more than two tables

» Data Analysis Checkpoint

In all the queries we have written so far, we have only looked at retrieving data
from one table (at a time). Although we have learned some powerful querying
methods, nothing in our growing SQL tool kit really harnesses the power
of a relational database. Our sTunes database has thirteen tables. Each table
contains some, but not all, of the information about our fictional company.
In order to answer more complex questions from our sTunes company
management, we will need to access data from multiple tables simultaneously.
'This chapter will help you become comfortable obtaining data from two or
more tables with a single query by using powerful tools called joins.

What Are Joins?

A join is a command that combines the fields from two or more tables
of a relational database. Let’s take a look at a very simple example using the
invoices table in our sTunes database. We have worked with the inwvoices table
extensively in previous chapters, so by now we should be very familiar with the
fields in this particular table. As we can see from the Browse Data tab of the
SQL browser (Figure 62), the invoices table has nine fields. Each invoice has
an identification number known as InvoiceId. Each customer (that has
generated an invoice) has an identification number known as CustomerId.
'The inwoices table also has fields for the invoice date and invoice total. The rest
of the fields in this table are dedicated to the invoice billing address.

Working with Multiple Tables 91

92

WAGs

fig. 62

WEMg
&=

[2 DB Browser for SQLite - C:\Downloads\sTunes.db
File Edit View Help

5 New Database & Open Database] Write Changes & Revert Changes

Database Structure | BrowseData | EditPragmas | ExecuteSQL
Toble: ([Jimvoices . —

Invoiceld Customerld voiceDate BillingAddress BillingCity i BillingCountry _BillingPostalCode Total
[Fiter [Filter [Filter [Fitter [Fitter [Fitter [Fitter Fitter [Fitter

1 1 2 2009-01-01 0... Theodor-Heus... Stuttgart Germany 70174 1.98
2 2 4 2009-01-02 0... Ullevalsveien 14 Oslo Norway 0171 3.96
3 3 8 2009-01-03 0... Grétrystraat 63 Brussels Belgium 1000 5.94
4 4 14 2009-01-06 0... 8210 111 ST ... Edmonton AB Canada T6G 2C7 8.91
5 5 23 2009-01-11 0... 69 Salem Street Boston MA USA 2113 13.86
6 6 37 2009-01-19 0... Berger StraBe... Frankfurt Germany 60316 0.99
Zaml7 38 2009-02-01 0... Barbarossastr... Berlin Germany 10779 1.98
8 8 40 2009-02-01 0... 8, Rue Hanovre Paris France 75002 1.98
9 9 42 2009-02-02 0... 9, Place Louis... Bordeaux France 33000 3.96
10 10 46 2009-02-03 0... 3 Chatham St... Dublin Dublin Ireland 5.94

Let’s say our sTunes marketing department wants to get to know the
customer base better. They ask us for a full list of customer names (first and
last) next to all the invoices generated by that customer. How could we write
such a query using only the invoices table? We would not be able to answer
this question in one query using the skills we have learned so far. Our inwvoices
table does not contain the names of our customers. Instead, the inwvoices table
contains a field called CustomerId. To discover how to display a list of
invoices that includes the customers who generated those invoices, we need to
look at the inwvoices and customers tables side by side.

4 7] invoices 4[] customers

(22 Invoiceld INTEGER [22 Customerld INTEGER

[2) Customerld INTEGER [2) FirstName NVARCHAR (40)

[2) InvoiceDate DATETIME [2) LastName NVARCHAR (20)

[2) BillingAddress NVARCHAR (70) [2) company NVARCHAR (80)

=) BillingCity NVARCHAR (40) [2) Address NVARCHAR (70)

[2) BillingState NVARCHAR (40) (2 city NVARCHAR (40)

[2) BillingCountry NVARCHAR (40) [state NVARCHAR (40)

[2) BillingPostalCode NVARCHAR (10) [2) Country NVARCHAR (40)

(2 Total NUMERIC (10, ... [2) PostalCode NVARCHAR (10)
[2) Phone NVARCHAR (24)
(2 Fax NVARCHAR (24)
[2) Email NVARCHAR (60)
[=) SsupportRepld INTEGER

If we look at the customers table in Figure 63, we can see that this table
contains the information we want: the first and last names of all our sTunes
customers. This table also has a CustomerId field. If we look closely at the
icons in the customers table, we can see that this version of the CustomerId
field has a small key icon next to it. We learned in chapter 1 that this key icon is
the symbol for a primary key, the unique identifying field for that particular table.

Every table should have at least one field that serves as a primary key. A
primary key in one table often exists as a foreign key in a different table.

SQL QUICKSTART GUIDE

NOTE

NOTE

Since CustomerId is the primary key of the customers table, and there is
a similar field of the same name in the invoices table, these two CustomerId
fields provide us with the link we need to access both of these tables
simultaneously. We now have all the information required to join these two
tables together and produce a list of invoices with customer names.

A JOIN clause merging both of these tables together would look like this:

SELECT
*
FROM
invoices
INNER JOIN
customers
ON
invoices.CustomerId = customers.CustomerId

In this example, we are using a join called an INNER JOIN. Several
different types of joins will be introduced in this chapter. Each join
functions in a slightly different way. We will address those differ-
ences later. At this point, all we really need to know is that joins
allow us to access fields from different tables.

When we look at this query, there is a lot we already know. The query
begins with SELECT, as all our queries have so far. We use the * symbol in
this example, which we learned about in chapter 4, to return all the fields in a
table. We are selecting all fields from the invoices table and joining them to all
the fields in the customers table. We use the ON keyword to provide the query
with the link between these two tables, which is the CustomerId field.
Since there are two versions of the CustomerId field (one in each table),
we must use special notation (in the form of tablename.FieldName) to
tell the SQL browser which specific version to use. We set the CustomerId
field from the invoices table (written as invoices.CustomerId) equal to
the CustomerId field from the customers table (written as customers.
CustomerId). When we run the query, the resulting output is shown in
Figure 64.

By using the * symbol, we have combined the nine fields of the
invoices table with the thirteen fields of the customers table for a total
of twenty-two fields. We have truncated some of these fields for print,
but we can view all twenty-two fields in DB Browser by using the
horizontal scroll bar in the Results Pane of our Execute SQL tab.

Working with Multiple Tables 93

94

INVOICES TABLE CUSTOMERS TABLE

(3 OF 9 FIELDS SHOWN) (4 OF 13 FIELDS SHOWN)
1 L1 1
Invoiceld | Customerld | .. | Total | Customerld | FirstName | LastName | ... | SupportRepld
1 98 1 398 1 Luis Gongalves 3
2 121 1 396 1 Luis Gongalves 3
3 143 1 594 1 Luis Gongalves 3
4 195 1 99 1 Luis Gongalves 3
5 316 1 198 1 Luis Gongalves 3
6 327 1 .. | 13.86 1 Lufs Gongalves 3
7 382 1 891 1 Luis Gongalves 3
8 1 2 198 2 Leonie Kohler 5
9 12 2 13.86 2 Leonie Kohler 5
10 67 2 891 2 Leonie Kéhler 5
412 rows
returned
in17ms

How Joins Interact with Relational
Database Structure

There are a few things we can observe now that we have combined the
invoices table with the customers table. If we look at the InvoiceId field from
the invoices section of the result set (Figure 64), we can see that the first seven
records are linked to the same CustomerId.This link tells us that customer
number 1 is responsible for generating all seven of those invoices. If we follow
along to the customers table portion of the result set, we can see that this
customer’s name is Luis Gongalves. One customer is linked to many invoices.
In the language of a relational database (introduced in chapter 1), we can
say that the customers table has a one-to-many relationship with the inwvoices
table. It makes sense that a single customer, with a single CustomerId,
could generate many invoices (by ordering multiple songs) but he would
retain the same CustomerId number in the inwvoices table. Another way of
describing this relationship is to organize the database schema using an entity
relationship diagram (ERD).

Looking at Figure 65, we can see a graphical representation of the
relationship between the customers table and the inwvoices table. If we look at
the rest of our database, we can see many other instances of primary and
foreign keys establishing a relationship between different tables. Part of
creating and using joins is understanding these relationships. In order to join
tables together, we must be able to identify primary keys and foreign keys and
understand which fields we want to select.

SQL QUICKSTART GUIDE

OV‘APH/(\

fig. 65

ST/,

playlists

invoices

customers

& Playlistld: INTEGER
Name: NVARCHAR(120)

playlist_track

& Playlistld: INTEGER
& Trackld: INTEGER

media_types

tracks

& Invoiceld: INTEGER
Customerld: INTEGER
InvoiceDate: DATETIME
BillingAddress: NVAR...
BillingCity: NVARCHA...
BillingState: NVARCH...
BillingCountry: NVAR...
BillingPostalCode: NV...
Total: INTEGER

& MediaTypeld: INTE...
Name: NVARCHAR...

& Trackld: INTEGER
Name: NVARCHAR(200)
Albumld: INTEGER

invoice_items

& Invoicelineld: INT...

FirstName: NVARCHA...
LastName: NVARCHA...
Company: NVARCHA...
Address: NVARCHAR(...
City: NVARCHAR(40)
State: NVARCHAR(40)
Country: NVARCHAR...
PostalCode: NVARCH...
Phone: NVARCHAR(24)
Fax: NVARCHAR(24)
Email: NVARCHAR(60)
SupportRepld: INTEG...

& Customerld: INTEG...

MediaTypeld: INTEGER Invoiceld: INTEGER

|8 [8

Genreld: INTEGER Trackld: INTEGER

Composer: NVARCHA. .. UnitPrice: NUMERIC 1 CITTES

genres

& Employeeld: INTEG...
LastName: NVARCHA...

Milliseconds: INTEGER Quantity: INTEGER
Bytes: INTEGER

& Genreld: INTEGER
Name: NVARCHAR(120)

FirstName: NVARCHA...

UnitPrice: NUMERIC albums

Title: NVARCHAR(30)
ReportsTo: INTEGER
BirthDate: DATETIME
HireDate: DATETIME
Address: NVARCHAR...

7 more columns...

& Albumld: INTEGER
Title: NVARCHAR(160)
L——— Artistld: INTEGER

artists

& Artistld: INTEGER
Name: NVARCHAR(120)

Joins would not be necessary if the invoices table had a field that included
all the customer names. Going one step further, instead of a database with
thirteen tables, we could have just one giant table that contained every field.

Q: Why are databases designed with multiple tables?

Answer: In a relational database, the process of distributing fields across
related tables is known as normalization. Normalization keeps the sizes of
databases smaller, as it reduces the need to have duplicate fields in the same
table. The need to normalize databases increases as database size increases.
Saving even a few seconds of query processing time is worth it. Considering
the staggering size of some databases, every second counts. Imagine if your
Google search took five minutes rather than a few seconds.

Now that we have identified the common link between the two related
fields in both the inwvoices table and the customers table, we can take a closer
look at how we write queries with joins.

Using Joins with an Alias

We have seen from our first example that joins have a special syntax when
referring to field names. Since two tables in any given database may have fields

Working with Multiple Tables 95

96

NOTE

with identical names, when creating joins it is necessary to specify the table
name when listing a specific field so that the SQL browser knows exactly
which version of that field we are referencing. This syntax requires that the
table name be listed first, followed by a period, followed by the field name.
Joins are often used with aliases to reduce the amount of typing required, as
well as to increase readability. The following two joins are identical in function.

SELECT
*
FROM
invoices
INNER JOIN
customers
ON
invoices.CustomerId = customers.CustomerId

SELECT
*
FROM
invoices AS i
INNER JOIN
customers AS cC
ON
i.CustomerId = c.CustomerId

Aliases for joins are designed to be concise and readable by
convention. These aliases are usually single letters, with the letter used
being the first letter of the relevant table (tablename.FieldName
would become t.FieldName). We will be using single-letter aliases
for table names for the remainder of this chapter.

To further demonstrate the need for aliases when working with joins, let’s
go back to our original fictional scenario for this chapter. sTunes management
wanted a list showing customer names and the invoices that each customer
generated. When we wrote our first join in this chapter, we used the * symbol
to select all the fields from each table. This query resulted in a massive twenty-
two-field result set. But we were only interested in the customer names and
invoice information. In addition to that, when we use the * symbol, we have no
control over the order in which our fields are displayed. For example, let’s say
sTunes management specified that they wanted their customer list displayed

SQL QUICKSTART GUIDE

with the last name first. To produce output with a customized order, we have
to select individual field names in our SELECT statement instead of using
the * symbol. Let’s create a join similar to the ones above, but this time, let’s
specify in our query that we want to see the LastName and FirstName
fields from the customers table and the InvoiceId, CustomerId,
InvoiceDate,and Total from the invoices table. Because we are dealing
with two tables that contain some fields with identical field names, when we
list our individual fields in our SELECT statement we must use the same
tablename.FieldName notation we have used in the ON clause of our
joins—with one alteration: instead of listing the full table name, we will use
an alias consisting of the first letter of the table, followed by a period, and
then the field name. Finally, we want to order the results by the customer’s last
name. The resulting query would look like this:

SELECT
c.LastName,
.FirstName,
.Invoiceld,
.Customerld,
.InvoiceDate,
.Total
FROM
invoices AS i
INNER JOIN
customers AS cC

(SR S U S e

ON

i.CustomerId = c.CustomerId
ORDER BY

c.LastName

LastName FirstName | Invoiceld | Customerld InvoiceDate Total

1 Almeida Roberto 34 12 2009-05-23 00:00:00 | 099
2 Almeida Roberto 155 12 2010-11-14 00:00:00 198
3 Almeida Roberto 166 12 2010-12-25 00:00:00 13.86
4 Almeida Roberto 221 12 2011-08-25 00:00:00 | 8.91
5 Almeida Roberto 350 12 2013-03-31 00:00:00 | 198
6 Almeida Roberto 373 12 2013-07-03 00:00:00 | 3.96
7 Almeida Roberto 395 12 2013-10-0500:00:00 | 594
8 Barett Julia 71 28 2009-11-07 00:00:00 | 198
9 Barett Julia 82 28 2009-1218 00:00:00 | 13.86
10 Barnett Julia 137 28 2010-08-18 00:00:00 | 891

412 rows returned

in 14ms

Working with Multiple Tables 97

98

O\)ES T/ (o)

WOT7s

NOTE

NOTE

Although it appears that we reference aliases (in the SELECT state-
ment) before we define them (in the FROM and INNER JOIN state-
ments), we must remember that the SQL browser does not process
our queries in the exact way we humans would read them.

Looking at the first ten results of this query, we can see that listing specific
fields in a specific order is much more manageable than returning all the fields
with the * symbol. We can also imagine how much more complex this join would
be if we had to type out the table name every time we referenced a field name.

In most cases it is a best practice to specify individual field names
in your select statement and avoid using the * symbol. Throughout
this chapter, however, we will only be using the * symbol for
demonstrative purposes to explain JOTIN structure.

Join Types and Their Differences

As we mentioned in the beginning of this chapter, there are several
different types of joins. So far, we have used joins to give us access to the fields
of multiple tables. We have identified the primary key of the customers table,
identified a similar foreign key in the invoices table, and used the ON keyword
to link the two tables together, hoping that all the data matches up.

Q: What happens if the data from the tables we join does not match up
completely?

For example, what if a customer—let’s call him Customer 6—deleted his
sTunes account and was subsequently removed from the customers table? Because
our sTunes company is required to keep financial records, there is still evidence
from the invoices table that Customer 6 made a purchase at some point. It is
not unusual to find discrepancies in databases, and we must decide whether
we want our queries to include data that does not match up or to exclude it
completely. To handle discrepancies between tables, different types of joins
are used. To understand this concept, it is helpful to look at join types in the
abstract using a slightly simplified version of our invoices and customers tables.

The following tables are a bit different from the ones in our sTunes
database. We have kept the basic structure of both tables identical
to sTunes invoices and customers tables but have reduced the
tables to just five records each, eliminated some of the fields,

SQL QUICKSTART GUIDE

simplified the record names, and added a few records in each table
that differ from the records in the other table.

SIMPLIFIED SIMPLIFIED
INVOICES TABLE CUSTOMERS TABLE

Invoiceld | Customerld | InvoiceDate | BillingAddress | Total Customerld Name Address

11112018 Billing Address2 | $1.00
2/1/2018 BillingAddress2 | $2.00
3/1/2018 Billing Address3 | $3.00
4/1/2018 Billing Address4 | $4.00
5/1/2017 Billing Address6 | $5.00

RAPH

fig. 67

Customer1 | Address 1
Customer2 | Address?2
Customer3 | Address 3
Customer4 | Address4
Customer5 | Addressé

alslwn | =
o~ | lw NN
(S0 BN ROV [NCH Y

As we look at our simplified invoices and customers tables, we can identify a
tew discrepancies. First, our invoices table shows that someone with a customer
ID of 6 made a purchase on 5/1/2017, but this customer does not appear in our
customers table. Also, it appears that Customer 1 and Customer 5 never made
a purchase at all, since those customer ID numbers do not show up in the
invoices table. Customer 2 shows up twice, so we can infer that that customer
made two purchases. Since the records for Customer 1 and Customer 5 exist
in the customers table but not the inwvoices table, and Customer 6 only exists in
the inwvoices table, each table contains at least one unique record that does not
exist in the other table. Now we can attempt to join these two tables together
and observe how the output is handled depending on which type of join we
use. Let’s start with our familiar inner join.

The Inner Join

An inner join only returns matching records. Any unmatched data from
either table is ignored. Joins are often described with Venn diagrams, as
seen in Figure 68. An inner join represents only the overlapping section
of the Venn diagram.

INNER JOIN

P
RAPH/ SELECT *

FROM invoices AS i
.I' INNER JOIN customers AS c

ON i.CustomerId = c.CustomerId
fig. 68

Working with Multiple Tables 99

In this example, our inner join will ignore Invoice 5 from our inwvoices
table because this invoice refers to a customer (Customer 6) that does
not appear on our customers table. Likewise, Customers 1 and 5 (from the
customers table) did not generate any invoices, so that record is ignored as
well. As the Venn diagram shows, only the overlapping data is included.
Figure 69 is a visual representation of how an inner join is created from
two tables with disparate data:

Simplified Invoices Table Simplified Customers Table
Invoiceld | Customerld | InvoiceDate | BillingAddress | Total INNER JOIN Customerld Name Address
1 2 1/1/2018 Billing Address2 | $1.00 1 Customer1 | Address1
2 2 2/1/2018 Billing Address2 | $2.00 :—) 2 Customer2 | Address2
3 3 3/1/2018 BillingAddress3 [$3.00 |&————(3 Customer3 | Address3
4 4 4/1/2018 BillingAddress4 [$4.00 |e—————| 4 Customer4 | Address4
5 6 5112017 Billing Address6 | $5.00 5 Customer5 | Address 6

1)

As we learned earlier in the chapter, the Customerd field has
a one-to-many relationship with the invoices table. Although
this data may appear mismatched, our result set will return four
records. This outcome occurs because Customer 2 created two
separate invoices.

The SQL code for this inner join is similar to that of our first example.
First, we list the fields we want to display in our SELECT statement,
being careful to include the appropriate aliases.

SELECT

i.Invoiceld,
.CustomerId,
.Name,
.Address,
.InvoiceDate,
.BillingAddress,
.Total
FROM

invoices AS i
INNER JOIN

customers AS cC
ON

i.CustomerId = c.CustomerId

PP B Q Q Q

100 SQL QUICKSTART GUIDE

WOoT7s

Since inner joins only return matching data, the order that the tables
are listed in does not matter. Order will matter for other join types.

Invoiceld Customerld Name Address InvoiceDate | BillingAddress | Total
1 1 2 Customer2 [Address2 1/1/2018 Billing Address2 | $1.00
2 2 2 Customer2 [Address2 2142018 Billing Address2 | $2.00
3 3 3 Customer3 | Address3 3/1/2018 Billing Address3 | $3.00
4 4 4 Customer4 [Address4 4/1/2018 Billing Address4 | $4.00
fig. 70 4 rows returned in
ms

In the output of this query, we can see that only four records were

returned. Invoice 5, Customer 1, and Customer 5 are omitted. Customer

2 is responsible for two records.

'The inner join is the most common type of join. The main use of an inner

join is to bring corresponding data together from different tables in a

relational database.

WOoT7s

The Left Outer Join

words, joins are inner by default.

The keyword “inner” is optional on an inner join. All joins are
interpreted as inner joins unless otherwise specified. In other

A left outer join combines all the records from the left table with any

matching records from the right table. The Venn diagram equivalent for

this type of join is shown in Figure 71.

LEFT OUTER JOIN

fig. 71

NOTE

SELECT *
FROM invoices AS i

LEFT OUTER JOIN customers AS c

ON i.CustomerId = c.CustomerId

The concept of a “left table” and a “right table” depends entirely

on the order these tables are listed in a JOIN statement. Switching

Working with Multiple Tables

the listing order will produce a different result set. This distinction
will become important when we convert left joins to right joins
later in the chapter.

With this type of join, everything in our invoices table will be displayed.
Since Customer 1 did not order any songs, that particular record is
omitted. However, as we can see in Figure 72, we are combining all five
records from the invoices table with only four records from the customers
table. (Remember, there is no record for Customers 1 or 5 in the inwvoices
table, and Customer 2 produced two invoices.) Unlike the inner join,
which matched an equal number of records from each table, a left outer
join may return more records from the “left” table. We will have to see the
output of this query to understand how the SQL browser handles this.

Simplified Invoices Table Simplified Customers Table
LEFTJOIN
C‘)“APH/C‘ Invoiceld | Customerld | InvoiceDate | BillingAddress | Total Customerld Name Address
1 2 1/1/2018 Billing Address2 | $1.00 :_ 1 Customer1 | Address 1
2 2 2/1/2018 Billing Address2 | $2.00 2 Customer2 | Address2
. I ' 3 3 3/1/2018 Billing Address3 [$3.00 |&———— 3 Customer3 | Address3
f 4 4 4/1/2018 BillingAddress4 | $4.00 |e———— 4 Customer4 | Address4
ig. 72 5 6 5/1/2017 Billing Address6 | $5.00 (—|_ 5 Customer5 | Address 6
NULL

'The SQL query for a left outer join is very similar to what we used for the
inner join. We simply use LEFT OUTER JOIN instead.

SELECT

i.Invoiceld,
.CustomerId,
.Name,
.Address,
.InvoiceDate,
.BillingAddress,
.Total
FROM

invoices AS i
LEFT OUTER JOIN

customers AS cC
ON

i.CustomerId = c.CustomerId

PP Q Q Q

102 SQL QUICKSTART GUIDE

Invoiceld Customerld Name Address InvoiceDate | BillingAddress | Total

2 Customer2 Address2 1/1/2018 BillingAddress2 | $1.00
2 Customer2 Address 2 2/1/2018 Billing Address2 | $2.00
Customer3 Address 3 3/1/2018 Billing Address3 | $3.00
4 Customer4 | Address4 4/1/2018 Billing Address4 | $4.00
5 NULL NULL NULL 5/1/2017 Billing Address6 | $5.00

5rows returned in

‘“\OTE Tms

als|lw|~o]=
slw o=
w

With a left outer join, the “outer” keyword is optional.

When we look at the output of our left join, we see that the SQL browser has
added null data to our result set. Remember that we have no information
in the customers table about Customer 6. Adding null data is how the SQL
browser handles the fact that we were trying to match five records from
invoices to only four records from customers. Left joins are useful because
they allow us to see discrepancies in our data. We can produce lists of
customers that have not generated invoices or search for data that has
been removed in the right table but still exists in the left table.

The Right Outer Join

(;P‘UTIO'I/ Right outer joins are not supported in SQLite, but since right joins are
still popular in other RDBMS implementations, we are going to include
them anyway. As we mentioned in our discussion of left joins, we will
present a workaround for using right joins in SQLite later on.

'The right outer join returns the entire right table as well as matching
information from the left table. The right join is a mirror image of the left
join and functions in a very similar way.

RIGHT OUTER JOIN

P
ORA H/C SELECT *

FROM invoices AS i
.I' RIGHT OUTER JOIN customers AS c

. ON i.CustomerId = c.CustomerId
fig. 74

Similar to what occurred with the left join, the right join takes all
fields from the right (customers) table and matches that data with any

Working with Multiple Tables 103

corresponding data from the inwvoices table. Since Customer 6 does not

exist in the customers table, this record is ignored.

Simplified Invoices Table

Simplified Customers Table

P RIGHT JOIN

ORA H/C‘ Invoiceld | Customerld | InvoiceDate | BillingAddress | Total |\, Customerld Name Address
1 2 1/1/2018 Billing Address2 | $1.00 —I—) 1 Customer1 | Address 1
2 2 2/1/2018 BillingAddress2 | $2.00 F———| 2 Customer2 | Address2
. ' 3 3 3/1/2018 Billing Address3 | $3.00 ——| 3 Customer3 | Address3
fig. 75 4 4 4/1/2018 BillingAddress4 | $4.00 F———>| 4 Customer4 | Address4
5 6 51112017 Billing Address6 | $5.00 —l—) 5 Customer5 | Address 6

1 NULL)
The SQL statement required to create a right join is, not surprisingly,

NOTs similar to the two other joins we have shown so far.

SELECT

i.Invoiceld,

c.Customerld,

c.Name,
c.Address,

i.InvoiceDate,

i.BillingAddress,

i.Total
FROM

invoices AS 1
RIGHT OUTER JOIN
customers AS cC

Just like with the left outer join, the “outer” keyword is optional;
simply writing RIGHT JOIN produces the same result.

ON
i.CustomerId = c.Customerld
Invoiceld Customerld Name Address InvoiceDate | BillingAddress | Total
1 NULL 1 Customer 1 Address 1 NULL NULL NULL
2 1 2 Customer2 | Address2 1/1/2018 BillingAddress2 | $1.00
3 2 2 Customer2 | Address2 2/1/2018 Billing Address2 | $2.00
4 3 3 Customer3 | Address3 3/1/2018 Billing Address3 | $3.00
5 4 4 Customerd | Address4 41112017 Billing Address4 | $4.00
fig. 76 6 NULL 5 Customer5 Address 5 NULL NULL NULL
6 rows returned in
2ms

104 SQL QUICKSTART GUIDE

This particular join returned the most records out of the three joins we
have demonstrated so far. Customers 1 and 5 did not have corresponding
data in the inwoices table, so null values were assigned to those records.
Two records from the inwoices table corresponded to Customer 2, so the
join resulted in the data from Customer 2 being listed twice.

Right joins are used less frequently than left joins. Since SQLite does not
recognize the right join, it is a best practice is to reverse the order of tables
in your query, which yields the same result set. This will be illustrated later
in the chapter.

Inner Joins with More Than Two Tables

Joins can combine more than two tables. Adding additional tables using
joins is straightforward; it will follow the same pattern as the inner joins we
have already demonstrated. Take a look at the database schema in Figure 77. We
can see that in addition to the relationship between the inwvoices and customers
tables, there is also a relationship between the SupportRepId field (from
the customers table) and the EmployeeId field (from the employees table).

playlists invoices

—1 & Playlistld: INTEGER
Name: NVARCHAR(120)

E customers
1

& Customerld: INTEG...
FirstName: NVARCHA...
LastName: NVARCHA...
Company: NVARCHA...
Address: NVARCHAR...
City: NVARCHAR(40)
State: NVARCHAR(40)
Country: NVARCHAR(...
PostalCode: NVARCH...

& Invoiceld: INTEGER
Customerld: INTEGER
InvoiceDate: DATETIME
BillingAddress: NVAR...
BillingCity: NVARCHA...
BillingState: NVARCH...
BillingCountry: NVAR...
BillingPostalCode: NV...
Total: INTEGER

playlist_track

& Playlistld: INTEGER
& Trackld: INTEGER

RAPH/ —— tracks Phone: NVARCHAR(24)
e L e Trackd: INEGER 1 | [ivorce Tems Fax; NVARCHAR(24)
& MediaTypeld: INTE... - | Name: NVARCHAR(200) — | Email: NVARCHAR(60)
Name: NVARCHAR... Albumld: INTEGER & Invoicelineld: INT... SupportRepld: INTEG...
.I' 122} Medialypeld: INTEGER Invokicsld:lNgEGER
il . Trackld: INTEGER
fig. 77 geins ?SH:L‘;',NLEVTRFEHA UnitPrice: NUMERIC 1! CIPAES
&Genreld: INTEGER ! | Milliseconds: INTEGER Quantity: INTEGER &£ Employeeld: INTEG...
Name: NVARCHAR(120) Bytes: INTEGER LastName: NVARCHA...

UnitPrice: NUMERIC

albums

artists

& Artistld: INTEGER
Name: NVARCHAR(120)

& Albumld: INTEGER
Title: NVARCHAR(160)
Artistld: INTEGER

Working with Multiple Tables

FirstName: NVARCHA...
Title: NVARCHAR(30)
ReportsTo: INTEGER
BirthDate: DATETIME
HireDate: DATETIME
Address: NVARCHAR(...

7 more columns...
v

105

Note that, up to this point, the names of the two fields we have related
to each other using the ON keyword have been identical. In this case, we are
relating two fields with different names, although the entity relationship
diagram shows us that they are corresponding fields. Why does this occur?
This disparity teaches us an important lesson about relational database
structure. Two corresponding fields don’t have to have the same name. There
is actually a good reason for these two fields to have different names. In
the sTunes company, each customer is assigned a SupportRepId, or a
personal company representative. The number assigned to every customer
support representative happens to be the same number used for employee
number in the employees table. The creator of this database could have named
both fields EmployeeId, but that strategy could lead to confusion. While
it makes sense for customers to have a support representative, and it makes
sense that the SupportRepId number is identical to the EmployeeId
number, having an EmployeeId field in the customers table could cause
confusion. The two names, denoting identical data, imply different roles
for the data within each table. By naming the field SupportRepId in
customers, it’s immediately clear what this field’s purpose is in relation to
the customers table. Instead of coming up with a different number system
for EmployeeId,we can link the two through the power of the relational
database structure, and this linkage is notated in the database schema
(Figure 77).

Now that we understand how we can relate the inwvoices, customers, and
employees tables, we need to come up with the “why.” Let’s say the sTunes
customer service department wants to reward the employees that are
responsible for the ten highest individual sales. Customer service wants to
create a plaque for each employee with a list of the customers they have
helped. Now that we have an operational scenario, we can look at the ERD
to determine what fields we need in our query. Sometimes, when writing
complex queries accessing multiple tables, it helps to think through what
fields we need and what tables those fields come from (Figure 78).

Now that we have an idea of what fields we want to display, we can
begin composing the query. We will start with invoices in our FROM clause.
We will then write two INNER JOIN clauses sequentially: one that joins
invoices to customers and another that joins both invoices and customers to
employees. We will order the entire query by invoice total (in descending
order to see the highest totals first).

106 SQL QUICKSTART GUIDE

FIELDS WE NEED OUR PREFERRED

ALIAS SYNTAX
Employee first name, last name, employee 1D e.FirstName,
(all from the employees table) e.LastName,

e.Employeeld,

Customer first name, last name, support rep 1D c.FirstName,
(from the customers table) c.LastName,
c.SupportRepld,

Customer ID, total purchase amount i.CustomerId,
(from the invoices table) i.Total,

We want to sort this query by highest invoice value i.Total DESC,

and limit results to the top ten invoices LIMIT 10
SELECT
e.FirstName,
e.LastName,
e.Employeeld,
c.FirstName,
c.LastName,
c.SupportRepld,
i.Customerild,
i.Total
FROM
invoices AS i
INNER JOIN
customers AS cC
ON
i.CustomerId = c.CustomerId
INNER JOIN
employees AS e
ON
c.SupportRepld = e.Employeeld
ORDER BY
i.Total DESC
LIMIT 10

Working with Multiple Tables 107

FirstName | LastName | Employeeld | FirstName [LastName | SupportRepld | Customerld Total
1 Steve Johnson 5 Helena Holy 5 6 $25.86
2 Margaret Park 4 Richard Cunningham | 4 26 $23.86
3 Jane Peacock 3 Ladislay Kovécs 3 45 $21.86
QQAPH/(\ 4 Jane Peacock 3 Hugh 0'Reilly 3 46 $21.86
5 Steve Johnson 5 Astrid Gruber 5 7 $18.86
6 Steve Johnson 5 Victor Stevens 5 25 $18.86
. I ' 7 Steve Johnson 5 Luis Rojas 5 57 $17.91
8 Margaret Park 4 Frantisek Wichterlova | 4 5 $16.86
fig. 79 9 Jane Peacock 3 Isabelle Mercier 3 43 $16.86
10 Margaret Park 4 Bjorn Hansen 4 4 $15.86
10rows
returned in
5ms
Now we have a list of sTunes employees responsible for the highest
invoice totals. There are a few things we can observe about this result set. As
we predicted, even though the fields we use to relate the customers table to
the employees table have two different names, the data clearly corresponds.
The number values in SupportRepId are the same as the values in the
EmployeeId field.
<OUR 0‘1’ » Consult the entity relationship diagram and choose another table
5, A to add to this query using another inner join. Choose which fields
EE from this new table you wish to display and add them to the select
statement.
Using Left Outer Joins with NULL, IS, and NOT
As we saw earlier in the chapter, a left outer join shows us everything from
our left table and all matching information from our right table. This ability
is useful for analyzing our database and checking for incomplete information.
Let’s say our sTunes company is conducting an internal audit on the way the
company classifies albums versus single songs. sTunes management asks us to
generate a list of all artists who do 7o have an album listed.
RAPH, e Looking at our preceding entity
albums relationship diagram, we can surmise
. & Albumid: INTEGER |~ that the information we are focusing
.I' : 1 oo fitle: NVARCHAR(160) | 1) 4 going to be stored in the arists
& Mttistld: INTEGER ~ |—— | Artistld: INTEGER ,
fig. 80 Name: NVARCHAR(120) and albums tables. Let’s look at the

relationship between those tables.

108 SQL QUICKSTART GUIDE

As we can see in Figure 80, our artists table consists of an ArtistId
field, which is our primary key, and a field for the artist name. We can see
from the ERD that the artists table has a one-to-many relationship with the
albums table. This relationship makes sense, since an artist can generate many
albums. Our a/bums table has its own primary key, AlbumId, as well as the
ArtistId field acting as a foreign key.

A LEFT OUTER JOIN with the artists table being our left table would
return all the data from the artists table with matching records (where
available) in the albums table. Our left join will fill in any fields that do not
have album titles with null values. Now that we have a clear plan, we can begin
to compose our query.

WOTs
We have used the first letter of a table as its alias for most joins in
this chapter. Since we have two tables with the same first letter, we

will use two letters for each in this query.

SELECT
ar.ArtistId AS [ArtistId From Artists Table],
al.ArtistId AS [ArtistId From Albums Table],
ar.Name AS [Artist Name],
al.Title AS [Album Title]
FROM
artists AS ar
LEFT OUTER JOIN
albums AS al
ON
ar.ArtistId = al.ArtistId

At first, when we scan through the 418 records returned by this query,
nothing seems out of place. The ArtistId field from the arists table seems
to match the ArtistId field from the a/bums table. Most artist names are
associated with album titles. However, if we scroll down farther in our result
set (Figure 81), we begin to see null values appear.

To fully answer our initial inquiry and retrieve all artists who do not
have an album, we would need to add a WHERE clause that specified only the
records that are null in the a/bums table. There are specific SQL keywords we
use to work with null values.

» IS NULL in a WHERE clause would return only values that were null
» NOT NULL would return only values that were not null

Working with Multiple Tables 109

iciren | pisiiven | aiton
51 25 NULL Milton Nascimento & Bebeto | NULL
52 26 NULL Azymuth NULL
53 27 27 Gilberto Gil As Cangdes de EuTu Eles
54 27 27 Gilberto Gil Quanta Gente Veio Ver (Live)
55 27 27 Gilberto Gil Quanta Gente Veio ver-Banus De Carnaval
56 28 NULL Jodo Gilberto NULL
57 29 NULL Bebel Gilberto NULL
58 30 NULL Jorge Vercilo NULL
59 31 NULL Baby Consuelo NULL
60 32 NULL Ney Matogrosso NULL
418 rows returned
in 18ms
Adding a clause that specifies that we are only looking for cases WHERE
al.ArtistId IS NULL would return a list of artists without album names.

We must use IS and NOT when dealing with nulls rather than the
equals sign “=" operator. Nulls represent a lack of data. The =

OPUTsz

operator compares the value of two items. Nulls have no value and
thus cannot be compared using the = operator. Attempting to use
= will produce an error.

SELECT
ar.ArtistId AS [ArtistId From Artists Table],
al.ArtistId AS [ArtistId From Albums Table],
[Artist Name],
[Album]

ar.Name AS

al.Title AS
FROM

artists AS ar
LEFT OUTER JOIN

albums AS al
ON

ar.ArtistId =
WHERE

al.ArtistId IS NULL

al.ArtistId

In our result set (Figure 82), we have 71 records where there are no
corresponding albums next to the artist name.

110 SQL QUICKSTART GUIDE

Artistld From Artists Table Artistld From Albums Table Artist Name Album
1 25 NULL Milton Nascimento & Bebeto | NULL
2 26 NULL Azymuth NULL
3 28 NULL Jodo Gilberto NULL
4 29 NULL Bebel Gilberto NULL
5 30 NULL Jorge Vercilo NULL
6 31 NULL Baby Consuelo NULL
7 32 NULL Ney Matogrosso NULL
8 33 NULL LuizMelodia NULL
9 34 NULL Nando Reis NULL
10 35 NULL Pedro Luis &A Parede NULL
71 rows returned in Tms

Turning a Right Join into a Left Join

As we learned earlier in the chapter, right joins are not supported in
SQLite. We also learned that right joins are mirror images of left joins.
Consider the Venn diagram below.

A right join takes all records on the right side and joins them with all
corresponding records from the left. If you simply switch the left and right
tables, then you can use a left outer join to the very same effect. The following
query has been written as a right outer join. This query takes any corresponding
album or title info from the a/bums table and merges it with a// records from
the #racks table.

SELECT * FROM albums AS al RIGHT OUTER JOIN tracks
AS t ON t.AlbumId = al.Albumld

is the same as

SELECT * FROM tracks AS t LEFT OUTER JOIN albums
AS al ON t.AlbumId = al.AlbumId

RIGHT OUTER JOIN LEFT OUTER JOIN

OV‘APH/(\
lll ‘ - ‘
fig. 83

ALBUMS RIGHT JOIN TRACKS = TRACKS LEFT JOIN ALBUMS

Working with Multiple Tables 111

SELECT
t.TrackId,
t.Composer,
t.Name,
al.AlbumId,
al.Title

FROM
albums AS al

RIGHT OUTER JOIN
tracks AS t

ON
t.AlbumId = al.AlbumId

If you run the preceding query in DB Browser, you will get the following
error: RIGHT and FULL OUTER JOINs are not currently
supported.

That isn’t a problem for us, however, as we know that by simply swapping
the two table names in the join, we can achieve the same result. Consider the
following query; the only thing that differs from the query above is the order
in which the tables are listed:

SELECT
t.TrackId,
t.Composer,
t.Name,
al.AlbumId,
al.Title

FROM
tracks AS t

LEFT OUTER JOIN
albums AS al

ON
t.AlbumId = al.AlbumId

Now this query can be run, and we can observe the results (Figure 84).
With this query we can see the composer of a song, the song name, and the
album title all in one result set. We can also observe that there are some
null values in the composer field. From there, we could rewrite the query
to investigate those null values. The key takeaway from left/right joins is
that they allow you to “troubleshoot” your own databases and really discover

112 SQL QUICKSTART GUIDE

OV‘APH/C

fig. 84

é*OUR o,

inconsistencies in your data. If you are looking for corresponding data and are

willing to risk omitting a few records due to database errors, it is better to just

use an inner join.

Trackld Composer Name Albumlid Title
1 (1 Angus Young, Malcolm Young, Brian Johnson [ForThose About To Rock 1 ForThose AboutTo Rock
(We Salute You) (We Salute You)
2 |2 NULL Balls to the Wall 2 Balls to the Wall
3 (3 F. Baltes, S. Kaufman, U. Dirkscneider & FastAs a Shark 3 Restlessand Wild
W. Hoffman
4 14 F. Baltes, R.A. Smith-Diesel, S. Kaufman, Restless and Wild 3 Restlessand Wild
U. Dirkscneider & W. Hoffman
515 Deaffy &R.A. Smith-Diesel Princess of the Dawn 3 Restless and Wild
6 |6 Angus Young, Malcolm Young, Brian Johnson | PutThe Finger On You 1 ForThose AboutTo Rock
(We Salute You)
717 Angus Young, Malcolm Young, Brian Johnson | Let's GetItUp 1 For Those About To Rock
(We Salute You)
8 |8 Angus Young, Malcolm Young, Brian Johnson | InjectThe Venom 1 ForThose AboutTo Rock
(We Salute You)
9 19 Angus Young, Malcolm Young, Brian Johnson | Snowballed 1 ForThose AboutTo Rock
(We Salute You)
10110 Angus Young, Malcolm Young, Brian Johnson | Evil Walks 1 ForThose AboutTo Rock
(We Salute You)
3503 rows
returned in
25ms

» Modify the above query to display only the records where the
Composer field is null.

Data Analysis Checkpoint

1. Using DB Browser and the Browse Data tab or the entity relationship
diagram in Figure 65, view the #racks table. Identify which fields in
that table are foreign keys in another table. Based on the foreign keys
you have identified, which tables are related to the #racks table?

2. Create an inner join between the a/bums and fracks tables and display
the album names and track names in a single result set.

3. Using the genres table identified from question 1, create a third inner
join to join to this table and include the Name field from that table
in your result set.

Working with Multiple Tables 113

Chapter Recap

»

»

»

»

»

»

»

Joins harness the power of a relational database to bring data
together from different tables.

Use of an entity relationship diagram is helpful when writing joins.

When selecting fields from multiple tables at once, aliases are
needed to specify the table of origin.

Inner joins do not include rows where there is no corresponding
data.

Oduter joins include all rows of one of the tables, even when there is
no corresponding data between tables. Rows that do not match will
show up as null.

'The special keywords IS and NOT must be used to test for null
values.

Right joins can be used in implementations of SQL other than
SQLite. To do the equivalent of a right join in SQLite, simply
switch the position of the two tables you are comparing in your
query statement.

114 SQL QUICKSTART GUIDE

| 7|

Using Functions

Chapter Overview
» Adding calculations to your queries
» Types of functions in SQL
» String functions
» Date functions
» Aggregate functions
» Using the WHERE and HAVING clauses with functions
» Grouping by multiple columns

» Data Analysis Checkpoint

If you have been testing your knowledge using our end-of-chapter Data
Analysis Checkpoints, you may have noticed that a few of the questions
required an additional step to be performed after you wrote your query. For
example, at the end of chapter 4, we asked you “How many of our customer’s
last names start with B?” Other questions asked you to find totals of invoices
within a certain price range. Using the tools you had available at the time,
some of these questions required you to manually count or add up the query
results in order to obtain the answer. To calculate all last names ending in B
using only knowledge from chapter 4, you could select the LastName field
tfrom the customers table, order by last name, scroll down to the B names, then
count those names manually. If you augmented your query with chapter 5
knowledge, you could make the task a bit easier by restricting the dataset
to return only last names starting with B (using WHERE LastName LIKE
'B% '). However, you would still have to do the count manually. This chapter
will show you how to simplify your calculations by using functions.

Adding Calculations to Your Queries

Calculations (like counting the number of records returned), can be
performed by adding functions to our queries. With the use of a function
called COUNT (), we can ask the SQL browser to do a count of LastName

Using Functions 115

and use an alias to return the value as NameCount. Adding a function to a
basic SELECT statement would look something like this:

SELECT

COUNT (LastName) AS [NameCount]
FROM

customers
WHERE

LastName LIKE 'B%'

Instead of listing all the entries
NameCount starting with B, (which we would
then have to count), we could use
1 4 the COUNT () function to add up
all fields in the customers table that
1 rows returned satisfy our WHERE condition. The end
in2ms result gives us an aliased field and the
number of last names starting with B.

This is just one example of how functions can save us time by doing some
of the extra work for us. In this chapter, we will go over three different types
of functions in SQL and give examples of the ones that are the most useful.

Types of Functions in SQOL

Functions in SQL are special keywords that accept certain parameters,
perform an operation (such as a calculation or modification of the data in
the field), and return the result of that operation as a value. You have already
had a sneak preview of functions in chapter 5, where we introduced the
DATE () function. The DATE () function took as its parameter data in the
format DATET IME, performed an operation (stripped the time stamp portion
away), and then returned only the date portion of the data point. But as we
mentioned in chapter 5, there are many more types of functions in SQL that
do a variety of tasks. Figure 86 contains a list of some of the most common
and useful ones.

This list is by no means exhaustive. All of the functions mentioned
NOTg
in this book are ones specifically recognized by SQLite. Other

database implementations have different functions. A full list
of functions understood by SQLite is available on the SQLite
webpage.'

116 SQL QUICKSTART GUIDE

NOTE

TYPES OF FUNCTIONS

STRING DATE AGGREGATE
INSTR() DATE () AVG ()
LENGTH () DATETIME () COUNT ()
LOWER () JULIANDAY () MAX ()

LTRIM () STRFTIME () MIN ()
REPLACE () TIME () SUM ()

RTRIM () 'NOW'

SUBSTR ()

TRIMO) «— || (double pipes concatenation)
UPPER ()

As you can see in Figure 86, the functions we cover in this book come in

three different types:

» String functions modify character and text-based data.

» Date functions modify time and date data.

» Aggregate functions perform mathematical operations.

At first glance, it may appear that these three types of functions

work only with their respective data types (character, date, and

numerical). However, recall our first example with COUNT () ; we

were able to use an aggregate function to perform a mathematical

count of character data. There are some situations where we can
use these functions on different data types. For a refresher on data

types, see chapter 1.

Functions in SQL operate very similar to the way functions operate in

spreadsheet software and other programming languages. If you have ever used
the SUM () feature in a Microsoft Excel spreadsheet, then you will already
have some idea of how to use functions. Another similarity these functions
share with Excel functions is the “pop-up”style definitions that appear once we
type the function in the SQL browser. Consider this example. In the Execute
SQL Pane, start to type the name of a function with one open bracket:

UPPER (

Using Functions 117

After doing this, you should see the following text pop up under the
function you just typed:

The UPPER(X) function returns a copy of input
string X in which all lowercase ASCII characters
are converted to their uppercase equivalent.

WOTg
The portion of the function in parentheses (X) is called the
argument of the function. Some functions may take more than one

argument.

Most functions in DB Browser have pop-up information that is very
helpful for determining what argument(s) the function takes and what the
function actually does. Try a few others for yourself.

~OUR O‘b » 'The UPPER () function takes only one argument (X). How many
(o) Z arguments does the REPLACE () function take?
EE » According to the tooltip (onscreen in DB Browser), what does the
TRIM () function do?

If you do not see the pop-up, make sure you are typing the
function correctly. The function pop-up text will not appear if you
just copy and paste the function and the open parenthesis into
the Execute Pane. This is another reason you should always type
queries by hand. No shortcuts!

Manipulating Text Data with String Functions

A string is another word for text data stored in a text-based data type.
String functions can format and modify text. To understand how string
functions operate, we need to conduct a brief refresher on data types in
SQLite. In chapter 3, while investigating the structure of our database, we
observed that the text-based data was saved in a format called NVARCHAR (X) .
NVARCHAR is a variable-length string where the X represents the maximum
length of the string.

Q.@N\EMBQ’) For character data with a fixed length (like postal codes with letters
in them), a different fixed-length data type can be used. However,
in the sTunes database, the character data type NVARCHAR is used
for all text-based data.

118 SQL QUICKSTART GUIDE

Being able to manipulate text strings is important because the fields in
a database are not always organized in a way that is most useful to us. Let’s
say we were asked to create a mailing list of our US customers. To do this we
would need their names and addresses. We can get that easily with a quick

SELECT statement.

SELECT
FirstName,
LastName,
Address
FROM
customers
WHERE
Country = 'USA'

Running this query returns the following—but there is a slight problem.

FirstName LastName Address
1 Frank Harris 1600 Amphitheatre Parkway
2 Jack Smith 1 Microsoft Way
3 Michelle Brooks 627 Broadway
4 Tim Goyer 1 Infinite Loop
5 Dan Miller 541 Del Medio Avenue
13 rows returned in 5Sms

'The address data is split up into parts. Simply requesting the Address
field is not enough. We would also need to select the City, State, and
PostalCode fields. The other issue is that all this data is in separate fields.
If you want to create a simple mailing list, where each line represents the

customer’s full name and address, then the current layout is formatted very

poorly for that.

» Try copying the output from the last query into DB Browser in a
text editor. What does it look like?

Using Functions 119

Fortunately, there are some great tools for manipulating text strings so
that we can get the output looking the way we want it. The first of these tools
is called concatenation.

Concatenating Strings of Text

Joining fields together is called concatenating them. To add two fields
together we use a two-pipe || operator. For example, if we wanted to
concatenate the fields FirstName and LastName, we could write the
following:

SELECT

FirstName || LastName
FROM

customers
WHERE

CustomerId = 1

'This would give us the following output:

FirstName || LastName

1 LuisGongalves

1 rows returned in Tms

You can see from the output of our concatenation query that the ||
operator merely attached both fields together without spaces. To make this
output a bit cleaner, we can use two concatenations in sequence and include
a space in single quotation marks. After making this adjustment, our query
looks like the following:

SELECT

FirstName,

LastName,

FirstName || ' ' || LastName
FROM

customers
WHERE

Country = "USA"

120 SQL QUICKSTART GUIDE

We should get output that looks like this:

FirstName LastName FirstName || LastName
1 Frank Harris Frank Harris
2 Jack Smith Jack Smith
3 Michelle Brooks Michelle Brooks
4 Tim Goyer Tim Goyer
5 Dan Miller Dan Miller
13 rows returned in Tms

» When you run this query for yourself, make things a little cleaner by
creating an alias called “Full Name” for our concatenated field.

The concatenation function | | doesn't really look like the rest

of the functions we will be exploring in this chapter. In other
implementations of SQL, there is an actual CONCAT () function. Still
other implementations use a + symbol. The syntax may be different
depending on which RDBMS you use, but the effect is the same.

Now that we have seen an example, we can use multiple concatenations to
create a one-line name and address list for all our customers.

SELECT
FirstName || ' ' || LastName || ' ' || Address
ey "1l City 1", " || State [| " ' ||
PostalCode AS [MailingAddress]

FROM
customers

WHERE
Country = "USA"

Using Functions 121

The result looks like this:

MailingAddress

Frank Harris 1600 Amphitheatre Parkway, Mountain View, CA 94043-1351
Jack Smith 1 Microsoft Way, Redmond, WA 98052-8300

Michelle Brooks 627 Broadway, New York, NY 10012-2612

Tim Goyer 1 Infinite Loop, Cupertino, CA 95014

Dan Miller 541 Del Medio Avenue, Mountain View, CA 94040-111

gl jlwIiNn]| —

13 rows returned in 5ms

into a text editor to see how different it looks. The output should
look much cleaner than before we concatenated it.

(o) Z » When you run this query, try pasting the output from DB Browser
EE

NOTg You do not have to use only spaces in between the double pipes.
In the previous example, we used a comma and then a space ',
to get the desired format. You can add any text you wish as long as

you put it inside the quotation marks.

Truncating Text

We can also separate or truncate text using functions. Looking at the
example above, you can see that the US postal codes in our customers table are
not uniform. Some of them include a hyphen and an additional four-digit
number, referred to by the US Postal Service as a ZIP+4 code. And one of the
postal codes seems to be missing the fourth digit of the ZIP+4 code.

This is a good time to mention that finding errors or inconsistencies

@‘(TA/(@ in a database is inevitable. Being able to anticipate and handle
errors and exceptions is part of the learning process and an
invaluable skill. Fields often have misspellings, an incorrect number
of characters, or other issues. Over time you will learn to anticipate
and handle errors as you come across them.

We can use functions to remove the hyphen and extra numbers so that
our postal code output is uniform. Thanks to the US Postal Service’s advanced

122 SQL QUICKSTART GUIDE

WOTs

routing system, the additional numbers in US postal codes (beyond the initial
five) are not required.

To use string editing functions, we need to know a bit more about how
strings are saved in a database. The characters in every string are numbered
starting with 1. This becomes important when we start manipulating strings
because it allows us to specify what parts we want to manipulate based on the
character number.

If we use the LENGTH () function on a field like PostalCode from our
customers table, we can see that the length of each code is calculated.

SELECT

PostalCode,

LENGTH(PostalCode) AS [Postal Code Length]
FROM

customers
WHERE

Country = "USA"

Looking at the output (Figure

PostalCode | Postal Code Length 91), it is easy to see that our postal

94043-1351 | 10 codes vary in string size. 'The

98052-8300 | 10
10012-2612 | 10
95014

minimum necessary length of a US

postal code is five digits. Let’s remove

all information after the fifth position
5 in the string. We can do this with the
94040-111 9 SUBSTR () function.
59503 - The SUBSTR () function exists
in two forms: SUBSTR (X, Y) and
32801 5 SUBSTR (X, Y, Z) . As we have done
4
5
5

2113 before, we can type “SUBSTR (” into
50611 our browser for a brief description of

53703

how it works.

13 rows returned in Tms

To get DB Browser to give you a pop-up preview of SUBSTR (X, Y, Z),
you will need to type “SUBSTR (X, Y, “ to tell the browser you are
interested in the three-argument version of this function.

Using Functions 123

124

NOTE

FUNCTION DESCRIPTION

SUBSTR (X, Y) Returns all characters through the end of the string X
beginning with the Y-th.

SUBSTR (X, Y, Z) Returns a substring of input string X that begins with the
Y-th character and that is Z characters long.

If we use the SUBSTR (X, Y, Z) function to remove the extra data
from the US postal codes, the X will be our PostalCode field, and the Y
argument specifies the starting position of the string. In this case, we want
the first five numbers to remain, so we are going to choose 1. The Z argument
specifies the number of characters the function will return from the starting
position, which in our case is five.

If we select only the United States addresses and then include the
SUBSTR (X, Y, Z) function with an alias, we get the following:

SELECT
PostalCode,
SUBSTR(PostalCode,1,5) AS [Five Digit Postal
Code]
FROM
customers
WHERE
Country = "USA"

Looking at the output (Figure 93), we can see that all our postal codes
retain only the first five digits.

The postal codes that never had the additional numbers aren’t
affected by this query.

Using the SUBSTR () function, we can also split data apart. Note that the
version of SUBSTR () that takes two arguments returns all characters through
the end of the string beginning with the Y-th. If our Y value doesn't start at
character 1, we can direct the function to only return characters from the Y-th
character and onward.

SQL QUICKSTART GUIDE

PostalCode

Five Digit Postal Code

94043-1351 | 94043
98052-8300 | 98052
10012-2612 | 10012
95014 95014
94040111 94040
89503 89503
32801 32801
2113 213

60611 60611
53703 53703

13 rows returned in Tms

» Repeat the preceding SQL statement but add an additional field
to the SELECT portion of the query using SUBSTR (X, Y) that

includes only the last four digits of the postal code (where available)
with the alias “ZIP+4 Code.”

Additional String Functions

'The functions listed in this text are by no means exhaustive. As mentioned
in the beginning of this chapter, a full list of SQLite supported functions can
be found on the SQLite website. An alternative way to learn new functions is

to type them in, read the tooltip, and try to figure out how they work. Before

we move on to date and aggregate functions, we will introduce two more

string functions that are very useful.

converted to lowercase.

FUNCTION DESCRIPTION
UPPER () Returns a copy of input string X in which all lowercase ASCI
characters are converted to their uppercase equivalent.
LOWER () Returns a copy of string X with all ASCII characters

Using Functions

125

As we saw earlier looking at the tooltip, the UPPER (X) function returns
a copy of input string X in which all lowercase ASCII characters are converted
to their uppercase equivalent. The LOWER () function enacts a similar process.
'The following SQL statement demonstrates both of these functions.

SELECT
FirstName as [First Name Unmodified],
UPPER(FirstName) as [First Name in UPPERCASE],
LOWER(FirstName) as [First Name in lowercase],
UPPER(FirstName) || ' ' || UPPER(LastName) AS
[Full Name in UPPERCASE]

FROM
customers

In this query, we passed the entire FirstName field into the UPPER ()
and LOWER () functions as an argument, and then used an alias to label the
result. We also created a “Full Name” alias to show that you can concatenate
two fields after performing functions on them.

First Name Unmodified First Name in UPPERCASE FirstName in lowercase | Full Name in UPPERCASE

1 Luis LUiS luis LUIS GONGALVES
2 Leonie LEONIE leonie LEONIE KGHLER
3 Frangois FRAN¢OIS franois FRANCOIS TREMBLAY
4 Bjern BJoRN bjorn BJORN HANSEN
5 Frantisek FRANTISEK frantisek FRANTISEK WICHTERLOVE
6 Helena HELENA helena HELENAHOLy
7 Astrid ASTRID astrid ASTRID GRUBER
8 Daan DAAN daan DAAN PEETERS
9 Kara KARA kara KARANIELSEN
10 Eduardo EDUARDO eduardo EDUARDO MARTINS

59 rows returned in 3ms

The upper and lower functions only work on ASCII characters. Any

characters initially formatted in unicode are left unchanged.

» Use the SUBSTR () function together with the case functions and
create a list of customers with the last name listed first in capital
letters and only the first initial of the first name.

126 SQL QUICKSTART GUIDE

Date Functions

Date functions allow us to manipulate data stored in various date and
time formats. In our sTunes database, the date information is stored in a
DATETIME format: YYYY-MM-DD HH:MM: SS. Although the format gives
us space for a timecode, the timecode is not being used in our database and
all of the timecodes are blank and show 00:00:00. Because of this, we have
used the DATE () function (first introduced in chapter 5), to strip away the
timecode and leave us with just the date information. Since date information
can be stored in different ways in any given database, it is important to know
how to convert one format to another. There is a lot more we can do with
dates other than just changing their formats. For example, we can get the
difference between any given date and the current date to calculate the ages
of our employees, since we have a BirthDate field in the employees table.

In order to calculate employee ages, we will need to learn a bit more about
the STRETIME () function, also known as the string format time function. As
the name implies, this function formats the time and date information as a text
string. The STRFTIME () function needs at least two pieces of information
to operate correctly. You must provide your desired format (also known as
a conversion specification) and a timestring to format. The timestring can
be a DATETIME field from your database or it can be typed manually. The
timestring can also use the NOW function as an argument. The third argument,
a modifier, is optional and can be used to incrementally shift the date forward
or back and perform a few other functions.

FUNCTION DESCRIPTION

OQ,APH/C STRETIME () STRFTIME (format, timestring, modifier,
modifier, ...)

Converts date and time to a string. STRETIME () takes a
format (or “conversion specifications”), a timestring, and as
many (optional) modifiers as desired.

"NOW' This function takes no argument. Using the NOW function
returns the current time when it is executed. STRETIME (),
DATE (), and other time functions can take NOW as an
argument.

WOT7s

The NowW function is sometimes called a nondeterministic function,

which is a fancy way of saying that the resulting data returned from

Using Functions 127

this function is different every time it is called, since the date and/or
time will be different every time it is called. The STRFTIME () function
and most other functions covered in this book are deterministic; that
is, they produce the same result every time they are used with the
same arguments. The NOW function needs to be constantly updated so
it relies on your computer’s time to stay accurate.

ARGUMENTS FOR STRFTIME

In specific order: format, timestring, modifier (optional)

B PSR
'%d" day of month: 00
'$f! fractional seconds: SS.SSS
'SH! hour: 00-24
%3 day of year: 001-366
1%J" Julian day number
"Sm' month: 01-12
'SM! minute: 00-59
'%s’ seconds since 1970-01-01
%S’ seconds: 00-59
"Sw' day of week 0-6 with Sunday=0
YS! week of year: 00-53
'Sy’ year: 0000-9999
(timestring) DESCRIPTION
'"YYYY-MM-DD' A date typed in Year-Month-Day format.
"now' The current date and time.
'"DATETIME' field A database field in a date and/or time format.

128 SQL QUICKSTART GUIDE

(modifier) DESCRIPTION

'+ X days' Where X is the number of days to add to
the result.

'+ X months' Where X is the number of months to add to
the result.

'+ X years' Where X is the number of years to add to
the result.

'- X days'/months/years Where X is the number of days/months/years

to subtract from the result.

'start of day' Modlifies the time code to represent the
beginning of the day.

'start of month' Modifies the month value to the first of
the month.
'start of year' Modifies the datecode to represent the

first day of the year.

We can see from Figures 97, 98, and 99 that the STRETIME ()
WOTg function lends itself to extensive modification. If you do not
understand the significance of all the arguments and modifications
STRETIME () can take, don't worry. At its core, STRETIME () takes
time and date formatted data and uses keywords to return the user-
specified portions of the date.

As we have seen in other text strings, we can use any characters we like
inside the single quotation marks, provided we include quotation marks
around the entire string.

SELECT

STREFTIME('The Year is: %Y The Day is: %d The Month
is %m', '2011-05-22"') AS [Text with Conversion
Specifications]

Text with Conversion Specifications

1 The Yearis: 2011 The Day is: 22 The Month is 05

1 rows returned in Tms

Using Functions 129

g\“\EMeas
< P The conversion specifications always start with the % symbol
followed by a case-sensitive letter. Using an uppercase $M instead
of $m would give us minutes instead of months.

Let’s use STRETIME () to calculate employee ages. The first thing to do
is to specify the format we desire returned to us. Since BirthDate is a
DATETIME data type and the timecodes are blank in our database, we have
no interest in the timecodes so we will omit them for the sake of clarity. Since
we want to figure out the age of our employees, we want to calculate the
difference in time between a given employee’s birthdate and the present date.
'The present date is provided by the NOW function.

SELECT
LastName,
FirstName,
STREFTIME ('$Y-%m-%d',BirthDate) AS [Birthday No
Timecode],
STRETIME ('$Y-%m-%d','now') - STRFTIME('$Y-%m-%d’,
BirthDate) AS [Age]

FROM
employees
ORDER BY
Age
LastName FirstName Birthday No Timecode Age
1 Peacock Jane 812911973 46
2 Mitchell Michael 711973 46
3 King Robert 5/29/1970 49
4 Callahan Laura 1/9/1968 51
5 Johnson Steve 3/3/1965 54
6 Adams Andrew 2/18/1962 57
7 Edwards Nancy 12/8/1958 61
8 Park Margaret 9/19/1947 72
8 rows returned
in Tms

As you can see from the results, we can use STRETIME () in the same
way we used the DATE () function to strip off timecodes. We then get the
difference between two strftime functions in order to get employee age.

130 SQL QUICKSTART GUIDE

» sTunes celebrates employee birthdays on the first of the month.

Create a table for HR that shows employee names, birthdays, and

the celebration day.

» sTunes Human Resources has told us that employee age is a

sensitive topic. Rewrite this exercise by listing employees by number

of years with the company.

» Which employee has been with the company the longest?

Aggregate Functions

Aggregate functions can turn a range of numbers into a single data
point based on a variety of mathematical operations. At the beginning of
this chapter, we used the COUNT () function to find the total number of all
customers with last name starting with B. There are many more helpful ways

to use aggregate functions. As an example, using our invoices table, we can use

the SUM () function to calculate a total of all invoices.

SELECT

SUM(Total)

FROM

invoices

AS [Total Sales]

Although there are many aggregate functions,'! let’s focus on five basic
ones that we should be aware of in SQIL.: SUM (), AVG (), MIN (), MAX (),

and COUNT ().

FUNCTION DESCRIPTION
SUM () Returns the sum of all non-null values.
AVG () Returns the average value of all non-null values.
MIN () Returns the minimum value of all non-null values.
MAX () Returns the maximum value of all non-null values.
COUNT () Returns a count of all non-null values.

Using Functions

131

Q)'“AMPQQ If we run the following statement:

SELECT
SUM(Total) AS TotalSales,
AVG(Total) AS AverageSales,
MAX(Total) AS MaximumSale,
MIN(Total) AS MinSale,
COUNT(*) AS SalesCount
FROM
invoices

We get the following output:

TotalSales AverageSales MaximumSale MinSale [SalesCount

1 "2328.6" "5.651941.." "25.86" "0.99" 412"

1 rows returned
in2ms

By default, the COUNT () function returns only values that are not

NOT7g null. However, if we want a count of all records, even records with
errors or nulls, it is a best practice to use the asterisk * or primary
key field. The asterisk symbolizes “return all records,” so when it
is used with the COUNT () aggregate function, we are asking for a
count of all records in the invoices table.

NOUR
§ 17’1 » How many invoices are in our inwoices table?
E@ » What is the average invoice amount?

» What is the amount of the largest invoice in our table?

Nesting Functions with the ROUND () Function

A nested function is a function contained within another function. One
reason we would want to nest functions is to further modify the format of the
inner function. If we look at the example above where we used the AVG ()
function, we see that “Average Sales” contains too many decimal places to be
used as a monetary value. The ROUND () function, although not considered an
aggregate function, is very useful when we perform any sort of mathematical
operation and we want to tidy up our results. We can accomplish this by

132 SQL QUICKSTART GUIDE

placing the AVG () function inside the ROUND () function (also known as
nesting), and specifying the number of decimals we want the function to

round to.
FUNCTION DESCRIPTION
ROUND (X, Y) Returns a floating point value X rounded to Y digits to the
right of the decimal point. If the Y argument is omitted, it is
assumed to be 0.
SELECT

AVG(Total) AS [Average Sales],

ROUND (AVG(Total), 2) AS [Rounded Average Sales]
FROM

invoices

Average Sales Rounded Average Sales

1 5.65194174757283 5.65

1rows returned in Tms

When using the ROUND () function with monetary values, you

QPUT’°4, may want to be careful of rounding up prematurely and changing
monetary values during intermediary calculations. Usually, rounding
is only done at the last step, and you can annotate your query with
comments to state that the results are rounded to two decimal
places.

Using Aggregate Functions with the
GROUP BY Clause

A useful feature of aggregate functions is their ability to calculate
subtotals or aggregates for different groups of data. Looking at the invoices
table of our sTunes database, we know that we can get the average amount
of an invoice very easily with the AVG() function. Let’s say that our sTunes
company asks us to calculate the average invoice amount by billing city. To
attempt to answer that question, we construct the following query.

Using Functions 133

QP»UT'O,l, The following query has been written incorrectly to show what
happens when you combine aggregate functions with non-aggregate
fields in your SELECT statement. This query produces no errors, but it
does not correctly display the information we are requesting.

SELECT
BillingCity,
AVG(Total)

FROM
invoices

ORDER BY
BillingCity

If you run this query, you will see that something is wrong.

BillingCity AVG(Total)

1 Delhi 5.65194174757283

1rows returned in Tms

We wanted to view the average invoice amount of each individual city’s
invoices table. Even though we included billing city in our SELECT statement,
the query is still only giving us a global average of all invoices. Why isn't our
query returning the average total for every city in our inwvoices table?

To solve this puzzle, let’s look at what we are asking the SQL browser to do.
'The question we were asked was “What are the average invoice totals by city?”

When we first introduced queries in chapter 4, we explained that it
Qgﬂ\EMBQp is often helpful to break a query down into its components and ask
“What table contains the information | need?” and “How do | want
that information displayed?” Asking these two questions can help
you troubleshoot a query that is not returning the information you
expected.

In the preceding incorrect query, we asked the SQL browser for two
items in the inwvoices table. First, we asked the browser to list every city in the
BillingCity field. Then, we asked the browser to give us an average of the
Total field. The former request yields a multi-line response, and the latter
gives a one-line answer. In other words, we are asking the browser to display
both aggregate and non-aggregate fields at the same time. We did not get the
information we wanted because we did not phrase our question correctly.

134 SQL QUICKSTART GUIDE

We can fix this issue by adding the GROUP BY clause to the query, as
follows:

SELECT
BillingCity,
AVG(Total)
FROM
invoices
GROUP BY
BillingCity
ORDER BRY
BillingCity
BillingCity AVG(Total)
1 Amsterdam 5.802857143
2 Bangalore 6106666667
3 Berlin 5.374285714
4 Bordeaux 5.66
5 Boston 5.374285714
53 rows returned
in2ms

When we execute the query (Figure 107), we observe that all billing
cities now occur once in our result set and display the corresponding average

subtotals for each city.

» When you run this query, add the ROUND () function to clean up
the averages to two decimal points.

Using the WHERE and HAVING Clauses
with Grouped Queries

Adding criteria to a grouped query works in the same way as with
other queries we have seen. Using the WHERE clause allows us to add new
criteria. In our example below, criteria are added for the non-aggregated field
BillingCity.

Using Functions 135

SELECT

BillingCity,
AVG(Total)
FROM
invoices
WHERE
BillingCity LIKE 'L%'
GROUP BY
BillingCity
ORDER BY
BillingCity
BillingCity AVG(Total)
1 Lisbon 5.66
2 London 5.374285714
3 Lyon 5.374285714
3rows returned in
Tms

» In the previous query, how many billing cities begin with L?

In the last example, we added criteria to a non-aggregate field. At
times we will want to use criteria on fields that have been aggregated, like
AVG (Total). For instance, what if we were asked to find all average totals
that are less than 20. We could attempt to answer this with a WHERE clause,
but there is a problem.

A non-aggregate field is just a field in the SELECT clause that is

called out without an aggregate function.

The following SQL statement contains an error. But it is important
to see that criteria created by the WHERE clause do not work with

aggregate data.

SELECT
BillingCity,
AVG(Total)

FROM
invoices

136 SQL QUICKSTART GUIDE

WHERE
AVG(Total) > 5
GROUP BY
BillingCity
ORDER BY
BillingCity

If you run this query, you will get the following error message:
Misuse of aggregate: AVG() :

'This error message tells us that—at least in this case—we cannot use the
WHERE clause to create a condition based on an aggregate function. In this
case, the WHERE clause can only direct the query about what information to
pull from the fields in our SELECT clause. If we want additional filtering
based on aggregate functions, we will have to include a secondary filtering
clause, known as the HAVING clause.

'The HAVING clause always comes after the GROUP BY clause. Our query
is modified to look as follows:

SELECT
BillingCity,
AVG(Total)
FROM
invoices
GROUP BY
BillingCity
HAVING
AVG(Total) > 5
ORDER BY
BillingCity
BillingCity AVG(Total)
1 Amsterdam 5.802857143
2 Bangalore 6.106666667
3 Berlin 5.374285714
4 Bordeaux 5.66
5 Boston 5.374285714
53 rows returned
in2ms

Using Functions 137

WOTe You can think of HAVING as a special keyword only to be used
when you already have a GROUP BY clause. Just as the WHERE
clause filters field data, the HAVING clause filters aggregate data.
If you try to use HAVING without a GROUP BY clause, you will get
an error.

The WHERE Clause Versus the HAVING Clause

A very simplified explanation of the difference between the WHERE clause
and the HAVING clause is that WHERE is for filtering non-aggregate data
and HAVING is for filtering results containing aggregates. A more detailed
way to describe this difference is that two types of filtering occur when both
a WHERE clause and a HAVING clause are included in a query. The WHERE
clause tells the query what information to include from the table, then, once
the information is filtered and aggregate functions are applied to the fields, the
HAVING clause acts as a further filter for the aggregated data. To demonstrate
this, let’s repeat the query above, but this time let’s select only cities beginning
with the letter B, then, from that list, show invoices with totals averaging more
than five (Figure 110).

SELECT
BillingCity,
AVG(Total)

FROM
invoices

WHERE
BillingCity LIKE 'B%'

GROUP BY
BillingCity

HAVING
AVG(Total) > 5

ORDER BY
BillingCity

In this query we performed the same task, but this time we added a
WHERE clause to filter results to only cities starting with B. This filtering
step is performed before the HAVING and ORDER BY clauses are processed.
Since we must filter before we can group, the order of these filtering clauses is
important, and WHERE most always comes before HAVING.

138 SQL QUICKSTART GUIDE

BillingCity AVG(Total)

1 Bangalore 6.106666667
2 Berlin 5.374285714
3 Bordeaux 5.66
4 Boston 5.374285714
5 Brasilia 5.374285714
6 Brussels 5.374285714
7 Budapest 6.517142857
8 Buenos Aires 5.374285714

8 rows returned in

ms

Using GROUP BY with Multiple Fields

It is possible to group by more than one aggregate field at a time. Let’s
say we want a more detailed breakdown of average invoices. We can write
our query so that our aggregate data is grouped first by country and then by
city. In the example below, we add another field, Bi11ingCountry, to our
GROUP BY clause. Let’s see how our query functions.

SELECT
BillingCountry,
BillingCity,
AVG(Total)
FROM
invoices
GROUP BY
BillingCountry, BillingCity
ORDER BY
BillingCountry

As we can see in our result set (Figure 111), we have multiple entries
for the same billing country, with the individual cities listed in the adjacent
column. Grouping by multiple fields can be very useful when we desire a more

QN\EMQ& detailed breakdown of information.
< P

Database files are likely to contain spelling and/or capitalization errors.

Using Functions 139

BillingCountry BillingCity AVG(Total)
1 Argentina Buenos Aires 5.374285714
2 Australia Sidney 5.374285714
3 Austria Sidney 6.088571429
4 Belgium Brussels 5.374285714
5 Brazil Brasilia 5.374285714
6 Brazil Rio de Janeiro 5.374285714
7 Brazil SaoJosé dos Campos | 5.66
8 Brazil Sao Paulo 5.374285714
9 Canada Edmonton 5.374285714
10 Canada Halifax 5.374285714

53 rows returned

in6ms

A Final Word on Functions

This section is by no means exhaustive, but hopefully it showed you the
power of functions and their ability to turn data into information and answer
real-world questions. If we were to go over all the functions in SQLite and give
an example of each, we would have to provide a carrying device for this book
with some sturdy wheels. Fortunately, there is a wealth of information online
about SQL functions and their use. I often encourage students, in addition
to using the SQLite documentation website referred to in this chapter, to
perform a web search for functions to see what other people have done with
them. Hopefully this chapter has sparked your interest and you can continue
your learning journey on your own and discover even more ways to use these
powerful tools.

Data Analysis Checkpoint

1. Create a single-line mailing list for all US customers, including
capitalized full names and full addresses with five-digit zip codes, in
the following format:

FRANK HARRIS 1600 Amphitheatre Parkway, Mountain View,
CA 94043

140 SQL QUICKSTART GUIDE

2. What are the average annual sales generated by customers from the

USA from all years of data available?
3. What are the company’s all-time total sales?

4. Who are the top ten best customers from a revenue standpoint? Hint:
you will need to use a join (chapter 6) to answer this question.

Chapter Recap

» Functions allow you to alter, reformat, and perform calculations on
the data in your tables.

» Queries containing numerical data can be manipulated with a
variety of arithmetic operations and aggregate functions.

» Queries containing text can be split, concatenated, capitalized, etc.

» Once data is aggregated with functions, it can be further sorted by
the GROUP BY and HAVING clauses.

» 'The HAVING clause does for aggregate fields what the WHERE
clause does for non-aggregate fields.

» 'The HAVING clause can be used in a query only if a GROUP BY
clause is also present.

» You can use GROUP BY with multiple fields to further narrow down
your aggregated data.

Using Functions 141

PART Il

MORE ADVANCED SQL TOPICS

Subqueries

Chapter Overview

» Subqueries and aggregate functions

» SELECT statement subqueries

» WHERE clause subqueries

» Subqueries without aggregate functions
» Returning multiple values

» Subqueries and the DISTINCT keyword
» Data Analysis Checkpoint

A subquery is simply one query nested inside of another query, usually in
the SELECT, FROM or WHERE clause. Subqueries are useful when the query
we want to create requires a few additional steps or calculations to produce
the dataset we desire. For example, subqueries are very helpful for scenarios
where we want to view or compare a query by a condition that requires its own
query to calculate. Instead of writing one query, then copying the results into
the next query, we can use a subquery that performs both operations at once.
Subqueries also provide us with another method of simultaneously accessing
data from more than one table. Although a subquery is not as powerful as
a join, it can help us perform a calculation in one table and then use that
calculation in conjunction with another table. Let’s begin our exploration of
subqueries by looking at their use with aggregate functions.

Introduction to Subqueries Using
Aggregate Functions

To illustrate the use of subqueries, we will begin with a simple SELECT
statement that we used in the last chapter to return the average invoice total
from the invoices table:

Subqueries 145

SELECT

ROUND (AVG(Total), 2) AS [Average Total]
FROM

invoices

Average Total

1 3.65

1 rows returned in Tms

We add the ROUND () function to round the AVG () function to two
significant figures.

We can see that our sample query gives us an average invoice value of
$5.65 from the inwvoices table. Let’s say we were asked by our sTunes company
to gather data about all invoices that were lower than this average. First, we
need a SELECT statement that displays some of the invoice fields (such as
InvoiceDate, BillingAddress, BillingCity, and, of course,
Total). We would then want to filter our results by comparing them to
an aggregate function. We want a WHERE clause that compares Total
to AVG (Total). We learned in the last chapter that attempting a direct
comparison within the WHERE clause using a statement such as WHERE
Total < AVG (Total) would be incorrect and cause a “misuse of aggregate
function” error. So we need a way to take the entire query listed above and
insert all of it inside another query that sorts invoices by total. Fortunately,
there is an easy way to accomplish this.

We start by writing a basic SELECT statement and then inserting the
entire query above into our WHERE clause using parentheses (), making it
function as a subquery.

SELECT
InvoiceDate,
BillingAddress,
BillingCity,
Total

FROM
invoices

146 SQL QUICKSTART GUIDE

WHERE Total <
(select
AVG(Total)
from
invoices)
ORDER BY
Total DESC

The query that we surround with parentheses is called the inner query,
which will become part of the WHERE clause of our outer query.

1l SELECT =]

2 InvoiceDate,

3 BillingAddress,

4 BillingCity,

= Potal — OUTER QUERY
6 FROM

1 invoices

8 WHERE Total < —

9 (select ——

10 avg (Total) .

11 from — . Inner query

12 invoices) ___|

13 ORDER BY

14 Total DESC]_ OUTER QUERY
15

In Figure 113, we capitalized our SELECT statement and other
operators in our outer query, but our statements and functions
inside of our inner query are all in lowercase. There is no

universal rule about whether your operators or functions should
be capitalized or not. The RDBMS doesn’t mind either way. |
personally find that using capital letters for outer query operators
and functions and lowercase letters for subqueries increases
readability. It helps to visually differentiate between the outer and
inner query statements.

Using a Subquery in the SELECT Statement

If the items in our select statement require an additional step (such as an
aggregate calculation), then we will need a subquery to perform that calculation.
In the last chapter on functions, we used the GROUP BY statement to show

Subqueries 147

average subtotals of invoices by city. What if we were asked by our sTunes
company how each individual city was performing against global average
sales? One way to answer that question would be to write a query that was
able to display the average sales of each city right next to the global average.

The query we write to display the average sales by Bi1lingCity is
identical to the one we wrote in the previous chapter, with one exception. We
also include a subquery in the SELECT clause to calculate the global average.
'This way we can compare the two values.

SELECT
BillingCity,
AVG(Total) AS [City Average],
(select
avg(total)
from
invoices) AS [Global Average]
FROM
invoices
GROUP BY
BillingCity
ORDER BY
BillingCity

Running this query shows how each city performs against the global average.

BillingCity City Average Global Average

1 Amsterdam 5.802857143 5.651941748
2 Bangalore 6106666667 5.651941748
3 Berlin 5.374285714 5.651941748
4 Bordeaux 5.66 5.651941748
5 Boston 5.374285714 5.651941748

53 rows returned

in5ms

You can see from this output that the numerical value for “Global Average”
remains the same in each record returned, making it easy for us to compare
the average invoice totals by city against the global average.

OUR
N
o EE z » Modify this query with the ROUND () function to display only two

decimal points.

148 SQL QUICKSTART GUIDE

Using a WHERE Clause in a Subquery

There will be times when we want to have a more detailed query function
as our subquery. Our outer query can have a WHERE clause which, in turn,
contains a subquery with its own WHERE clause. A good example of when we
would want a WHERE clause in a subquery is when we want to compare all
fields to a specific instance. Let’s say that we were asked to find the all-time
largest sale from our dataset (2009-2012) and to see if there are any invoice
totals in the latest year of records (2013) that are higher than that value. To
answer this question, we would first have to get the largest sale prior to 2013.
We can do that with the MAX () function.

SELECT
MAX(Total)
FROM
invoices
WHERE
InvoiceDate < '2013-01-01'

MAX(Total)

1 23.86

1 rows returned in Tms

Now that we know this value, we wrap this query in parentheses () and
then write our outer query and include the additional fields that we need.

SELECT
InvoiceDate,
BillingCity,
Total
FROM
invoices
WHERE
InvoiceDate >= '2013-01-01' AND total >
(select
max(Total)
from
invoices
where
InvoiceDate < '2013-01-01")

Subqueries 149

We can see from this query that we broke our record for highest invoice

total on November 13,2013.

RAPH

InvoiceDate BillingCity Total
@ 1 2013-11-13 00:00:00 Prague 25.86

1rows returned in 2ms

fig. 116
~NOUR
SEN\2
HE » How many invoices were recorded on or before January 1, 2010, that
were above the average invoice amount?

Subqueries without Aggregate Functions

A subquery does not always contain an aggregate function. The following
query shows the transaction date for a specific transaction.

SELECT

InvoiceDate
FROM

invoices
WHERE

InvoiceId = 251

InvoiceDate

1 2012-01-09 00:00:00

1 rows returned in Tms

If we wanted to see if there were any other invoices that were received
after the invoice referenced above, we would build a subquery wrapped in a
pair of parentheses and then build an outer query around it.

SELECT
InvoiceDate,
BillingAddress,
BillingCity

FROM

150 SQL QUICKSTART GUIDE

invoices
WHERE
InvoiceDate >
(select
InvoiceDate
from
invoices
where
InvoiceId = 251)

InvoiceDate BillingAddress BillingCity
1 2012-01-22 00:00:00 Av. Paulista, 2022 Séo Paulo
2 2012-01-22 00:00:00 Qe7Bloco G Brasilia
3 2012-01-23 00:00:00 700 W Pender Street Vancouver
4 2012-01-24 00:00:00 1 Infinite Loop Cupertino
5 2012-01-27 00:00:00 319 N. Frances Street Madison
161 rows returned in 8ms

Returning Multiple Values from a Subquery

Up to this point we have only used subqueries to calculate a singular value,
which is then passed to the outer query. It is possible to use subqueries that
return multiple records. Let’s say our sTunes management is interested in three
particular invoices. To select those three invoices, consider the following query.

SELECT
InvoiceDate
FROM
invoices
WHERE
InvoiceId IN (251, 252, 255)

InvoiceDate

1 2012-01-09 00:00:00
2 2012-01-22 00:00:00
3 2012-01-24 00:00:00

3rows returned in Tms

Subqueries 151

The preceding query uses the IN clause to return three dates from the
invoices table: 2012-01-09, 2012-01-22, and 2012-01-24. Now let’s say we
are asked if any other purchases were made on those three days. If we want to
select all invoices for those three days, we can start a new query, or just use our
previous query as a subquery, like this:

SELECT
InvoiceDate,
BillingAddress,
BillingCity

FROM
invoices

WHERE
InvoiceDate IN

(select
InvoiceDate
from
invoices

where

InvoicelId in (251, 252, 255))

InvoiceDate BillingAddress BillingCity
1 2012-01-09 00:00:00 Rua Dr. Falcdo Filho, 155 | SéoPaulo
2 2012-01-22 00:00:00 Av. Paulista, 2022 Sao Paulo
3 2012-01-22 00:00:00 Qe 7Bloco G Brasilia
4 2012-01-24 00:00:00 1 Infinite Loop Cupertino

4 rows returned in 2ms

'The technique of turning an existing query into a subquery is useful when
you are “dialing in” on your data. This method allows you to reuse an existing
query and modify it to further narrow down your search.

Subqueries and the DISTINCT Clause

As we have seen from the other examples in this chapter, subqueries are
very helpful for scenarios where you want to view or compare a query by a
condition that requires its own query to calculate. As we learned in chapter
1, there is usually one unique field in every table known as the primary key
that contains a unique number for every record, but other fields can have

152 SQL QUICKSTART GUIDE

redundant information. To work better with redundant information, it is often
convenient to filter this data so that it only displays unique, or distinct, values.
'This is where the DISTINCT keyword comes in. To demonstrate subqueries
and the DISTINCT keyword, let’s look at the #racks and inwvoice_items tables.

The inwvoice_items table shows us which individual sTunes tracks were
purchased on each invoice. If we create a query that shows us the InvoiceId
and TrackId fields ordered by TrackId, we can see that certain track
numbers were ordered multiple times across difterent invoices.

SELECT
Invoiceld,
TrackId
FROM
invoice items
ORDER BY a
TrackId
Invoiceld Trackld
1 108 1
2 1 2
3 214 2
4 319 3
5 1 4
6 108 5
7 2 6
8 2 8
9 214 8
10 108 9
2240 rows returned
in15ms

For example, we can see that tracks #2 and #8 appear on multiple invoices,
meaning they were ordered multiple times (Figure 121). However, track #7
does not appear to have an invoice available, so we can infer that no one
in our record set has purchased it. Our sTunes management is interested in
discovering which tracks are not selling. We would need to find a table that
links TrackId with InvoiceId. We could use subqueries to list all tracks
(by composer and name) that don’t appear in the inwoice_items table.

Subqueries 153

154

Trackld If we run the same query again, this time
with the keyword DISTINCT, we will get a
! ! list of only those tracks that appear on invoices
2 2 without any of the duplicates.
3 3
4 4 SELECT
e DISTINCT TrackId
6 6 FROM
invoice items
’ 8 ORDER BY
8 9 TrackId
9 10
10 12 We can see again that some TrackId
1984 rows returned numbers (such as #7) do not appear in any
in11ms invoices, but all the listings of tracks that appear

on multiple invoices are reduced to just one
instance. Now we need a query that lists all tracks from our #7acks table that
are NOT IN the list created by our first query.

SELECT
TrackId,
Composer,
Name
FROM
tracks
WHERE
TrackId NOT IN
(select distinct
TrackId
from
invoice items)

We now have a list of songs that didn’t appear on any invoice (Figure 123).
Looking at our results, we can see that the track we identified previously, track
#7,1s at the very top of the list of tracks that did not sell. Now our sTunes sales
team has a clear picture of what songs have not been purchased.

'The examples of subqueries given in this chapter are obviously not exhaustive.
'There are many more ways to use subqueries, but all the examples given share
a common theme. Subqueries can make complex multistep calculations
achievable with just one query. They allow you to calculate a specific condition
and then compare a new set of data against that same condition.

SQL QUICKSTART GUIDE

NOTg

Trackld Composer Name

1 7 Angus Young, Malcolm Young, Brian Johnson Let's GetItUp
2 n Angus Young, Malcolm Young, Brian Johnson C.0.D.
3 17 AC/DC LetThere Be Rock
4 18 AC/DC Bad Boy Boogie
5 22 AC/DC Whole Lotta Rosie
6 23 StevenTyler, Joe Perry, Jack Blades, Tommy Shaw | Walk On Water
7 27 Steven Tyler, Joe Perry, Desmond Child Dude (Looks Like A Lady)
8 29 StevenTyler, Joe Perry, Taylor Rhodes Cryin'
9 33 Steven Tyler, Jim Vallance The Other Side
10 34 Steven Tyler, Joe Perry, Desmond Child Crazy

1519 rows

returned in

20ms

Subqueries give us another quick way of interacting between
tables that have key fields in common. If we were doing extensive

work with both tables, it would be better to create a join between
the TrackId and the tracks table (instead of using subqueries) so
we could display all the information side by side.

Data Analysis Checkpoint

1. How many invoices exceed the average invoice amount generated in

20107

2. Who are the customers responsible for these invoices?

3. How many of these customers are from the USA?

Subqueries

155

Chapter Recap

» Subqueries allow you to execute multiple SQL statements within a
single query.

» Subqueries are comprised of two or more separate SQL statements
identified as inner and outer queries.

» Subqueries are usually used to compare existing data with data you
derive with aggregates or other functions.

» 'The DISTINCT keyword allows you to ignore redundant data in
records and search for unique instances only.

156 SQL QUICKSTART GUIDE

| 9 |

Views

Chapter Overview

» Creating views

» Moditying existing views
» Views and joins

» Removing views

» Data Analysis Checkpoint

A view is referred to as a virtual table. It is simply an SQL query that is saved
and can be executed repeatedly or referenced (as a subquery) by other queries.
Views are helpful when you find yourself repeatedly constructing the same
query, especially if the query is complex or difficult to write. In our operation
scenario, if sTunes company management asks us for the same sales data
every week or quarter, we might want to prepare a view with that information
precalculated. Let's examine the many ways we can incorporate views into our

existing SQL knowledge.

Turning Previous Queries into Views

The SQL statements we have introduced in previous chapters can all be
saved and reused when we create a view out of them. Let’s take a look at the
query featured in the beginning of chapter 8.

SELECT

ROUND (AVG(Total), 2) AS [Average Total]
FROM

invoices

We can turn this statement into a view by adding CREATE VIEW V
AvgTotal AS above the top line of the query:

Views 157

CREATE VIEW V_Angotal AS
SELECT

ROUND (AVG(Total), 2) AS [Average Total]
FROM

invoices

We have now created a view called V. AvgTotal.

Naming views beginning with vV is a useful naming convention
WOT7s because it lets anyone reading our code know that they are dealing

with a view. After the underscore symbol, we include a brief

description of how the view functions, using further underscores if

needed. We could also name this view V_AvgTotal Rounded.
Choose whatever makes the most sense to you.

When we execute this statement, we get a message that says “Query
executed successfully: CREATE VIEW V_AvgTotal AS.” If
we then look in our Database Structure tab in DB Browser, the view vV
AvgTotal can be observed under a section called Views.

% New Database % Open Database [3 Write Changes % Revert Changes

Database Structure | BrowseData_| _EditPragmas | ExecutesqL |

[[DcreateTable 3 CreateIndex [Modify Table [Delete Table

Name Type Schema
>] Tables (13)
Indices (10)
4 (@ views (1)
> M| V_AvgTotal CREATE VIEW V_AvgTotal AS SELECT ROUND(AVG(Total), 2) AS [Average Total] FROM Invoices
L] Triggers (0)

Now that this view is created, there are some simple tasks we can perform
just by right-clicking on it. When we right-click on the view, we get the
following menu box (Figure 125):

M & Browse'TrabIe Selecting the “Browse Table”
frg = . —| option will move us to the adjacent
E_g s BTG | Browse Data tab where we can

% Delete View investigate the contents of our view,

as we would with any table in the
database. From this menu, we can also

7

Copy Create statement
Export as CSV file

delete the view or generate a copy of
the code (which we typed earlier) that

created it.

158 SQL QUICKSTART GUIDE

Figure 125 shows a “Modify View"” option that (at the time of
WOTs publication) is grayed out and inaccessible. Modifying existing
views is not a feature supported by the version of DB Browser we

are currently using. However, in other implementations of SQL,

such as SQL Server, it is possible to modify existing views. We will
explain how to modify a view in SQLite later in this chapter.

Why We Use Views

Views are helpful for a number of reasons, but convenience is definitely
the main one. If you find yourself repeatedly writing the same query, or
continually referring to a particular join that shows how two tables interact
together, it may be convenient to save that query as a view so that it can be
referenced when you need it. Also, when a query is saved as a view, it can be
called up as a subquery by selecting the view name.

Let’s refer back to the view V_AvgTotal that we created at the
beginning of this chapter. You may remember from chapter 8 that we used the
average function as a subquery so that we could compare the totals of invoices
against the average total of all invoices. Instead of writing out the full average
subquery in our statement, we could write our query this way instead:

SELECT
InvoiceDate,
BillingAddress,
BillingCity,
Total

FROM
invoices

WHERE Total <

(select
*
from
V_AvgTotal)

ORDER BY

Total DESC

NOTg Even though our view is a complete SQL statement, we still

need to reference it in a SELECT statement when using it with
subqueries. We use the * symbol in SELECT statements to get
views to return all rows from the view being referenced. In this

Views 159

case, there is only one row, which is our aggregate sum. This allows
us to select only parts of a view.

If any query is one we frequently use as a subquery, then establishing it
as a view allows us to simplify our code and make what we are doing more
transparent. If anyone (a coworker, for example) wants to look under the hood,
they can simply navigate to the Database Structure tab and investigate how
our views function. Using views cuts down on creation time, especially as our
queries get longer and more advanced.

How to Modify a View

As we mentioned earlier, the current iteration of DB Browser (at the time
of this writing) does not support modifying existing views. As a workaround
in SQLite, we would need to create a new view and give it a new name, or
delete the existing view. To modify a view in SQLite, we would navigate to the
Database Structure tab, right-click on the view, and copy the CREATE VIEW
statement. We could then paste the results into our Execute SQL tab, make
our modifications, and run the statement again.

NOTs When re-running your view, if you still have the original view saved
in the Views section, you will have to rename your new view (or re-

move the existing view) or else you will get an error telling you that

your view already exists. All views need unique names.

2 » Modify the V. AvgTotal view to remove the ROUND () function.
EE » Pick a different subquery example from chapter 8, turn the subquery

portion into a view, and run it again.

Creating a View from Joins

Views are very good for storing longer or more involved queries. In
chapter 6, we learned about joins. Joins are excellent candidates to add as
views because they help us visualize the relationships between tables and they
also can be very extensive queries that we might want to save instead of typing
again. In the last chapter on subqueries, we used the invoice_items table and
the zracks table together to find out which songs from our #racks table had
never been ordered. It would have been helpful to have a view linking those
two tables together that we could have either referenced in our subquery or
just saved as a view to refer to when needed.

160 SQL QUICKSTART GUIDE

WMEMg
&=

SELECT

ii.Invoiceld,
ii.UnitPrice,
ii.Quantity,
t.Name,
t.Composer,
t.Milliseconds

FROM
invoice items ii
INNER JOIN

tracks t

ON 1ii.TrackId = t.TrackId

for the invoices table.

the query to save it as a view.

CREATE VIEW V_ Tracks Invoiceltems AS
SELECT

ii.Invoiceld,
1i.UnitPrice,
ii.Quantity,
t.Name,
t.Composer,
t.Milliseconds

FROM
invoice items 1ii
INNER JOIN

tracks t

ON ii.TrackId = t.TrackId

When we create joins, we use short aliases for each table involved
and then relate the tables to each other using a common field. We
use t for tracks and ii for invoice_items since we are already using i

the inwvoices, customers, and employees tables, and save that as a view as well.

Views

To create a view for these two tables, we first need to decide what kind of
join we want to use. Since we are looking for correlating fields, we will use an
INNER JOIN on fracks and inwvoice_items.

Now that we have our join, we can add one more line at the beginning of

Next, we are going to take an existing join from chapter 6, one that merges

161

CREATE VIEW V_inv_cus_emp AS
SELECT
i.Invoiceld,
.InvoiceDate,
.Total,
.Customerld,
.FirstName,
.LastName,
.SupportRepld,
.Employeeld,
.LastName,
.FirstName,
.Title
FROM
invoices AS i
INNER JOIN
customers AS c
ON
i.CustomerId = c.CustomerId
INNER JOIN
employees AS e
ON
e.Employeeld = c.SupportRepld
ORDER BY
InvoiceDate

®© ® ® ® Q Q Q k- P -

WNOTs We have made a slight modification from the way this join was
presented in chapter 6. We have removed the * symbol from the

SELECT statement. The point of views is to show just what you

need. So we have included only the relevant fields from invoices,
customers, and employees.

We can see that we have both of these joins saved as views in our Database
Structure tab (Figure 126).

& New Database (g Open Database 3 Write Changes [Revert Changes

Database Structure | BrowseData | EditPragmas | ExecutesoL |

DCreateTable ' Create Index Modify Table [Delete Table

Neme Type Schema
> [Tables (13)
Indices (10)
4 (@ Views)
> [8] V_Tracks Invoiceltems CREATE VIEW V_Tracks_Invoiceltems AS SELECT ii.unitprice, ii.quantity, t.name, t.composer, t.milliseconds FROM invoice_items ii
® V_inv_cus_emp CREATE VIEW V_inv_cus_emp AS SELECT i.invoiceDate, i.Total, i.Customerid, c.FirstName, c.LastName, c.SupportRepld, e.Employd
L] Triggers (0)

162 SQL QUICKSTART GUIDE

Now that we have these two joins saved as views, we use both of them in
an inner join:

SELECT *
FROM
V_Tracks Invoiceltems ii
INNER JOIN
V_inv_ cus_ emp ice
ON
ii.Invoiceld = ice.Invoiceld

With the above query joining five tables together, we can now know
what tracks were sold by each employee and which customer they were sold
to. By aggregating the data, we can also determine which track was sold the
most, how much total revenue was generated by the track, and the employee
responsible for each sale. We can now go even further and save our aggregation
as a view if we want to.

NOTE

Joins between multiple views will only work if the key fields held in

common from all of these tables were included in the initial join.

Removing a View Using the DROP Statement

Although we have shown that you can remove a view by right-clicking
on the view name in the Database Structure tab, a view can also be removed
by using a statement called the DROP clause. To use this command, we type
the following:

DROP VIEW
V_AvgTotal

The previous statement will delete the V. AvgTotal view. Only the
view is removed from the database—no data is affected by using the DROP

‘AOTs VIEW syntax.

If you remove a view that is referenced by other views, those views

will not function anymore.

Views 163

pUTIO The DROP command is a command to remove elements. It can
¢ v also remove your tables. See the next chapter for best practices
concerning tools that edit or remove data permanently. As
mentioned earlier, a view can also be removed from your database

by right-clicking on it and selecting “Remove View."”

Data Analysis Checkpoint

For this checkpoint, we will be using a query from chapter 8: Using a
Subquery in the SELECT Statement. We have reproduced it here:

SELECT
BillingCity,
AVG(Total) AS [City Average],
(select
avg(total)
from
invoices) AS [Global Average]
FROM
invoices
GROUP BY
BillingCity
ORDER BRY
BillingCity

1. Take the inner query (by itself) from this SELECT statement and
create a view from it. Save the view as V_GlobalAverage.

2. Remove the subquery from the above code entirely and substitute it
for your newly created view V_GlobalAverage.

3. Save this new query as a view called V_CityAvgVsGlobalAvg.

4. Delete the view V_GlobalAverage. What happens to V_
CityAvgVsGlobalAvg?

164 SQL QUICKSTART GUIDE

Chapter Recap

»

»

»

»

Views are virtual queries created with SQL that can be selected by
other queries.

Views are created by adding CREATE VIEW V_VIEWNAME AS
at the beginning of a query.

View are particularly useful for long queries that may be used or
referred to frequently.

Views can be modified and deleted by using features from your

RDBMS implementation or by using SQL commands.

Views

165

| 10 |

Data Manipulation Language (DML)

Chapter Overview
» Caution
» 'The role of DML
» Inserting data
» Updating data
» Deleting data
» Data Analysis Checkpoint

All SQL statements we have presented so far have been used in a way that
either retrieves data from the database or creates derived data based on existing
database values. This chapter introduces data manipulation language (DML)
and examines SQL statements that are used to change or alter the data that is
stored in the tables of a database.
(,P‘UTIO/I,
It is best to practice these commands in a sandbox space, such as
the sample database provided. Using DML on a live database with
active customer data could have permanent deleterious effects.

Data Analysis Versus Database Management
Throughout this book so far, the primary purpose of our SQL queries was

to take existing data in our database and turn it into actionable information
that would be useful to the fictional stakeholders at our sTunes company. But
as we mentioned in the introduction, the functions of SQL far exceed the task
of turning data into meaningful information. There are roles such as database
developer and database administrator that oversee the growth, improvement,
and management of the company database. The extent and scope of these
roles differ from company to company and from one database implementation
to another. Even among experienced SQL users, there are differing opinions
about whether DML is a separate field of study or if it should be learned in

tandem with SQL statements designed to extract information only.

Data Manipulation Language (DML) 167

The different database roles can be a point of confusion for beginners.
DML fits neatly into the category of database administration and
development, but in a smaller company employing just one database,
the roles of data analyst, developer, and administrator may all be
assigned to one person, and that person might be you! So even if
your main goal is just to learn how to write useful select queries, it is
valuable at the very least to understand how DML works.

For the purpose of this chapter, statements that are referred to as data
manipulation language (DML) are INSERT, UPDATE, and DELETE. As the
names imply, these statements can be used to add, modify, and remove data
from the tables in your database. For our sTunes operational scenario, we will
demonstrate how we would handle a request from sTunes management to add
additional artists to our existing music offerings, add new records, and then
delete those records.

In DB Browser, making any changes to the sTunes database using
DML will prompt the program to ask if you want to save your
changes when you exit the program or close the database file.

You can make a copy of the original database file so that you can
practice these modifications, save them, and still retain the original.

WOT7s

Inserting Data into a Database

The INSERT statement is used to insert data into a table one row at a
time. There are a couple of ways to compose an INSERT statement. One
way is using INSERT INTO and specifying the desired field. Let’s say our
sTunes company is expanding their music selection and wants us to add some
additional artists to the arists table.

The following INSERT statement will insert a new record into the
artists table.

INSERT INTO
artists (Name)
VALUES ('Bob Marley')

There are three elements to this insertion: a table, a field, and a value. The
table artists is specified after the keywords INSERT INTO. This identifies
which table we want to modify. This is followed by the field name surrounded
by parentheses (). In this case, we want to add a new artist by adding the

168 SQL QUICKSTART GUIDE

artist’s name to the Name field. This is then followed by the keyword VALUES,
where opening and closing parentheses surround the actual value that is being
inserted into the arists table. In this example, the value is Bob Marley. “Bob
Marley” is a text value, so it is also surrounded by single quotes.

Qg'N\EMQQp We can check on the data type of the Name field in the artists table

by looking at our Database Structure tab. We notice that the data
type is NVARCHAR (120), which is a character data type with an
expected limit of 120 characters.

ON YOUR OWN:

» What is the result of running the INSERT statement above?

» Write a SELECT statement to find the newly inserted value.

» Insert the value “Peter Tosh” into the artists table.

» What is the ArtistId value for the newly added Bob Marley
record?

There is a second column in the artists table called ArtistId.
This column did not need to be specified in the INSERT statement
because it is an Auto Increment column. This means that a new
number is automatically created in the column for new records that
are added.

NOTE

Another way to insert values into a table is to list the values sequentially
by field name. If you insert data in this way, you do not have to specify the
columns in which data is to be stored. However, when composing an INSERT
statement in this manner, special care must be taken to ensure that the order
in which data is specified in the INSERT statement is the same order in
which the target fields exist in the table.

'The following INSERT statement will also insert a new record into the
employees table:

INSERT INTO

employees

VALUES ('9', 'Martin', 'Ricky"', 'Sales Support
Agent', '2', '1975-02-07', '2018-01-05', 'l123 Houston
St', 'New York', 'NY', 'United States', '11201', '(347)
525-8588', '"', 'rmartin@gmail.com')

Data Manipulation Language (DML) 169

As mentioned earlier, special care must be taken to ensure the order in
which data is specified in the INSERT statement matches the order of the
fields in the target table. So as a precaution it is a good practice to examine the
target table and take note of the order in which the fields appear.

Database Structure Browse Data Edit Pragmas Execute SQL

|3 Create Table 5 Create Index [Modify Table [Delete Table

Name Type Schema A

> j customers CREATE TABLE "customers" (
v =] employees CREATE TABLE "employees" (

D Employeeld INTEGER ‘Employeeld” INTEGER NOT N
Q LastName NVARCHAR (20) ‘LastName® NVARCHAR (20)
Q FirstName NVARCHAR (20) ‘FirstName” NVARCHAR (20)
Q Title NVARCHAR (30) ‘Title’ NVARCHAR (30)
Q ReportsTo INTEGER ‘ReportsTo’ INTEGER
Q BirthDate DATETIME ‘BirthDate’ DATETIME
Q HireDate DATETIME ‘HireDate’ DATETIME
Q Address NVARCHAR (70) ‘Address” NVARCHAR (70)
Q City NVARCHAR (40) ‘City' NVARCHAR (40)
Q State NVARCHAR (40) ‘State’ NVARCHAR (40)
Q Country NVARCHAR (40) ‘Country’ NVARCHAR (40)
Q PostalCode NVARCHAR (10) ‘PostalCode’ NVARCHAR (10
Q Phone NVARCHAR (24) 'Phone’ NVARCHAR (24)
Q Fax NVARCHAR (24) 'Fax' NVARCHAR (24)
Q Email NVARCHAR (60) ‘Email' NVARCHAR (60)

By checking the Database Structure tab, we can observe the structure of
the employees table. The layout of the fields from EmployeeId thru Email
must be specified in this exact order when using the INSERT statement that
was last introduced.

» What is the result of the INSERT statement when executed?

e’(OUR O‘I» » 'The newly entered employee, Ricky Martin, does not have a fax
A number; how is this expressed in the INSERT statement?
EE » Insert another employee record into the employees table.

» Run the query again, but use an existing primary key. What error
message do you get?

When inserting records where no value exists for a field, you still
need to include a pair of empty quote marks ' ' for the value that
does not exist. In the example above, we omitted the fax number
by placing a pair of empty quotes in the same position that the fax
number field appears in the employees table.

170 SQL QUICKSTART GUIDE

OPUTkzv

Updating Data and the SET Keyword

'The UPDATE statement is used to modify existing data in a table. It is
generally used with the WHERE clause. The WHERE clause is used with the
UPDATE statement to specify the particular rows of data you intend to update.
Without the WHERE clause, an UPDATE statement will update all rows
contained in a table.

'The following statement updates the employee record we inserted in the
previous section.

UPDATE
employees
SET PostalCode = '11202'
WHERE
Employeeld = 9

If you haven't added any employees yet, running this code will give
you a “No Such Column” error.

In the previous syntax, the employees table is specified after the keyword
UPDATE. Next comes the keyword SET, and this is where you specify the
column within the employees table that you intend to update; in our example it
is the PostalCode field. This is followed by an equals sign (=) and the new
value we intend to update the old value to. In our example this value is '11202'
(surrounded with single quotes because zip code is a string value). Following
the SET keyword is the WHERE clause, which allows us to specify exactly
which employee record we intend to update. By specifying EmployeeId =
9 we ensure that only this employee record is updated and no other.

» What is the result of the UPDATE statement in our example above?

» Compose another UPDATE statement and change the phone
number for Ricky Martin.

» How many rows would be affected by our UPDATE statement if it
didn’t include a WHERE clause?

Particular importance must be paid to the inclusion of the
WHERE clause in UPDATE statements. Without ensuring that a
WHERE clause is included and is specifying the intended record
modification, you can update records you didn't intend to, which
can have significant adverse effects.

Data Manipulation Language (DML) 171

172

WNOT& Instead of executing an UPDATE statement right away, first
compose a SELECT statement using the same table and WHERE
clause; this way you can preview what you are about to update.
Once the SELECT statement returns the expected records, you can
then execute your UPDATE statement.

Deleting Data

'The DELETE statement is used to remove existing records from a table. This
statement, like UPDATE, is generally used with the WHERE clause. Without

the WHERE clause, a DELETE statement will delete all rows contained in a
table.

WOTe As we did with UPDATE, instead of executing a DELETE statement
right away, first compose a SELECT statement using the same
table(s) and a WHERE clause; this way you can preview what you are
about to delete. Once the select statement returns the expected
records, you can then execute your DELETE statement.

First, we create a SELECT statement to verify the data we are about to
remove.

SELECT * FROM
employees
WHERE
Employeeld = 9

Once we are sure we want to remove this data, the following statement
deletes the employee record we updated in the previous section.

DELETE FROM
employees
WHERE
EmployeelId = 9

'The above DELETE statement begins with two keywords, DELETE FROM,
which is followed by the name of the table we intend to delete a record from.
In our example, we are deleting a record from our employees table. Following
the table name is the WHERE clause, which allows us to specify exactly which
employee record we intend to delete. By specifying EmployeeId = 9 we
ensure that only this employee record is deleted and no other.

SQL QUICKSTART GUIDE

» What is the result of the DELETE statement above, when executed?

» Compose another DELETE statement and remove all employees
who are sales support agents.

» How many records were affected by the DELETE statement you
composed in the previous question?

Particular importance must be paid to the inclusion of the WHERE
clause in DELETE statements. Without ensuring that a WHERE
clause is included and is specifying the record(s) intended for

deletion, you can delete records you didn’t intend to, which can
have significant adverse effects.

Data Analysis Checkpoint

1. Add a new customer to the database.
2. Create an invoice record for this customer.

3. Remove this customer from the database.

Data Manipulation Language (DML) 173

Chapter Recap

» 'The statements in this chapter can permanently alter database
data. Check carefully that this is your intention before using these
statements.

» DML refers to the collection of clauses (INSERT, UPDATE, and
DELETE) capable of creating and manipulating existing data in a
database.

» 'The INSERT statement is used to add new records to a database.

» The UPDATE statement can modify existing records and change the
values.

» The DELETE statement removes records entirely.

174 SQL QUICKSTART GUIDE

Conclusion

It Is All About Asking Good Questions

Ifyouhave made it this far, you have seen howwe canuse Structured Query
Language to turn lifeless entries in a database into meaningful information
that you or your company can use to make the tough decisions that define
every business venture. Throughout this book, I have tried to demonstrate
how to write efficient but intelligent queries using real-world scenarios that
showcase the methods that I myself have found useful and still use today.
I have tried my best to avoid the philosophical debates, technicalities, and
academic jargon that plague every body of technical knowledge in order to
bring you by the purest and most expedient path to your own unique mastery
of SQL. To the beginner: I hope you have enjoyed this journey we have
taken together and that I have built a bridge for you to continue on your path
to data mastery. To those with previous experience: I hope this book has
highlighted a few insights and given you a sandbox to test your ever-growing
SQL toolbox. In closing, I would like to share a few more practical insights
and lessons I have learned over my eighteen years of working in the industry
of information. It is my hope that the principles I've distilled from both the
successes and mistakes I've made over the years will help steer you in the right
direction when it comes to pursuing your next step of SQL mastery. In this
section I will address some of the questions my students frequently ask me
and talk briefly about further SQL education and certifications.

Finding Your Niche

It is my hope that, throughout the course of this book, you have seen a
wide variety of different applications of SQL. Some may interest you and
others may not. Computer science was a very wide field when I started
my own journey into the world of data eighteen years ago. At the time, I
was working with Visual Basic and building applications; in other words,
the front end, or visual interface, of software systems. Eventually I had to
incorporate databases into these applications. Once I started working with
Microsoft Access and experienced the way it helped me visualize data and
how the tables were connected, it really opened my eyes to how data works
and deepened my understanding of databases. As I gained more experience,

Conclusion 175

I realized that data was the backbone of my work. Understanding the world
of big data became an obsession for me. This might happen to you—in fact,
I hope it does. I encourage my students to branch out to as many related
programming disciplines as they may run into in their careers. The specialty
that fits you the best may be one good question away! Your path is never a
straight line. All the struggles, errors, and blunders along the way will help
clarify what you find worthwhile.

Choosing the Right Database Occupation

Although we have focused mainly on the role of the database analyst
(using your skills in query composition, composing statements, and answering
everyday questions), there is plenty of demand for database designers as well.
If you have ever wondered who decides what fields will be contained in any
given table, or how the tables will relate to each other, that is the job of
a database designer/modeler. For example, in chapter 6 we introduced the
concept of normalization, which is the prevention of data redundancy in
multiple tables. Database management also deals with access restrictions,
backups, and disaster recovery. These topics are beyond the scope of this
book. If you find yourself curious to know more about how databases are
made and maintained, then you may want to look more into database design
as a career.

Is It All about the Money?

Often when I am having discussions with students about careers in
data, they ask me some form of this question: “Which particular database
occupation or niche field is going to make me the most money?” Since I
began teaching people in coffee shops, I've encountered a lot of people who
are motivated by money. This is not a bad thing. It is a reasonable starting
point, but not the big picture. Any occupation that pays well is going to take a
lot of time and sacrifice. There are plenty of opportunities for people chasing
the highest dollar.

However, as my own personal experience has taught me, there are going
to be several moments, perhaps late at night when you’re surrounded by empty
coftee cups, when you are going to ask yourself, “Is this what I really wanted
to do? Is this even worth it?” There will be moments, many of them, when you
are pushed to your limits and you are going to question your decision about
taking that job or career path, if your only motivation was money. Through
trial and plenty of error, I've discovered that what pushes me through those
rough moments has been ensuring that I can always link my current task with

176 SQL QUICKSTART GUIDE

the passion for learning that brought me to this industry in the first place.
In my own career path, I've found that helping others—more specifically,
seeing my students’ faces light up as they reach that learning epiphany—gives
me more satisfaction than the oftentimes repetitive nature of the corporate
environment. Starting my own business and helping people directly, helping
them feed that natural desire to learn, was much more fulfilling for me. But
that was my experience. Your own path will be unique to you.

Instead of just chasing the highest payout, I suggest you remind yourself,
daily if necessary, of what drew your interest to this occupation in the
first place. In other words, the more important question is what particular
database occupation or niche field excites you or gives you the opportunity to
create? There is a way to monetize your passions. The scope of this industry
is comprehensive, so whether your interest is in medicine, sports, travel, or
governmental policy, there will be a data analysis occupation waiting for you
in any of those fields.

Is SOL Knowledge Universal?

“What do I need to know before using my skills with a different SQL
implementation?” I encounter this question frequently from students looking
for a specific job opportunity. Perhaps the job application states that experience
in a specific SQL implementation, such as SQL Server, is required. Although
there are key differences in every database implementation, I encourage my
students not to be discouraged or in any way deterred by requests for specific
implementation knowledge. The core principles you have learned in this book
will assist you no matter what database system you eventually find yourself
working on. The beauty of SQL is that it is the universal language of data. If
you find yourself working on a database implementation that isn’t SQLite, do
not worry. Every implementation will have the same basic attributes you have
learned in this book. Whatever the vendor, there will be an SQL pane to enter
queries, a button to run statements, a place that gives you feedback on your
query and how long it took to process. The result you receive will always be
presented in columns and rows. The relational database structure you learned
about in chapter 1 is an industry standard, and the database will be organized
and normalized very similarly whether you are working with Oracle, IBM,
Microsoft SQL Server, or any other vendor. Think of the different vendors
and implementations (RDBMSs) as makes and models of different cars. The
buttons and switches and cup holders might be in a slightly different place, but
the fundamental mechanics, the brake and the gas pedal, will be in the same
place and will operate as expected. The goal of SQL is to ask good questions.
If you set your sights on this goal, the rest will fall into place. If you would like

Conclusion 177

some further information on the subject of SQL implementations, there is a
website called https://db-engines.com/en/ranking that features a helpful tool
to see which database implementations are currently the most utilized.

Switching Careers

“If the bulk of my professional experience comes from a field far removed
from SQL or programming, how do I convince my employer to give me a
chance as a data analyst?” This is a concern I hear from many of my students
that come from a completely different professional background and are just
starting with data analysis. Data is far less removed from your previous
profession than you think! Let’s say you were a bus driver. At first you may
think a profession like this is far removed from that of a data analyst, but
what we've seen is that the language of data has permeated everything. On
every bus route, you have seen which stops have more people, which routes
are the most efficient, etc. In any profession, the data is all around you.
Even if your current line of work doesn’t have a database, you could start
collecting information on every bus ride and present that information to
your employer. Even if you come from a nontechnical field, you can use the
skills you learned in this book to capture data from any walk of life and turn
it into information. If a database doesn’t exist, you can create one!

Selling Your New Skills to Your Company

I sometimes get questions from my students about how to convince
their company to give them a chance with database access, particularly if
they joined the company with a completely different job description. “I have
explained that my queries will not change the database in any way, yet they
are still reluctant to give me even read access. How do I change their minds?”
As for the practical method of how to get the stakeholders of your business
venture to buy into your new profession, this is usually not a problem, since
databases are designed to be queried and accessed without changing the data.
However, a company may choose to restrict database access to only a few key
individuals. There are a variety of reasons database restrictions might occur,
but in these cases, it is important to sell yourself and emphasize the value of
turning data into information, as we have done in this book. Explain how
what you are doing is going to save the company money in the long run.
In most scenarios, databases have three environments: development, testing,
and production. You can request access to the development environment or,
if the database is quite small, ask for a copy. But there is a greater point here.

178 SQL QUICKSTART GUIDE

Don’t let a small roadblock deter you from your goal; data is everywhere.
As Bob Marley said, “When one door is closed, don’t you know another is
open?” You might even be able to find a similar database in the same field as
that of your company. There are public repositories of data (such as data.gov
for the United States) that will help you practice your skills.

Beyond SQL: Data Visualization Software

There is much more developing in the world of data science other than
just SQL. For the student eager to expand their skills beyond writing queries
in a text-based SQL browser, data visualization is a good pathway. Presenting
information is a pain point for many people. As you have seen from our use
of DB Browser and the SQLite implementation, the backbone of SQL still
very much exists in the highly functional but visually unappealing world of
script-like programming languages.

Data visualization software (also known as business intelligence software)
is a hot field that is growing right now. Visualization can give new life to
plain SQL statements. We have seen in this book that things like views can
help you save frequently used queries and present information in a consistent
and more organized way. Visualization software takes views one step further
and gives you the ability to add bar charts, pivot tables, and other ways of
displaying data. Visualization software also allows data to be displayed
in real time so your fields and derivative visuals, such as charts or graphs,
automatically update as the data changes. This beats the old way of copying
data to a spreadsheet program like Excel and developing visuals from there.
Figure 128 shows the names of a few popular data visualization software
packages. This list is not exhaustive, but it will give you a good place to start.

(]

O Looker +_|_-E+ +ableauw

S4SIS=NSS Qlik@ & birst

Interview Advice

I see a lot of online articles offering lists of technical things you “must
know” before interviewing for any SQL-related job. Sometimes those “top ten
technical skills you must know” are about as helpful as the “top ten animals
that can kill you” lists found on any clickbait website. I do not consider myself

Conclusion 179

someone who excels at highly technical interviews, such as the ones that ask
you to memorize syntax and apply it to a very specific scenario. I consider
myself much better at seeing the big picture, taking a technical challenge or
business question presented and walking the interviewer through the steps
required to get to the desired result. If the bar of acceptance or rejection to a
career opportunity relies on memorization or a dramatic display of technical
aptitude, this may be a red flag about how the company views its tech
solutions. It is much better if the organization is more interested in the way
that I solve problems in my own unique creative style than if I can commit
syntax to memory. Some interviewers may focus on a specific tool, such as
the syntax of a view, or may ask you to solve a problem using a certain type of
SQL statement. This interviewing technique is shortsighted, in my opinion,
focusing on muscle memory. It is much more valuable to see how creative a
potential employee’s thought process is when applying a view or other SQL
solution toward solving the problem.

SQL Certifications

There are many different certification programs available for SQL and
database administration. Examples of the most common certifications are the
Microsoft Certified Solutions Associate ((MCSA) and the Microsoft Certified
Solutions Expert (MCSE). However, the Microsoft pathways are not the
only options. There are other database platforms such as Oracle and IBM,
which are also major players in the database sphere that offer certifications.
Are certifications really necessary? Certification is not the only route to take
in your SQL career. I firmly believe that you can get as much, if not more,
value with a more practical approach. To me, the ability to actually use the
language is more important than the certification. If your company uses IBM,
go ahead and get the certification. But if you are not sure, then just focus on
practicing solving real-world questions with whatever implementation you
see yourself using.

Final Thoughts and Parting Words

It is my sincere hope that you have enjoyed this book and that I have
instilled in you some of the passion I have for this subject. If you would
like to learn more about what we do at my data visualization company, and
the training courses I offer, you can find me at http://datadecided.com and
https://sqltrainingwheels.com. It has been my pleasure to accompany you on
this journey so far.

180 SQL QUICKSTART GUIDE

REMEMBER TO DOWNLOAD
YOUR FREE DIGITAL ASSETS!

SQL Software Download Links + Instructions

Video Tutorials
SQL Statement Reference Guide

Sample Database - Follow Along With The Book!

TWO WAYS TO ACCESS YOUR FREE DIGITAL ASSETS

i

Use the camera app on your mobile phone to scan the QR code
or visit the link below and instantly access your digital assets.

www.clydebankmedia.com/sql-assets)

Conclusion

181

WAGs

fig. 129

WAGs

fig. 130

Appendix |

Data Analysis Checkpoint Questions and Solutions

Chapter 3 Data Analysis Checkpoint

Using the Database Structure tab and the Browse Data tab, try to answer the

tollowing questions:

Question 1: How many tables are in our database?

Solution: Looking at the Database Structure tab in DB Browser, the number
of tables is calculated for us and presented in parentheses () . There are thirteen

tables in this database.

Database Structure

o Create Table

Name

4 11| Tables(13)
| albums
artists

genres

Browse Data

© Create Index

customers
employees

invoice_items

invoices

media_types

| playlist_track
playlists

| sqlite_sequence

| sqlite_statl

_| tracks

E| ENEIET]

Edit Pragmas

Execute SQL |

Question 2: How many fields does the table named #7acks have?

Solution: For any of the tables listed, we can click on the small right-facing

triangle to see the columns for that table.

4 || tracks
lef Trackld

|=| Milliseconds
|| Bytes
le= UnitPrice

INTEGER
NVARCHAR (2...
INTEGER
INTEGER
INTEGER
NVARCHAR (2...
INTEGER
INTEGER
NUMERIC (10, ...

In this example, we observe that the table called #7acks has nine columns.

Appendix I: Data Analysis Checkpoint Questions and Solutions

183

Question 3: What are some of the data types in this table?

Solution: If we look at the image from the previous question, we can see
that the TrackId column accepts data of the type INTEGER and the Name
column accepts data of the type NVARCHAR. The rest of the columns are also
INTEGER and NVARCHAR except for UnitPrice, which is a NUMERIC
data type.

Question 4: What does the actual data look like in the table?

Solution: Now we can swap to the Browse Data tab and actually look at the
table. We need to make sure to select the #7acks table in the drop-down menu.
Looking at the data in the table shows us why an INTEGER data type is used
for columns like TrackId and AlbumId, while a character data type makes
more sense for the Name and Composer columns. Finally, for UnitPrice,
we needed something with decimals, so the integer data type wouldn’t have
been sufficient for this column.

[Database Structure | Browse Data | EditPragmas | Execute SQL

Table: ||] tracks

Trackid Name AlbumId MediaTypeld Genreld Composer Milliseconds Bytes UnitPrice
|= Iter IF\M Filter Filter Filter Filtel Filter Filter Filter |

For Those Ab... |1 Angus Young,... 343719 11170334 0.99

Balls to the Wall 2 342562 5510424 0.99

F. Baltes, S. K... 230619 3990994 0.99

F. Baltes, R.A.... 252051 4331779 0.99
Deaffy & RA. ... 375418 6290521 0.99

Restlessand ... 3

1
2
Fast As a Shark 3 2
2
2

FEFICECEES
W oh W N e

Princess of th... 3

Chapter 4 Data Analysis Checkpoint

Question 1: How many customers’last names begin with B?

Solution: In order to answer this question, we can first write a query to display
the specific information we are looking for. In this case, we are interested in
last names. Last names are contained in the customers table under the field
name LastName.

If we simply want a query to display all the last names, we can do this:
SELECT
LastName

FROM
customers

184 SQL QUICKSTART GUIDE

That will give us a field of all the last names, but they aren’t in any particular
order. To alphabetize them we can use the ORDER BY statement. Note that
we don't have to specify A-Z because ascending order is returned by default.
If we were looking for names starting with Z, we might have included the
DESC statement.

SELECT
LastName
FROM
customers
ORDER BY
LastName ASC

Now our results are alphabetized and
LastName we can easily see that four of the entries
1 Almeida start with B. Note that we are still using
observation to determine how many
2 Barnett entries start with B. Other ways to do this
3 Bernard will be explored further on.
4 Brooks Question 2: When sorted in descending
5 Brown order, which company appears at the top,
6 Chase in the customers table?
/ Cunningham Solution: This time we are looking for the
8 Dubois Company field instead of the LastName
field. As mentioned in the last question,
9 Fernandes .
all we have to do is change the last part
10 Francis of our query to specify descending order.
SELECT
Company
FROM
customers
ORDER BY

Company DESC

Appendix I: Data Analysis Checkpoint Questions and Solutions 185

186

Doing this yields the following result:

Company

Woodstock Discos

Telus

Rogers Canada

Riotur

Microsoft Corporation

JetBrainss.r.o.

Google Inc.

Embraer- Empresa Brasileira de Aerondutica S.A.

Wlo|lvN|locluo|ld|lw]IN]|—

Banco do Brasil S.A.

—
o

Apple Inc.

We can observe that
Woodstock Discos is the
first company listed in
descending order.

Question 3: How many
customers do not have a
postal code listed?

Solution: We could answer
this question by scrolling
through the data on Browse
Data, but there is a better
way. Using a SELECT
statement, we can list all

the data in ascending order as we have done previously. But this time, we

want to list more than just one column, so we can see what customer names

have no postal code data. So we can choose FirstName, LastName, and
PostalCode, then order the results by PostalCode.

SELECT

FirstName,
LastName,
PostalCode

FROM

customers

ORDER BY

PostalCode

'This shows us four entries that do not have postal data, as designated by the
null value in the PostalCode column (Figure 134).

SQL QUICKSTART GUIDE

FirstName LastName PostalCode

Jodo Fernandes NULL

1

2 Madalena Sampaio NULL

3 Hugh O'Reilly NULL

4 Luis Rojas NULL

5 Stanistaw Wojcik 00-358

6 Lucas Mancini 00192

7 Terhi Hémélainen 00530

8 Eduardo Martins 01007-010
9 Alexandre Rocha 01310-200
10 Bjorn Hansen 0171

If we were to list these in descending order, we would have to scroll

to the bottom to see the null values.

Chapter 5 Data Analysis Checkpoint

Question 1: Create a query for the invoices table that includes a CASE
statement that labels all sales from billing country USA as “Domestic Sales”
and all other sales as “Foreign Sales.” Label your new field as SalesType

after your END AS statement.

Solution: To display this information, we combine what we learned about
filtering records by text with our CASE statement. Since we are categorizing
our CASE statement by billing country, we will have to include that field in
our SELECT statement.

SELECT
InvoiceDate,
BillingAddress,
BillingCity,
BillingCountry,
Total,
CASE
WHEN BillingCountry = 'USA' THEN 'Domestic
Sales'
ELSE 'Foreign Sales'
END AS SalesType
FROM
invoices

Appendix |: Data Analysis Checkpoint Questions and Solutions 187

GgAPHQ\

fig. 135

InvoiceDate BillingAddress BillingCity BillingCountry | Total PurchaseType
1 1/1/2009 0:00 Theodor-Heuss-StraBe 34 | Stuttgart Germany 198 Foreign Sales
2 1/2/2009 0:00 Ullevalsveien 14 Oslo Norway 396 Foreign Sales
3 1/3/2009 0:00 Grétrystraat 63 Brussels Belgium 594 Foreign Sales
4 1/6/2009 0:00 8210111 STNW Edmonton Canada 891 Foreign Sales
5 1/11/2009 0:00 69 Salem Street Boston USA 13.86 Domestic Sales
6 1/19/2009 0:00 BergerStraBe 10 Frankfurt Germany 0.99 Foreign Sales
7 2/1/2009 0:00 BarbarossastraBe 19 Berlin Germany 198 Foreign Sales
8 2/1/2009 0:00 8, Rue Hanovre Paris France 198 Foreign Sales
9 2/2{2009 0:00 9, Place Louis Barthou Bordeaux France 396 Foreign Sales
10 2/3/2009 0:00 3 Chatham Street Dublin Ireland 5.94 Foreign Sales

Question 2: Order this data by the new field SalesType.

Solution: To show all domestic sales in one group and all foreign sales in

another group, we simply add an ORDER BY (using our new field) to our

existing query:

SELECT

InvoiceDate,
BillingAddress,
BillingCity,

BillingCountry,

Total,

CASE

WHEN BillingCountry =

Sales'
ELSE

END AS SalesType

FROM

invoices

ORDER BY

SalesType

'Foreign Sales'

'"USA!

THEN

'Domestic

Figure 136 shows the results for this query displaying "Domestic Sales" first,

if you run this query and scroll down, you will see all countries other than

USA labled as "Foreign Sales.".

188 SQL QUICKSTART GUIDE

InvoiceDate BillingAddress BillingCity | BillingCountry | Total SalesType

1 1/11/2009 0:00 69 Salem Street Boston USA 13.86 Domestic Sales

2 2/19/2009 0:00 1600 Amphitheatre Parkway | Mountain View USA 0.99 Domestic Sales

3 3/4/2009 0:00 1 Microsoft Way Redmond USA 198 Domestic Sales

0“APH/C 4 3/4/2009 0:00 1 Infinite Loop Cupertino USA 198 Domestic Sales
5 3/5/2009 0:00 801 W 4th Street Reno USA 396 Domestic Sales

6 3/6/2009 0:00 319 N. Frances Street Madison USA 594 Domestic Sales

7 4/14/2009 0:00 1 Infinite Loop Cupertino USA 13.86 Domestic Sales

. ' 8 6/6/2009 0:00 1 Microsoft Way Redmond USA 396 Domestic Sales
fig. 136 9 6/7/2009 0:00 801 W 4th Street Reno USA 594 Domestic Sales
10 6/10/2009 0:00 1033 N Park Ave Tucson USA 891 Domestic Sales

Question 3: How many invoices from Domestic Sales were over $15?

Solution: We can use the same query again, but this time add a WHERE clause
and AND to include both the numeric and text parameters.

SELECT
InvoiceDate,
BillingAddress,
BillingCity,
BillingCountry,
Total,
CASE
WHEN BillingCountry = 'USA' THEN 'Domestic
Sales'
ELSE 'ForeignSales'
END AS SalesType
FROM
invoices
Where
SalesType = "Domestic Sales" AND Total > 15

InvoiceDate BillingAddress BillingCity | BillingCountry | Total SalesType
1 3/21/2010 0:00 162 E Superior Street Chicago USA 15.86 Domestic Sales
2 5/29/2011 0:00 319 N. Frances Street Madison USA 18.86 Domestic Sales
3 8/5/2012 0:00 2211 W Berry Street FortWorth USA 23.86 Domestic Sales

Appendix I: Data Analysis Checkpoint Questions and Solutions 189

190

Chapter 6 Data Analysis Checkpoint

Question 1: Using DB Browser and the Browse Data tab or the entity
relationship diagram on page 95, view the #racks table. Identify which fields in
that table are foreign keys in another table. Based on the foreign keys you have
identified, which tables are related to the #racks table?

Solution: Looking at the #racks table, we see three fields with integer values
that appear to be foreign keys.

Trackld Name AlbumId MediaTypeld Genreld Composer Milliseconds Bytes UnitPrice
Filter [Filter Filter Filter Filter Filter Filter Filter Filter
1 1 For Those Ab... 1 1 1 Angus Young,... 343719 11170334 099 e
2 2 Balls to the Wall 2 2 1 342562 5510424 1;99 .
3 3 Fast As a Shark 3 2 1 F. Baltes, S. K... 230619 3990994 0.99
’4 4 Restlessand ... 3 2 1 F. Baltes, R.A.... 252051 4331779 0.99
5 5 Princess of th... 3 2 1 Deaffy & RA. ... 375418 6290521 0.99
6 6 Put The Finge... 1 1 1 Angus Young,... 205662 6713451 0.99
7 7 Let'sGettUp 1 1 1 Angus Young,... 233926 7636561 0.99
8 8 Inject The Ve... 1 1 1 Angus Young,... 210834 6852860 0.99
9 9 Snowballed 1 1 1 Angus Young,... 203102 6599424 0.99
10 10 Evil Walks 1 1 1 Angus Young,... 263497 8611245 0.99

The fields AlbumId, MediaTypeld, and GenreId correspond to the
albums, media_types, and genres tables, respectively.

Question 2: Create an inner join between the a/bums and fracks tables to display
corresponding artist names, album titles, and track names in a single result set.

Solution:

SELECT
t.composer AS "Artist Name",
a.title AS "Album Title",
t.Name AS "Track Name"

FROM
albums a

INNER JOIN
tracks t

ON
a.AlbumId = t.AlbumId

Question 3: Using the genres table identified in question 1, create a third

inner join to join to this table and include the Name field from that table in
your result set.

SQL QUICKSTART GUIDE

Solution:

SELECT
g.name AS Genre,
t.composer AS "Artist Name",
a.title AS "Album Title",
t.Name AS "Track Name"
FROM
albums a
INNER JOIN
tracks t
ON
a.AlbumId = t.AlbumId
INNER JOIN
genres g
ON
g.Genreld = t.Genreld

Chapter 7 Data Analysis Checkpoint

Question 1: Create a single-line mailing list for all US customers, including
capitalized full names and full addresses with five-digit zip codes, in the
following format:

FRANK HARRIS 1600 Amphitheatre Parkway, Mountain View, CA 94043

Solution: The format above is calling for the first and last names to be in all
caps, so we will need the UPPER () function for those two fields. We use the
double pipes to concatenate the rest of the fields, adding spaces and commas
where needed.

SELECT
UPPER(FirstName) || ' ' || UPPER(LastName) || " '
|| Address || ', " || City || ', ' || State [| " !
|| SUBSTR(PostalCode,l,5) AS [MailingAddress]
FROM
customers
WHERE
Country = 'USA'

Appendix |: Data Analysis Checkpoint Questions and Solutions 191

192

MailingAddress

FRANK HARRIS 1600 Amphitheatre Parkway, Mountain View, CA 94043
JACK SMITH 1 Microsoft Way, Redmond, WA 98052

MICHELLE BROOKS 627 Broadway, New York, NY 10012

TIM GOYER 1 Infinite Loop, Cupertino, CA95014

DAN MILLER 541 Del Medio Avenue, Mountain View, CA 94040

KATHY CHASE 801 W 4th Street, Reno, NV 89503

HEATHER LEACOCK 120 S Orange Ave, Orlando, FL 32801

JOHN GORDON 69 Salem Street, Boston, MA2113

FRANKRALSTON 162 E Superior Street, Chicago, IL 60611

VICTOR STEVENS 319 N. Frances Street, Madison, WI 53703

fig. 139

als|lwSd]lm|lolslw]s]—

Question 2: What are the average annual sales generated by customers from

the USA from all years of data available?

Solution: If we are just looking for an aggregate function for one country, we
can simply select billing country and the average of the total using the WHERE
clause to limit our results to the USA.

SELECT
BillingCountry,
AVG(Total)
FROM
invoices
WHERE
BillingCountry = 'USA'

BillingCountry AVG(Total)

1 USA 57479121

We can use the ROUND () function outside of the 2VG () function to
reduce the number of decimal places returned.

Question 3: What are the company’s all-time total sales?

Solution: Since this question is asking us for the sum total of invoices, our
SELECT statement is fairly simple.

SQL QUICKSTART GUIDE

SELECT

SUM(Total)
FROM
invoices
SUM(Total)
1 2328.6

Question 4: Who are the top ten best customers from a revenue standpoint?
Hint: you will need to use a join (chapter 6) to answer this question.

Solution: We have already found the total revenue. Now we are looking
for the top ten customers responsible for the highest revenue. Since we are
looking for data from one table that corresponds to data from another table in
a one-to-one relationship, we use an inner join.

SELECT
SUM(Total)AS [Revenue Totall],
c.FirstName,
c.LastName
FROM
invoices i
INNER JOIN
customers c
ON
i.CustomerId = c.CustomerId
GROUP BY c.CustomerId
ORDER BY SUM(Total) DESC

Chapter 8 Data Analysis Checkpoint

Question 1: How many invoices exceed the average invoice amount generated

in 2010?

Solution: To answer this question we need to accomplish two tasks. First
we need to find the average invoice amount generated in 2010. Second, we
need to compare that value with every invoice in our table to see how many
exceeded the average 2010 invoice value.

Appendix 193

First let’s write our subquery:

select
avg(total)
from
invoices
where
InvoiceDate between '2010-01-01'" and '2010-12-31'

Running this query gives us an average of $5.80; now we need to write the
outer query to select invoices that are greater than the 2010 average.

SELECT
InvoiceDate,
Total

FROM
invoices

WHERE

Total >

(select
avg(total)
from
invoices
where
InvoiceDate between '2010-01-01'" and '2010-12-31")
ORDER BY
Total DESC

InvoiceDate Total

11/13/2013 0:00 | 25.86
8/5/2012 0:00 23.86
2/18/2010 0:00 [21.86
4/28/2011 0:00 | 21.86
1/18/2010 0:00 18.86
5/29/2011 0:00 [18.86
1/13/2010 0:00 1791
9/5/2012 0:00 16.86
10/6/2012 0:00 16.86
3/21/2010 0:00 [15.86

Ol lo|lVN|locolo|lds|lw || —

—
o

194 SQL QUICKSTART GUIDE

Our Results Pane tells us that 179 results were returned.

NOTE

If we only wanted the actual number of invoices returned, we could

modify our Total field in our outer query to say COUNT (Total).

Question 2: Who are the customers responsible for these invoices?

Solution: This problem requires joins again, to connect customer data from
the customers table to the invoices table. The question itself implies a one-to-
one relationship between the customers table and the inwoices table. We have
already selected the invoices we are interested in, so now we need to find the
customers attached to those invoices. This is exactly what an inner join does.
'This solution is very similar to the solution to Question 1. All we have added
is the inner join section so we have access to customer names as well.

SELECT
i.InvoiceDate,
i.Total,
c.FirstName,
c.LastName

FROM
invoices i

INNER JOIN
customers c

ON
i.CustomerId = c.CustomerId

WHERE

Total >

(select
avg(total)
from
invoices
where
InvoiceDate between '2010-01-01'" and '2010-12-31")
ORDER BY
Total DESC

Appendix |: Data Analysis Checkpoint Questions and Solutions 195

Question 3: How many of these customers are from the USA?

Solution: We can modify the solution to Question 2 above to include an AND
statement at the end of the WHERE clause of the outer query.

SELECT
InvoiceDate,
Total,
BillingCountry
FROM
invoices
WHERE
Total >
(select
avg(total)
from
invoices
where
InvoiceDate between '2010-01-01'" and '2010-12-31")
AND BillingCountry = 'USA'
ORDER BY
Total DESC
InvoiceDate Total | BillingCountry
1 11/13/2013 0:00 | 25.86 USA
2 8/5/2012 0:00 23.86 USA
3 2/18/2010 0:00 | 21.86 USA
4 4/28/2011 0:00 [21.86 USA
5 1/18/2010 0:00 18.86 USA
6 5/29/2011 0:00 | 18.86 USA
7 1/13/2010 0:00 1791 USA
8 9/5/2012 0:00 16.86 USA
9 10/6/2012 0:00 16.86 USA
10 3/21/2010 0:00 15.86 USA

Our Results Pane shows us that the query returned forty records.

196 SQL QUICKSTART GUIDE

NOTE

We could use a SUM () function around the total if we wanted this

query to return the exact number of results.

Chapter 9 Data Analysis Checkpoint

In this checkpoint we asked you to turn the following query, which compares
average invoice per city against the global average, into a series of views:

SELECT
BillingCity,
AVG(Total) AS [City Average],
(select
avg(total)
from
invoices) AS [Global Average]
FROM
invoices
GROUP BY
BillingCity
ORDER BY
BillingCity

Question 1: Take the inner query (by itself) from this SELECT statement
and create a view from it. Save the view as V_GlobalAverage.

If you have been following along with the in-chapter examples, you
might have already saved an average function as a view. For this
exercise, make sure this new view has a new name.

Solution: We take the inner query by itself and add the view syntax on the
first line.

CREATE VIEW V_GlobalAverage AS
select

avg(total)
from

invoices AS [Global Average]

Question 2: Remove the subquery from the code above entirely and substitute
it with your newly created view V. GlobalAverage.

Appendix |: Data Analysis Checkpoint Questions and Solutions 197

198

Solution: When we use a view in the SELECT clause, we use the asterisk

symbol.

SELECT
BillingCity,
AVG(Total) AS [City Average],
(select
*
from
V_GlobalAverage) AS [Global Average]
FROM
invoices
GROUP BY
BillingCity
ORDER BY
BillingCity

Question 3: Save thisnew queryasaviewcalledV_CityAvgVsGlobalAvg.

Solution: We copy our code from question 2 and add the CREATE VIEW
statement at the very top.

CREATE VIEW V_CityAvgVsGlobalAvg AS
SELECT

BillingCity,

AVG(Total) AS [City Average],
(select

*
from
V_GlobalAverage) AS [Global Average]
FROM

invoices
GROUP BY

BillingCity
ORDER BRY

BillingCity

Question 4: Delete the view V. GlobalAverage. What happens to V.
CityAvgVsGlobalAvg?

SQL QUICKSTART GUIDE

Solution: We use DROP VIEW to delete our view. Alternatively, we can right-
click on the view from our Database Structure tab in DB Browser and delete

the view that way.
DROP VIEW V_ GlobalAverage

Now to see how this impacts our previous statements, we need to write a
SELECT statement to select our virtual table.

V_CityAvgVsGlobalAvg
SELECT
*
FROM
V_CityAvgVsGlobalAvg

You should get the following error message:

no such table: main.V_GlobalAverage:

Chapter 10 Data Analysis Checkpoint

Question 1: Add a new customer to the database.

Solution: We first need to add our new customer to the customers table. A
customer can exist alone without being referenced on any other table (if they
didn’t make a purchase yet). To start, insert a record into the cuszomers table.

INSERT INTO
customers
VALUES ('60', 'New', 'Customer', "', '123 Day Street’,
'New York', 'NY', 'USA', '11201', '(347) 525-8688', ',
'nc@gmail.com', '1');
WOTg
We left some of the fields as null by including two single quotes
next to each other. We can check our work by running a SELECT
statement that looks for the name of the customer we just added.

Appendix I: Data Analysis Checkpoint Questions and Solutions 199

NOTE

SELECT

*

FROM

customers

WHERE

FirstName = 'New'

If you used a different name for your new customer, modify that
value in the query accordingly.

o
-

LastN. Company | Address City [State [Country | PostalCode Phone Fax Email Supportld

New Customer 123 Day Street | NewYork | NY USA 11201 (347)525-8688 nc@gmail.com | 1

Question 2: Create an invoice record for this customer.

Solution: In order to create an invoice entry for our new customer, we must

pay

special attention to the fields in the inwvoices table that correspond to our

customers table. For example, our invoices use the same address that appears in

the customers table.

INSERT INTO

invoices

VALUES ('413', 'e0', '2019-10-04 00:00:00', '123 Day
Street', 'New York', 'NY', 'USA', '10201', '50.00")

Question 3: Remove this customer from the database.

Solution: As we mentioned in chapter 10, it is a best practice to view the data
we are going to delete so that we can see what we will be deleting. In this case,

the

data we are deleting stretches across two tables, so we write an INNER

JOIN statement to view all the data we have included.

200 SQL QUICKSTART

SELECT
c.FirstName,
c.LastName,
i.Total,
i.Invoiceld

FROM
invoices i

GUIDE

INNER JOIN

customers c
ON i.CustomerId = c.CustomerId
WHERE c.CustomerId = 60

Now that we have confirmed the data,we can compose the DELETE statement.

DELETE FROM
invoices

WHERE CustomerId = 60

DELETE FROM
customers

WHERE CustomerId = 60

Appendix |: Data Analysis Checkpoint Questions and Solutions 201

WOTs

Appendix |

List of SQL Keywords by Chapter
Chapter 4 Keywords

SELECT, AS, FROM, ORDER BY, ASC, DESC, LIMIT

/*

This is a block comment. Block comments start with a forward slash followed
by the asterisk, then end with an asterisk and another forward slash. Block
comments should usually follow this format:

CREATED BY: <your name>
CREATED ON: <date>
DESCRIPTION: <Brief description of what your query does>

*/
-- This is an example of using a single-line comment:
SELECT -- Specifies what data or fields to retrieve from the database
FirstName AS 'First Name', - These are field names
LastName AS [Last Name], - The AS keyword renames the field
Company AS Co - One-word aliases do not need single quotes or parentheses
FROM -- Specifies the table containing the desired data
customers - Refers to the customers table
ORDER BY -- Specifies the output order; ascending (A-Z) is the default
FirstName DESC - Typing DESC specifies descending (Z-A) order
LIMIT -- Limits results to a specific number

10; - The semicolon is optional here

Chapter 5 Keywords

WHERE, CASE, WHEN, THEN, ELSE, END AS, DATE ()

Operators in SQL are used within SQL clauses.

Appendix ll: List of SQL Keywords by Chapter 203

WOT7s

TYPES OF OPERATORS

COMPARISON LOGICAL ARITHMETIC
= EquaITo BETWEEN + Add
> Greater Than N - Subtract
LIKE -
< Less Than AND / Divide
>= Greater Than or Equal To OR * Multiply
= Less Than or Equal To % Modulo
<> Not Equal To
SELECT
InvoiceDate,
BillingAddress,
BillingCity,
Total
FROM
invoices
WHERE
Total = 1.98 -- Only returns records where the field Total is equal to 1.98
ORDER BY
InvoiceDate

CASE - This statement allows you to filter records by user-specified condi...

WHEN -- Used with a case statement to specify a condition
THEN -- Used with a case statement after WHEN to create a label for all...
ELSE -- Used to specify every condition not covered by the WHEN/THEN...
END AS -- Creates a new field for the labels created by the ELSE state...
SELECT
InvoiceDate,
BillingAddress,
BillingCity,
Total,
CASE -- Creates four conditions to display different price ranges for the...
WHEN TOTAL < 2.00 THEN 'Baseline Purchase' - Condition 1

WHEN TOTAL BETWEEN 2.00 AND 6.99 THEN 'Low Purchase'
WHEN TOTAL BETWEEN 7.00 AND 15.00 THEN 'Target Purchase'
ELSE 'Top Performers' -- The ELSE keyword handles all other conditions not...
END AS PurchaseType
FROM
invoices
ORDER BY
BillingCity

The single-line comments are abbreviated in the previous example
for the sake of print. Single-line comments must always be on one
line in the SQL browser or they will be mistaken for code and will
result in errors.

204 SQL QUICKSTART GUIDE

InvoiceDate BillingAddress BillingCity Total PurchaseType
1 2009-05-10 00:00:00 | Lijnbaansgracht 120bg Amsterdam 891 Target Purchase
2 2010-12-15 00:00:00 Lijnbaansgracht 120bg Amsterdam 198 Baseline Purchase
3 2011-03-19 00:00:00 Lijnbaansgracht 120bg Amsterdam 396 Low Purchase
71 2010-03-21 00:00:00 162 E Superior Street Chicago 15.86 Top Performers

DATE () is the first function introduced in the book. It is introduced
early so it can be used with the other keywords in chapter 5. More

functions are introduced in chapter 7.

/*
The DATE() function removes any timecode information
from data stored as DATETIME.

*/
SELECT

InvoiceDate,

DATE (InvoiceDate) AS [Results of DATE Function]
FROM

invoices
ORDER BY

InvoiceDate

InvoiceDate Results of DATE Function

1 2009-01-01 00:00:00 2009-01-01
2 2009-01-02 00:00:00 2009-01-02
3 2009-01-03 00:00:00 2009-01-03
4 2009-01-06 00:00:00 2009-01-06
5 2009-01-11 00:00:00 2009-01-11

Appendix ll: List of SQL Keywords by Chapter 205

Chapter 6 Keywords

INNER JOIN, ON, LEFT OUTER JOIN, RIGHT OUTER JOIN,
IS, NOT

NOTE

The RIGHT JOIN is not supported in SQLite but is supported in
other RDBMS implementations.

INNER JOIN

SELECT
i.InvoiceId, -- Alias notation specifies what table the field is from
.CustomerId,
.Name,
.Address,
.InvoiceDate,
.BillingAddress,
.Total

PP 0 QQ

FROM
invoices AS i
INNER JOIN
customers AS c
ON i.CustomerId = c.CustomerId

LEFT OUTER JOIN

SELECT
i.Invoiceld,
c.CustomerId,
c.Name,
c.Address,
i.InvoiceDate,
i.BillingAddress,
i.Total

FROM
invoices AS i

LEFT OUTER JOIN
customers AS c

ON
i.CustomerId = c.CustomerId

206 SQL QUICKSTART GUIDE

RIGHT OUTER JOIN (Not Supported in SQLite)

SELECT

i.Invoiceld,
.CustomerId,
.Name,
.Address,
.InvoiceDate,
.BillingAddress,
.Total

FeRR-Q O Q

FROM
invoices AS i

RIGHT OUTER JOIN -- Switch position of tables listed in query to create L...
customers AS c

ON i.CustomerId = c.CustomerId

SELECT
ar.ArtistId AS [ArtistId From Artists Table],
al.ArtistId AS [ArtistId From Albums Table],
ar.Name AS [Artist Name],
al.Title AS [Album]
FROM
artists AS ar
LEFT OUTER JOIN
albums AS al
ON
ar.ArtistId = al.ArtistId
WHERE
al.ArtistId IS NULL - Can also use IS NOT

Chapter 7 Keywords

GROUP BY, HAVING

TYPES OF FUNCTIONS

STRING DATE AGGREGATE
INSTR () DATE () AVG ()
LENGTH () DATETIME () COUNT ()
LOWER () JULIANDAY () MAX ()
LTRIM () STRETIME () MIN ()

fig. 148 REPLACE () TIME () SUM ()
RTRIM () "NOW'
SUBSTR ()
TRIM() «—— || (double pipes concatenation)
UPPER ()
Miscellaneous Functions: Round ()

Appendix ll: List of SQL Keywords by Chapter 207

WOTg

As stated in the chapter, there are many more functions recognized
by SQLite than are included in this chapter. For a full list and further
documentation on SQLite, visit https://www.sglite.org/lang_corefunc.html

Chapter 8 Keywords

DISTINCT
'The basic subquery:
1 SELECT _—
2 InvoiceDate,
3 BillingAddress,
4 BillingCity,
WAGe 5 Total — OUTER QUERY
6 FROM
7 invoices
8 WHERE Total < —
c) (select —
10 avg (Total) .
fig. 149 11 from — Inner query
12 invoices)
13 ORDER BY
14 Total DESC]_ OUTER QUERY
15
The DISTINCT clause:
Trackld
1 1 SELECT
2 2 DISTINCT TrackId
FROM
3 3 . . .
involce 1ltems
4 4 ORDER BY
5 5 TrackId
6 6
7 8
8 9
9 10
10 12
1984 rows returned
in11ms

208 SQL QUICKSTART GUIDE

OPUTRZW

Chapter 9 Keywords

CREATE VIEW, DROP VIEW

CREATE VIEW V_ ViewName AS

DROP VIEW V_ ViewName

Chapter 10 Keywords

[Alias Name]

INSERT INTO, UPDATE,

SET,

DELETE

Data manipulation language (DML) can permanently alter a
database. It is best to practice these commands in a sandbox
space such as the sample database provided. Using DML on a
live database with active customer data can have permanent

deleterious effects.

INSERT INTO
(Name)
(‘Bob Marley’)

artists
VALUES

UPDATE
employees

SET PostalCode = ‘11202’

WHERE
EmployeelId = 9

DELETE FROM
employees

WHERE
Employeeld

Il
(o)

Appendix ll: List of SQL Keywords by Chapter

209

About
the Author

WALTER SHIELDS

Wialter Shields has worked with SQL and

databases for over eighteen years, helping

organizations such as Target Corporation,
NYC Transit Authority, and NYC
Administration for Children’s Services
successfully leverage and understand their
data using SQL.

While Walter’s self-described path through

the emerging industry of data science in the

late 1990s was anything but straightforward,
he firmly believed that SQL did not have to be so daunting for everyone else.
Walter’s desire to simplify the learning process eventually led him to start
teaching students in a coffee shop in Tribeca, New York, equipped with
nothing but a laptop full of SQL learning materials. Since then, his mentorship
has turned into its own business: SQL Training Wheels. When not teaching
students, Walter can be found working on his latest project, Datadecided,
a Tableau-based data visualization company that helps medium and large
businesses leverage their data with actionable data visualizations. You can
reach Walter at www.sgltrainingwheels.com and learn more about Tableau
and data visualization at www.Datadecided.com.

About the Author 211

About
ClydeBank
Media

We create simplified educational tools that allow our customers to successful-

ly learn new skills in order to navigate this constantly changing world.

The success of ClydeBank Media’s value-driven approach starts with
beginner-friendly high-quality information. We work with subject matter
experts who are leaders in their fields. These experts are supported by our
team of professional researchers, writers, and educators.

Our team at ClydeBank Media works with these industry leaders to break
down their wealth of knowledge, their wisdom, and their years of experience
into small and concise building blocks. We piece together these building
blocks to create a clearly defined learning path that a beginner can follow for
successful mastery.

At ClydeBank Media, we see a new world of possibility. Simplified learning

doesn’t have to be bound by four walls; instead, it’s driven by you.

world. .
1o ™ cumted

About ClydeBank Media 213

Glossary

Aggregate Function

A function designed to produce a
single result based on the contents
of an entire field. Aggregate
functions can return a sum, a
minimum, a maximum, a count,

or other mathematical functions.

Alias

A substitute name for a database
column defined by the user in an
AS statement. An alias is used
for clarity or presentation when

displaying a query.

Argument
A parameter of a function,
usually encased in parentheses ()

and separated by a comma.

Arithmetic Operator

An SQL keyword used to
perform basic arithmetic
operations (add, subtract,
multiply, divide, modulo) usually
within a WHERE clause.

Attribute
Another representation of a field.

Boolean
A data type expressed as either
true or false.

Clause

A subsection of an SQL statement
that starts with a reserved keyword
and may include additional

par ameters and oper ators.

Coding Convention

A set of guidelines, standards,
and best practices used in most
programming languages to
ensure that code is readable by
other company stakeholders.

Column

Another representation of a field.

Comparison Operator

An SQL keyword used to
compare values, usually used
within a WHERE clause.

«_»

Examples include

[

>” (greater than), “<” (less than),

(equal to),

“>=" (greater than or equal to),
“<=” (less than or equal to), <>
(not equal to).

Composite Key

A primary key consisting of
two or more fields combined in
such a way as to make a unique

identifier.

Data Manipulation Language
(DML)

A subset of SQL keywords
that are used to add, remove,
and modify data in a database.
Examples include INSERT,
UPDATE, and DELETE.

Data
Information that can be recorded

and stored in a database.

DataType

An attribute of a field that
specifies what type of data that
field can hold. Examples include

numerical and text.

Database
A collection of data arranged
for ease and speed of search and

retrieval by a computer.

Database Administrator

A database professional
responsible for the maintenance,
security, and integrity of a
database. Duties may include
deciding who has access to
what parts of the database and
determining who can edit the
database.

Glossary 215

DB Browser
An SQL browser that uses the
SQLite RDBMS.

Entity Relationship Diagram
(ERD)

The graphical “blueprint”

of a database that explains
relationships between tables,
such as a relationship between a
primary key in one table and its
corresponding foreign key(s) in
other tables. An ERD can also

be called a schema.

Field

A space allocated for a particular
type of data. Field could refer to
one specific item in a record or
the entire column. Sometimes
referred to as a column or
attribute.

Foreign Key
A column in a table that is a

primary key in another table.

Function

A special SQL keyword that
accepts certain parameters

called arguments, performs an
operation (such as a calculation
or modification of the data in the
field), and returns the result of

that operation as a value.

Integer
A data type that represents a
whole (non-decimal) number.

216 SQL QUICKSTART GUIDE

Keyword

A special reserved word in SQL
that performs a specific function
in a statement or query. SELECT
is the most common SQL
keyword.

Logical Operator

An SQL keyword used to
perform conditional selection

of data meeting certain criteria,
usually within a WHERE clause.
Examples include BETWEEN, IN,
LIKE, AND, and OR.

Messages Pane

A part of the SQL browser that
gives the user feedback on the
results of executed queries.

Metadata
Data about the structure of the

data in a database.

Normalization

A technique used in the creation
of databases to reduce redundant
columns and thus decrease both
the size of the database and the

time required to run queries.

Operator

A special SQL keyword, usually
used in conjunction with an
existing SQL clause such as

the WHERE clause. Common
operators include comparison
operators, logical operators, and

arithmetic operators.

Primary Key

The column that acts as a unique
identifier for a particular record
in a table.

Query

A request made in Structured
Query Language, entered into
an SQL browser, requesting a
specific set of information.

Query Pane

A part of the SQL browser that
allows the user to enter SQL
queries.

RDBMS
An abbreviation for relational
database management system.

Record
One complete set of information,
usually consisting of one row and

at least one column.

Relational Database

A database design that employs
multiple tables linked to each
other by the use of primary and
foreign key fields.

Relational Database
Management System

A software package that allows
the user to create, edit, and
run SQL queries on relational
databases.

Results Pane

'The part of the SQL browser
that shows the result set, or data
returned from a query.

Result Set

The output or resulting data of
a successfully executed query,
usually in the form of records
from the database.

Row
Another representation of a

record.

Sandbox

A database environment that is
isolated from any live servers or
sensitive data so that code can be

tested or practiced.

Schema

A description of the relationship
between database tables and their
primary and foreign keys that can
be shown visually by an entity
relationship diagram (ERD).

SQL

Structured Query Language.
A standardized set of keywords
specifically designed to create,
manipulate, and control
relational databases.

SQLite

A particular implementation
of SQL, also called a relational
database management system.

SQL Browser

'The software interface of a
relational database management
system that allows an end user
to browse databases and execute
queries using Structured Query
Language.

Statement
Any valid piece of code that can
be executed by the RDBMS.

String
Text data stored in a text-based
data type such as NVARCHAR.

Syntax

The correct keyword usage, order,
and structure of SQL statements
so that the SQL browser correctly
interprets the resulting query.

Syntax Error
An error message created by
the SQL browser due to an

improperly structured query.

Table
A unique set of records,
consisting of both rows and

columns.

Glossary

217

References

INTRODUCTION:

1. “1 Second,” Internet Live Stats, accessed January 24, 2019, http://www.internetlivestats.com/one-second/.

2. https://www.forbes.com/sites/bernardmarr/2015/09/30/big-data-20-mind-boggling-facts-everyone-must-
read/#36eb197¢17b1.

3. http://wikibon.org/blog/big-data-infographics/.

4. https://www.dezyre.com/article/big-data-timeline-series-of-big-data-evolution/160.

5. https://www.technologyreview.com/s/514346/the-data-made-me-do-it/.

6. https://www.glassdoor.com/Salaries/sql-developer-salary-SRCH_KOO0,13.htm.

CHAPTER 1

7. http://www.dictionary.com/browse/datum.

8. https://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf.

9. “Most Widely Deployed SQL Database Engine - SQLite,” accessed February 19, 2019, https://www.sqlite.org/
mostdeployed.html.

CHAPTER 7:

10. “SQLite Query Language: Core Functions,” accessed February 25, 2019, https://www.sqlite.org/lang_corefunc.html

11. “SQLite Query Language: Aggregate Functions,” accessed March 10, 2019, https://www.sqlite.org/lang
aggfunc.html.

References 219

https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/lang_aggfunc.html
https://www.sqlite.org/lang_aggfunc.html

Index

A

Access (Microsoft), 2,175

Aggregate data, 138-139, 163

Aggregate function, 117, 117/, 131-132, 131/~132f, 215
GROUP BY clause with, 133-135
WHERE clause with, 136-137

Alias, 57-58, 58f, 86,107,109, 161, 215

Amazon, 1-2,7

AND and OR operators with two fields, 78-80

AND operator, 70, 79-80

Argument, 118, 123-124,126-129, 128/, 215

Arithmetic operator, 6667, 66/~67f, 74,215

AS keyword, 57-58, 86

ASC keyword, 58

ASCII characters, 126

Asterisk (*) symbol, 43, 56, 93, 96-98, 132, 159, 162

Attribute, 15,215

Auto increment column, 169

AVG() function, 131-132, 131/, 132-133, 146

B

Base relvar, 13

BEMDAS, 81

BETWEEN operator, 70

Big data, 1-4,7-8

Birst Inc., 1797

Bit (data type), 26

Boolean values, 26-27, 271
Brackets for aliases, 57-58

Browse Data tab, 42, 42,54, 78,158
Browse Table option, 158, 158
Business intelligence software, 179

C

C++ programming language, 28
Calculations in queries, 115-116
Capitalization, 147

Careers in database management, 3, 6-8,167-168, 175-180
CASE statement, 84-89

Certifications for SQL, 180

Character or text-based data, 24-25, 25
Clause, 29-30, 294, 56,215

Codd, Edgar F., 16

Coding convention, 56,215

Coding syntax versus coding convention, 56
Column, 15,215

Comma, in SQL queries, 55-56, 60
Comment block, 51-52, 52/

Comments, adding to queries, 51-52, 52f°

Comparison operator, 66, 66/, 72-74, 215
Composite key, 22-23, 22/, 215

Concatenation, 120-122, 120/~122f, 126
Conversion specification, 127, 127/, 129/, 130
Converting queries to natural language questions, 35
Copying/pasting code wersus typing code, 35
COUNT() function, 115-116,117,131-132

D
Data
Boolean, 26-27, 27f
character or text-based, 24-25, 25/
date and time, 25-26, 26/
definition, 13-14, 16/
deletion, 164,172-173
fixed length, 118
insertion, 168170
length limitations, 24-25
numeric, 24, 24f
types, 23-27,42,117-118, 169
updating, 171-172
Data Analysis Checkpoint, 35
chapter 10,173
chapter 3, 45-46
chapter 4, 62
chapter 5, 89
chapter 6,113
chapter 7, 140-141
chapter 8, 155
chapter 9, 164
Data analysis versus database management, 167-168
Data analyst, 53,168,178
Data Manipulation Language (DML), 6, 167-174, 215
Data scientist, 7
Data visualization software, 179
Database
description, 14-15£, 215
structure of, 41-42, 417
Database administrator, 6-7, 167-168, 215
Database analyst, 176
Database designer, 176
Database developer, 7,167-168
Database implementations, variations in, 28-29, 57-58, 103,
116,121, 159,177-178
Database management, 176
Database management versus data analysis, 167-168
Database Structure tab, 54,78
inserting data and, 169-170
overview, 41-42, 41f

Index

221

views and, 158,158/, 160, 162-163, 162/
Datadecided.com, 4, 180
Date and time data, 25-26, 26/
Date functions, 117, 117, 127-131, 127/~130f
DATE() function, 78-80, 116
DATETIME format, 78,116, 127,128
Datum, 13
DB Browser, 34,39-40, 93,215
data manipulation language and, 168
modifying views, 159-160
pop-up text, 118,123
SUBSTR() function, 123
Decimal data, 24, 247
DELETE statement, 168,172-173
Deletion of data, 164
DESC keyword, 58-59
Digital assets for download, 34
Discrepancies in data, 98-100, 99/, 103,112-113, 122
DISTINCT clause, 152-155
Domo Inc., 1797
Double pipe concatenation, 117/, 120-122
Downloads, 34
DROP clause, 163-164

E

ELSE keyword, 85-86

END keyword, 85-86

Entity relationship diagram, 18-19, 18/~19f, 94-95/, 105-106,
105,216

Equals sign (=) operator, 69, 72-73,110

Error message, 44-45, 110, 112, 136-138, 146, 160, 170-171

Excel (Microsoft), 117,179

Execute SQL pane, 117-118

Execute SQL tab, 43-45, 53, 537,160

F
Facebook, 1-2
Field, 15-16f, 291, 42,216
foreign key, 17-19, 17/~18f
order of display, 96-98
primary key, 17-23, 17/-22f
Filtering records by date, 77-78
Filtering records by text, 72-74
Foreign key, 17-19, 17/~18f, 43,92, 94,98, 216
FROM clause, 297, 54-55, 69
Function, 216
deterministic versus nondeterministic, 127-128
overview, 115, 140
string, 125-126
types of', 116-118,117f

G

Google, 1-2

GROUP BY clause, 133135, 134/~135f
HAVING keyword with, 138
with multiple fields, 139-140f

222 SQL QUICKSTART GUIDE

H
HAVING clause, 137-139

|

IBM, 16,177,180

IBM Db2, 27

IN clause, 152

IN operator, 71-73

Infinity () symbol, 19

Inner join, 93, 99-101, 99/~101#, 105-108, 105/, 107/~108/, 113
Inner query, 147, 147f
INSERT statement, 168-170
Integer data, 24, 24f
Interview advice, 179-180

IS keyword, 108-110

J
Java programming language, 28
Join, 91-114
alias with, 95-98
in views, 160-163
inner join, 99-101, 99/~101f, 105-108, 105/, 107/~108/
interaction with relational database structure, 94-95
left outer, 101103, 101/~1037
left outer with NULL, IS, and NOT, 108-111, 108/,
110£111f
right join converted to left join, 111-113
right outer, 103-105, 103/~104f
subqueries and, 155
tables with disparate data and, 98-100, 100/

K

Key fields, 17-23, 17/~22f
Keyword, 29-30, 29/, 216
Knowledge base of SQL, 177-178

L

Left join, 101-103, 101£-103f; 108111, 108f 110£-111f,
111-113

LENGTH() function, 123,123f

LIKE operator, 74-76, 76

LIMIT statement, 61-62, 62f

Logical operator, 66, 66f, 70,216

Looker Data Sciences Inc., 179f

LOWERC() function, 125/, 126

M

MAX() function, 131-132, 131/, 149

Messages pane, 43-45, 44/-45f,55, 55/, 216
Metadata, 14,23, 42,216

Microsoft Certified Solutions Associate (MCSA), 180
Microsoft Certified Solutions Expert (MCSE), 180
MIN() function, 131-132, 1311

Modifier, in date functions, 127, 127/~129f
Modify View option, 1587, 159

Modulo, 66-67, 74

MySQL, 26-28

N

Nested function, 132-133

Non-aggregate data, 134-136, 138-139

Normalization, 95,216

NOT IN clause, 154

NOT keyword, 76, 108-110

NOW function, 127-128, 127/~128¢,130

Null value, 61, 86, 103,108-110, 110/~111£ 112,132,170
Numeric data, 24, 241"

NVARCHAR character data type, 42,118

(o)

Occupations. (See Careers in database management)
ON keyword, 93, 98, 106

One-to-many relationship, 19, 21, 23, 94, 100, 109
Operator, 66-67, 66/~67f, 78-84,216

OR operator, 79-84

Oracle Corporation, 16,177,180

Oracle Database, 27

ORDER BY clause, 29/, 58-62, 69, 87,138

Order of operations, specifying, 81-84

OUTER keyword, 103-104

Outer query, 147, 147f

P

Parentheses with AND and OR, 81-84

PEMDAS, 81

Percent (%) symbol, 74-77, 771,130

Play button, 4344, 44f

Pop-up information, 117-118, 123

Primary key, 17-23, 17/-22f, 43,92, 94, 98,132, 216
Programming languages, 28, 35,117,179

Q
Qlik, 1797
Query
basic structure, 52-53
definition, 216
description, 28-30, 297
grouped, 135-138
writing, 53-56, 53/
Query pane, 43, 441, 51-53, 52/, 216
Quote marks
for nonexistent value, 170
in WHERE clause, 73
to designate aliases, 57-58
wildcard characters and, 74, 77f

R
Record, 15, 15/-16f, 42-43, 216
Relational database, 16-23, 106

Relational database management system (RDBMS), 27-28, 216

“Relational Model of Data for Large Shared Data Banks”
(Codd), 16

Relational Software Inc., 16

Result set, 65, 661, 216

Results pane, 43-44, 44f/-45f,55-56, 55/, 58, 93,216

Right join, 103-105, 103/~104£, 111-113
ROUND() function, 132-133, 133/, 135, 146, 148
Row, 15, 43,217

S

Salary, 7,176-177

Sandbox, 5,167,217

Schema, 18-19, 1819/

SELECT statement, 28-29, 29/, 134, 136-137
data manipulation language and, 172
subqueries and, 145-148, 1471
views and, 159

Semicolon, in SQL statements, 56

SET keyword, 171-172

Sisense Inc., 1797

SQL, 217
careers, 6—8
description, 2

SQL browser, 27, 34, 98,217

SQL certifications, 180

SQL Server (Microsoft), 26-28, 159,177

SQL Training Wheels, 4, 180

SQL vendors, 177-179

SQLite, 27, 30,116, 118, 140, 217
functions, 125
views and, 160

Statement
description of, 29-30, 29f°

STREFTIME() function, 127-130, 127/~130F

String, 217

String format time function, 127-130, 127/~130f

String functions, 117-120, 117/, 125-126

sTunes database
download, 34
opening, 40

Subquery, 145-155
aggregate functions and, 145-147, 1471
DISTINCT clause and, 152-155
join versus, 155
returning multiple values from, 151-152
SELECT statement and, 147-148
WHERE clause in, 149-150
without aggregate functions, 150-151

SUBSTR() function, 123-125, 124/~125f

SUM() function, 131-132, 131

Syntax, 28,217
for joins, 95-97
variations in, 121

Syntax error, 28, 35, 44-45, 56,217

T
Table, 13, 14/~16, 291, 217
Tableau Software, 179/
Terminology, fundamental, 13-16, 16/
Text-based data, 24-25, 25

with string functions, 118-120
THEN keyword, 85

Index

223

Time and date data, 25-26, 26/
Timestring, 127, 127/~128f
Truncating text, 122-125

Tuple, 15

Two-pipe operator, 117, 120-122
Type field, 42

U

Underscore symbol, 158

Unicode characters, 126

UPDATE statement, 168,171-172
UPPER () function, 118,125/,126

\%
Viewing individual records, 42-43, 42/
Views, 157-165,179
creating from joins, 160-163
modifying, 160
naming, 158, 160
removing, 163-164
subqueries and, 159-160

w

WHEN keyword, 85

WHERE clause, 67-69, 7374, 109-110
CASE statement and, 87-89
dates used with, 78
DELETE statement with, 172-173
grouped queries with, 135-138
HAVING clause versus, 138-139
order of operations and, 81
subqueries and, 146, 1477, 149-150
UPDATE statement with, 171-172

Wildcards, 74-77, 75/~77f

Y
YouTube, 1

224 SQL QUICKSTART GUIDE

GET YOUR NEXT
QuickSlarl Guide
FOR FREE

ETIREME RENTAL PROPE| |
I:‘PLANNIN |NVESTIN |

N

Y .
Y

v,

Y

¥

Leave us a quick video testimonial on our website and
we will give you a FREE QuickStart Guide of your choice!

O (4 .

L]

RECORD SUBMIT TO GET A
TESTIMONIAL OUR WEBSITE FREE BOOK

TWO WAYS TO LEAVE A VIDEO TESTIMONIAL

" Use the camera app on your mobile phone to scan the QR code
Ehﬁ.‘am or visit the link below to record your testimonial and get your free book.
;_“.;';'-'I o

)
] o e www.clydebankmedia.com/free-gsg)

SAVE 10% ON YOUR NEXT

QuickSlarl Guide

| USE CODE: QsG10 |

DIGITAL
MARKETING

QuickStart Guide
c@o@en

HTML & CSS
wickStarl

€ LLLLLE
LLLLLLLLLLE

(= O

(0 g @9 [=] h_:f":-' [=]
= Fo
THE Sinaljfied BEGINNER'S GUIDE TO pr I Lty
DEVELOPING A STRONG CODING FOUNDATION, THE Simplfied BEGINNER'S GUIDE TO 13 ;:I: Sy
BUILDING RESPONSIVE WEBSITES, AND MASTERING DEVELOPING A SCALABLE ONLINE STRATEGY, =S A
THE FUNDAMENTALS OF MODERN WEB DESIGN FINDING YOUR CUSTOMERS, AND E oy J
PROFITABLY GROWING YOUR BUSINESS rota 3

David DuRocher

£LLLLLLLLLLLLLLLLLLLLLLLLLLLLK
[LLLLLLLLLLLLLLLLLLLLLLLLLL

Benjamin Sweeney

www.quickstartguides.shop/html-css www.quickstartguides.shop/digital

STARTING DAY TRADING
A BUSINES

THE Sinplfied BEGINNER'S GUIDE TO
WINNING TRADE PLANS,
CONQUERING THE MARKETS, AND
BECOMING A SUCCESSFUL DAY TRADER

€LLLLLLLLLLL

M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
v
M

THE Simplified BEGINNER'S GUIDE TO
LAUNCHING A SUCCESSFUL SMALL BUSINESS,
TURNING YOUR VISION INTO REALITY,

AND ACHIEVING YOUR ENTREPRENEURIAL DREAM

M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
s
M

Ken Colwell, PhD, MBA Troy Noonan

www.quickstartguides.shop/business www.quickstartguides.shop/trading

Use the camera app on your mobile phone to scan the QR code or visit the link below the cover to shop.
Get 10% off your entire order when you use code ‘QSG10’ at checkout at www.clydebankmedia.com

CLYDEBANK MEDIA

QuickStart Guided

PROUDLY SUPPORT ONE TREE PLANTED

One Tree Planted is a 501(c)(3) nonprofit organization focused on global
reforestation, with millions of trees planted every year. ClydeBank Media is
proud to support One Tree Planted as a reforestation partner.

Every dollar donated plants one tree and every tree makes a difference!

Learn more at www.clydebankmedia.com/charitable-giving or make a contribution at onetreeplanted.org

